Short history of the “Genomic Revolution” and implication for neurological institutes
Summary The “original” DNA sequencing methodology is the Sanger method, which has excellent accuracy and reasonable read length but very low throughput. In order to sequence longer sections of DNA, shotgun sequencing has been introduced for sequencing the entire human genome in the Human Genome Proj...
Ausführliche Beschreibung
Autor*in: |
Gambardella, Stefano [verfasserIn] Albano, Veronica [verfasserIn] Campopiano, Rosa [verfasserIn] Ferese, Rosangela [verfasserIn] Scala, Simona [verfasserIn] Storto, Marianna [verfasserIn] Zampatti, Stefania [verfasserIn] Romoli, Edoardo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: La Rivista italiana della medicina di laboratorio - Milan : Springer Italia, 2005, 11(2014), 1 vom: 31. Okt., Seite 1-13 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2014 ; number:1 ; day:31 ; month:10 ; pages:1-13 |
Links: |
---|
DOI / URN: |
10.1007/s13631-014-0066-y |
---|
Katalog-ID: |
SPR031955126 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR031955126 | ||
003 | DE-627 | ||
005 | 20230519145135.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13631-014-0066-y |2 doi | |
035 | |a (DE-627)SPR031955126 | ||
035 | |a (SPR)s13631-014-0066-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q ASE |
100 | 1 | |a Gambardella, Stefano |e verfasserin |4 aut | |
245 | 1 | 0 | |a Short history of the “Genomic Revolution” and implication for neurological institutes |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Summary The “original” DNA sequencing methodology is the Sanger method, which has excellent accuracy and reasonable read length but very low throughput. In order to sequence longer sections of DNA, shotgun sequencing has been introduced for sequencing the entire human genome in the Human Genome Project (HGP). Unfortunately, the formidable size of the diploid human genome has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, in the last ten years have been introduced high-throughput sequencing (or Next-Generation Sequencing, NGS) technologies that parallelizing the sequencing process, are able to improve the throughput and to lower the cost of DNA sequencing. NGS is very important, in particular if applied to neurological disease. This kind of disorders are complex in various ways; multiple risk factors, environmental as well as genetic, contribute to the disorder individually or by means of interaction. Also genetic component is complex: genetic heterogeneity (production of apparently identical disorders by different genetic mechanisms or by genes at different loci) has been described in a lot of neurological disorders. Therefore genetic analysis in this field are complex and require a lot of time. NGS approaches will allow to scan several genes responsible of a pathology, faster and cheaper than ever, improving the quality of the process that in this year has been too slow and expensive to produce molecular information useful for the clinical management of a neurological patient. | ||
650 | 4 | |a Neurological disorders |7 (dpeaa)DE-He213 | |
650 | 4 | |a DNA sequencing |7 (dpeaa)DE-He213 | |
650 | 4 | |a Next Generation Sequencing |7 (dpeaa)DE-He213 | |
700 | 1 | |a Albano, Veronica |e verfasserin |4 aut | |
700 | 1 | |a Campopiano, Rosa |e verfasserin |4 aut | |
700 | 1 | |a Ferese, Rosangela |e verfasserin |4 aut | |
700 | 1 | |a Scala, Simona |e verfasserin |4 aut | |
700 | 1 | |a Storto, Marianna |e verfasserin |4 aut | |
700 | 1 | |a Zampatti, Stefania |e verfasserin |4 aut | |
700 | 1 | |a Romoli, Edoardo |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t La Rivista italiana della medicina di laboratorio |d Milan : Springer Italia, 2005 |g 11(2014), 1 vom: 31. Okt., Seite 1-13 |w (DE-627)688606407 |w (DE-600)2654093-9 |x 2039-6821 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2014 |g number:1 |g day:31 |g month:10 |g pages:1-13 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s13631-014-0066-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_266 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
951 | |a AR | ||
952 | |d 11 |j 2014 |e 1 |b 31 |c 10 |h 1-13 |
author_variant |
s g sg v a va r c rc r f rf s s ss m s ms s z sz e r er |
---|---|
matchkey_str |
article:20396821:2014----::hrhsoyfhgnmceouinnipiainonu |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s13631-014-0066-y doi (DE-627)SPR031955126 (SPR)s13631-014-0066-y-e DE-627 ger DE-627 rakwb eng 610 ASE Gambardella, Stefano verfasserin aut Short history of the “Genomic Revolution” and implication for neurological institutes 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary The “original” DNA sequencing methodology is the Sanger method, which has excellent accuracy and reasonable read length but very low throughput. In order to sequence longer sections of DNA, shotgun sequencing has been introduced for sequencing the entire human genome in the Human Genome Project (HGP). Unfortunately, the formidable size of the diploid human genome has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, in the last ten years have been introduced high-throughput sequencing (or Next-Generation Sequencing, NGS) technologies that parallelizing the sequencing process, are able to improve the throughput and to lower the cost of DNA sequencing. NGS is very important, in particular if applied to neurological disease. This kind of disorders are complex in various ways; multiple risk factors, environmental as well as genetic, contribute to the disorder individually or by means of interaction. Also genetic component is complex: genetic heterogeneity (production of apparently identical disorders by different genetic mechanisms or by genes at different loci) has been described in a lot of neurological disorders. Therefore genetic analysis in this field are complex and require a lot of time. NGS approaches will allow to scan several genes responsible of a pathology, faster and cheaper than ever, improving the quality of the process that in this year has been too slow and expensive to produce molecular information useful for the clinical management of a neurological patient. Neurological disorders (dpeaa)DE-He213 DNA sequencing (dpeaa)DE-He213 Next Generation Sequencing (dpeaa)DE-He213 Albano, Veronica verfasserin aut Campopiano, Rosa verfasserin aut Ferese, Rosangela verfasserin aut Scala, Simona verfasserin aut Storto, Marianna verfasserin aut Zampatti, Stefania verfasserin aut Romoli, Edoardo verfasserin aut Enthalten in La Rivista italiana della medicina di laboratorio Milan : Springer Italia, 2005 11(2014), 1 vom: 31. Okt., Seite 1-13 (DE-627)688606407 (DE-600)2654093-9 2039-6821 nnns volume:11 year:2014 number:1 day:31 month:10 pages:1-13 https://dx.doi.org/10.1007/s13631-014-0066-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_266 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 AR 11 2014 1 31 10 1-13 |
spelling |
10.1007/s13631-014-0066-y doi (DE-627)SPR031955126 (SPR)s13631-014-0066-y-e DE-627 ger DE-627 rakwb eng 610 ASE Gambardella, Stefano verfasserin aut Short history of the “Genomic Revolution” and implication for neurological institutes 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary The “original” DNA sequencing methodology is the Sanger method, which has excellent accuracy and reasonable read length but very low throughput. In order to sequence longer sections of DNA, shotgun sequencing has been introduced for sequencing the entire human genome in the Human Genome Project (HGP). Unfortunately, the formidable size of the diploid human genome has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, in the last ten years have been introduced high-throughput sequencing (or Next-Generation Sequencing, NGS) technologies that parallelizing the sequencing process, are able to improve the throughput and to lower the cost of DNA sequencing. NGS is very important, in particular if applied to neurological disease. This kind of disorders are complex in various ways; multiple risk factors, environmental as well as genetic, contribute to the disorder individually or by means of interaction. Also genetic component is complex: genetic heterogeneity (production of apparently identical disorders by different genetic mechanisms or by genes at different loci) has been described in a lot of neurological disorders. Therefore genetic analysis in this field are complex and require a lot of time. NGS approaches will allow to scan several genes responsible of a pathology, faster and cheaper than ever, improving the quality of the process that in this year has been too slow and expensive to produce molecular information useful for the clinical management of a neurological patient. Neurological disorders (dpeaa)DE-He213 DNA sequencing (dpeaa)DE-He213 Next Generation Sequencing (dpeaa)DE-He213 Albano, Veronica verfasserin aut Campopiano, Rosa verfasserin aut Ferese, Rosangela verfasserin aut Scala, Simona verfasserin aut Storto, Marianna verfasserin aut Zampatti, Stefania verfasserin aut Romoli, Edoardo verfasserin aut Enthalten in La Rivista italiana della medicina di laboratorio Milan : Springer Italia, 2005 11(2014), 1 vom: 31. Okt., Seite 1-13 (DE-627)688606407 (DE-600)2654093-9 2039-6821 nnns volume:11 year:2014 number:1 day:31 month:10 pages:1-13 https://dx.doi.org/10.1007/s13631-014-0066-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_266 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 AR 11 2014 1 31 10 1-13 |
allfields_unstemmed |
10.1007/s13631-014-0066-y doi (DE-627)SPR031955126 (SPR)s13631-014-0066-y-e DE-627 ger DE-627 rakwb eng 610 ASE Gambardella, Stefano verfasserin aut Short history of the “Genomic Revolution” and implication for neurological institutes 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary The “original” DNA sequencing methodology is the Sanger method, which has excellent accuracy and reasonable read length but very low throughput. In order to sequence longer sections of DNA, shotgun sequencing has been introduced for sequencing the entire human genome in the Human Genome Project (HGP). Unfortunately, the formidable size of the diploid human genome has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, in the last ten years have been introduced high-throughput sequencing (or Next-Generation Sequencing, NGS) technologies that parallelizing the sequencing process, are able to improve the throughput and to lower the cost of DNA sequencing. NGS is very important, in particular if applied to neurological disease. This kind of disorders are complex in various ways; multiple risk factors, environmental as well as genetic, contribute to the disorder individually or by means of interaction. Also genetic component is complex: genetic heterogeneity (production of apparently identical disorders by different genetic mechanisms or by genes at different loci) has been described in a lot of neurological disorders. Therefore genetic analysis in this field are complex and require a lot of time. NGS approaches will allow to scan several genes responsible of a pathology, faster and cheaper than ever, improving the quality of the process that in this year has been too slow and expensive to produce molecular information useful for the clinical management of a neurological patient. Neurological disorders (dpeaa)DE-He213 DNA sequencing (dpeaa)DE-He213 Next Generation Sequencing (dpeaa)DE-He213 Albano, Veronica verfasserin aut Campopiano, Rosa verfasserin aut Ferese, Rosangela verfasserin aut Scala, Simona verfasserin aut Storto, Marianna verfasserin aut Zampatti, Stefania verfasserin aut Romoli, Edoardo verfasserin aut Enthalten in La Rivista italiana della medicina di laboratorio Milan : Springer Italia, 2005 11(2014), 1 vom: 31. Okt., Seite 1-13 (DE-627)688606407 (DE-600)2654093-9 2039-6821 nnns volume:11 year:2014 number:1 day:31 month:10 pages:1-13 https://dx.doi.org/10.1007/s13631-014-0066-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_266 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 AR 11 2014 1 31 10 1-13 |
allfieldsGer |
10.1007/s13631-014-0066-y doi (DE-627)SPR031955126 (SPR)s13631-014-0066-y-e DE-627 ger DE-627 rakwb eng 610 ASE Gambardella, Stefano verfasserin aut Short history of the “Genomic Revolution” and implication for neurological institutes 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary The “original” DNA sequencing methodology is the Sanger method, which has excellent accuracy and reasonable read length but very low throughput. In order to sequence longer sections of DNA, shotgun sequencing has been introduced for sequencing the entire human genome in the Human Genome Project (HGP). Unfortunately, the formidable size of the diploid human genome has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, in the last ten years have been introduced high-throughput sequencing (or Next-Generation Sequencing, NGS) technologies that parallelizing the sequencing process, are able to improve the throughput and to lower the cost of DNA sequencing. NGS is very important, in particular if applied to neurological disease. This kind of disorders are complex in various ways; multiple risk factors, environmental as well as genetic, contribute to the disorder individually or by means of interaction. Also genetic component is complex: genetic heterogeneity (production of apparently identical disorders by different genetic mechanisms or by genes at different loci) has been described in a lot of neurological disorders. Therefore genetic analysis in this field are complex and require a lot of time. NGS approaches will allow to scan several genes responsible of a pathology, faster and cheaper than ever, improving the quality of the process that in this year has been too slow and expensive to produce molecular information useful for the clinical management of a neurological patient. Neurological disorders (dpeaa)DE-He213 DNA sequencing (dpeaa)DE-He213 Next Generation Sequencing (dpeaa)DE-He213 Albano, Veronica verfasserin aut Campopiano, Rosa verfasserin aut Ferese, Rosangela verfasserin aut Scala, Simona verfasserin aut Storto, Marianna verfasserin aut Zampatti, Stefania verfasserin aut Romoli, Edoardo verfasserin aut Enthalten in La Rivista italiana della medicina di laboratorio Milan : Springer Italia, 2005 11(2014), 1 vom: 31. Okt., Seite 1-13 (DE-627)688606407 (DE-600)2654093-9 2039-6821 nnns volume:11 year:2014 number:1 day:31 month:10 pages:1-13 https://dx.doi.org/10.1007/s13631-014-0066-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_266 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 AR 11 2014 1 31 10 1-13 |
allfieldsSound |
10.1007/s13631-014-0066-y doi (DE-627)SPR031955126 (SPR)s13631-014-0066-y-e DE-627 ger DE-627 rakwb eng 610 ASE Gambardella, Stefano verfasserin aut Short history of the “Genomic Revolution” and implication for neurological institutes 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary The “original” DNA sequencing methodology is the Sanger method, which has excellent accuracy and reasonable read length but very low throughput. In order to sequence longer sections of DNA, shotgun sequencing has been introduced for sequencing the entire human genome in the Human Genome Project (HGP). Unfortunately, the formidable size of the diploid human genome has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, in the last ten years have been introduced high-throughput sequencing (or Next-Generation Sequencing, NGS) technologies that parallelizing the sequencing process, are able to improve the throughput and to lower the cost of DNA sequencing. NGS is very important, in particular if applied to neurological disease. This kind of disorders are complex in various ways; multiple risk factors, environmental as well as genetic, contribute to the disorder individually or by means of interaction. Also genetic component is complex: genetic heterogeneity (production of apparently identical disorders by different genetic mechanisms or by genes at different loci) has been described in a lot of neurological disorders. Therefore genetic analysis in this field are complex and require a lot of time. NGS approaches will allow to scan several genes responsible of a pathology, faster and cheaper than ever, improving the quality of the process that in this year has been too slow and expensive to produce molecular information useful for the clinical management of a neurological patient. Neurological disorders (dpeaa)DE-He213 DNA sequencing (dpeaa)DE-He213 Next Generation Sequencing (dpeaa)DE-He213 Albano, Veronica verfasserin aut Campopiano, Rosa verfasserin aut Ferese, Rosangela verfasserin aut Scala, Simona verfasserin aut Storto, Marianna verfasserin aut Zampatti, Stefania verfasserin aut Romoli, Edoardo verfasserin aut Enthalten in La Rivista italiana della medicina di laboratorio Milan : Springer Italia, 2005 11(2014), 1 vom: 31. Okt., Seite 1-13 (DE-627)688606407 (DE-600)2654093-9 2039-6821 nnns volume:11 year:2014 number:1 day:31 month:10 pages:1-13 https://dx.doi.org/10.1007/s13631-014-0066-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_266 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 AR 11 2014 1 31 10 1-13 |
language |
English |
source |
Enthalten in La Rivista italiana della medicina di laboratorio 11(2014), 1 vom: 31. Okt., Seite 1-13 volume:11 year:2014 number:1 day:31 month:10 pages:1-13 |
sourceStr |
Enthalten in La Rivista italiana della medicina di laboratorio 11(2014), 1 vom: 31. Okt., Seite 1-13 volume:11 year:2014 number:1 day:31 month:10 pages:1-13 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Neurological disorders DNA sequencing Next Generation Sequencing |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
La Rivista italiana della medicina di laboratorio |
authorswithroles_txt_mv |
Gambardella, Stefano @@aut@@ Albano, Veronica @@aut@@ Campopiano, Rosa @@aut@@ Ferese, Rosangela @@aut@@ Scala, Simona @@aut@@ Storto, Marianna @@aut@@ Zampatti, Stefania @@aut@@ Romoli, Edoardo @@aut@@ |
publishDateDaySort_date |
2014-10-31T00:00:00Z |
hierarchy_top_id |
688606407 |
dewey-sort |
3610 |
id |
SPR031955126 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031955126</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519145135.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13631-014-0066-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031955126</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13631-014-0066-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gambardella, Stefano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Short history of the “Genomic Revolution” and implication for neurological institutes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary The “original” DNA sequencing methodology is the Sanger method, which has excellent accuracy and reasonable read length but very low throughput. In order to sequence longer sections of DNA, shotgun sequencing has been introduced for sequencing the entire human genome in the Human Genome Project (HGP). Unfortunately, the formidable size of the diploid human genome has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, in the last ten years have been introduced high-throughput sequencing (or Next-Generation Sequencing, NGS) technologies that parallelizing the sequencing process, are able to improve the throughput and to lower the cost of DNA sequencing. NGS is very important, in particular if applied to neurological disease. This kind of disorders are complex in various ways; multiple risk factors, environmental as well as genetic, contribute to the disorder individually or by means of interaction. Also genetic component is complex: genetic heterogeneity (production of apparently identical disorders by different genetic mechanisms or by genes at different loci) has been described in a lot of neurological disorders. Therefore genetic analysis in this field are complex and require a lot of time. NGS approaches will allow to scan several genes responsible of a pathology, faster and cheaper than ever, improving the quality of the process that in this year has been too slow and expensive to produce molecular information useful for the clinical management of a neurological patient.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neurological disorders</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA sequencing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Next Generation Sequencing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Albano, Veronica</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Campopiano, Rosa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferese, Rosangela</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scala, Simona</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Storto, Marianna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zampatti, Stefania</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Romoli, Edoardo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">La Rivista italiana della medicina di laboratorio</subfield><subfield code="d">Milan : Springer Italia, 2005</subfield><subfield code="g">11(2014), 1 vom: 31. Okt., Seite 1-13</subfield><subfield code="w">(DE-627)688606407</subfield><subfield code="w">(DE-600)2654093-9</subfield><subfield code="x">2039-6821</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:31</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1-13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13631-014-0066-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">31</subfield><subfield code="c">10</subfield><subfield code="h">1-13</subfield></datafield></record></collection>
|
author |
Gambardella, Stefano |
spellingShingle |
Gambardella, Stefano ddc 610 misc Neurological disorders misc DNA sequencing misc Next Generation Sequencing Short history of the “Genomic Revolution” and implication for neurological institutes |
authorStr |
Gambardella, Stefano |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)688606407 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2039-6821 |
topic_title |
610 ASE Short history of the “Genomic Revolution” and implication for neurological institutes Neurological disorders (dpeaa)DE-He213 DNA sequencing (dpeaa)DE-He213 Next Generation Sequencing (dpeaa)DE-He213 |
topic |
ddc 610 misc Neurological disorders misc DNA sequencing misc Next Generation Sequencing |
topic_unstemmed |
ddc 610 misc Neurological disorders misc DNA sequencing misc Next Generation Sequencing |
topic_browse |
ddc 610 misc Neurological disorders misc DNA sequencing misc Next Generation Sequencing |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
La Rivista italiana della medicina di laboratorio |
hierarchy_parent_id |
688606407 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
La Rivista italiana della medicina di laboratorio |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)688606407 (DE-600)2654093-9 |
title |
Short history of the “Genomic Revolution” and implication for neurological institutes |
ctrlnum |
(DE-627)SPR031955126 (SPR)s13631-014-0066-y-e |
title_full |
Short history of the “Genomic Revolution” and implication for neurological institutes |
author_sort |
Gambardella, Stefano |
journal |
La Rivista italiana della medicina di laboratorio |
journalStr |
La Rivista italiana della medicina di laboratorio |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Gambardella, Stefano Albano, Veronica Campopiano, Rosa Ferese, Rosangela Scala, Simona Storto, Marianna Zampatti, Stefania Romoli, Edoardo |
container_volume |
11 |
class |
610 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Gambardella, Stefano |
doi_str_mv |
10.1007/s13631-014-0066-y |
dewey-full |
610 |
author2-role |
verfasserin |
title_sort |
short history of the “genomic revolution” and implication for neurological institutes |
title_auth |
Short history of the “Genomic Revolution” and implication for neurological institutes |
abstract |
Summary The “original” DNA sequencing methodology is the Sanger method, which has excellent accuracy and reasonable read length but very low throughput. In order to sequence longer sections of DNA, shotgun sequencing has been introduced for sequencing the entire human genome in the Human Genome Project (HGP). Unfortunately, the formidable size of the diploid human genome has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, in the last ten years have been introduced high-throughput sequencing (or Next-Generation Sequencing, NGS) technologies that parallelizing the sequencing process, are able to improve the throughput and to lower the cost of DNA sequencing. NGS is very important, in particular if applied to neurological disease. This kind of disorders are complex in various ways; multiple risk factors, environmental as well as genetic, contribute to the disorder individually or by means of interaction. Also genetic component is complex: genetic heterogeneity (production of apparently identical disorders by different genetic mechanisms or by genes at different loci) has been described in a lot of neurological disorders. Therefore genetic analysis in this field are complex and require a lot of time. NGS approaches will allow to scan several genes responsible of a pathology, faster and cheaper than ever, improving the quality of the process that in this year has been too slow and expensive to produce molecular information useful for the clinical management of a neurological patient. |
abstractGer |
Summary The “original” DNA sequencing methodology is the Sanger method, which has excellent accuracy and reasonable read length but very low throughput. In order to sequence longer sections of DNA, shotgun sequencing has been introduced for sequencing the entire human genome in the Human Genome Project (HGP). Unfortunately, the formidable size of the diploid human genome has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, in the last ten years have been introduced high-throughput sequencing (or Next-Generation Sequencing, NGS) technologies that parallelizing the sequencing process, are able to improve the throughput and to lower the cost of DNA sequencing. NGS is very important, in particular if applied to neurological disease. This kind of disorders are complex in various ways; multiple risk factors, environmental as well as genetic, contribute to the disorder individually or by means of interaction. Also genetic component is complex: genetic heterogeneity (production of apparently identical disorders by different genetic mechanisms or by genes at different loci) has been described in a lot of neurological disorders. Therefore genetic analysis in this field are complex and require a lot of time. NGS approaches will allow to scan several genes responsible of a pathology, faster and cheaper than ever, improving the quality of the process that in this year has been too slow and expensive to produce molecular information useful for the clinical management of a neurological patient. |
abstract_unstemmed |
Summary The “original” DNA sequencing methodology is the Sanger method, which has excellent accuracy and reasonable read length but very low throughput. In order to sequence longer sections of DNA, shotgun sequencing has been introduced for sequencing the entire human genome in the Human Genome Project (HGP). Unfortunately, the formidable size of the diploid human genome has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, in the last ten years have been introduced high-throughput sequencing (or Next-Generation Sequencing, NGS) technologies that parallelizing the sequencing process, are able to improve the throughput and to lower the cost of DNA sequencing. NGS is very important, in particular if applied to neurological disease. This kind of disorders are complex in various ways; multiple risk factors, environmental as well as genetic, contribute to the disorder individually or by means of interaction. Also genetic component is complex: genetic heterogeneity (production of apparently identical disorders by different genetic mechanisms or by genes at different loci) has been described in a lot of neurological disorders. Therefore genetic analysis in this field are complex and require a lot of time. NGS approaches will allow to scan several genes responsible of a pathology, faster and cheaper than ever, improving the quality of the process that in this year has been too slow and expensive to produce molecular information useful for the clinical management of a neurological patient. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_266 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 |
container_issue |
1 |
title_short |
Short history of the “Genomic Revolution” and implication for neurological institutes |
url |
https://dx.doi.org/10.1007/s13631-014-0066-y |
remote_bool |
true |
author2 |
Albano, Veronica Campopiano, Rosa Ferese, Rosangela Scala, Simona Storto, Marianna Zampatti, Stefania Romoli, Edoardo |
author2Str |
Albano, Veronica Campopiano, Rosa Ferese, Rosangela Scala, Simona Storto, Marianna Zampatti, Stefania Romoli, Edoardo |
ppnlink |
688606407 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13631-014-0066-y |
up_date |
2024-07-04T01:58:01.611Z |
_version_ |
1803611832700633088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031955126</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519145135.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13631-014-0066-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031955126</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13631-014-0066-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gambardella, Stefano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Short history of the “Genomic Revolution” and implication for neurological institutes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary The “original” DNA sequencing methodology is the Sanger method, which has excellent accuracy and reasonable read length but very low throughput. In order to sequence longer sections of DNA, shotgun sequencing has been introduced for sequencing the entire human genome in the Human Genome Project (HGP). Unfortunately, the formidable size of the diploid human genome has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, in the last ten years have been introduced high-throughput sequencing (or Next-Generation Sequencing, NGS) technologies that parallelizing the sequencing process, are able to improve the throughput and to lower the cost of DNA sequencing. NGS is very important, in particular if applied to neurological disease. This kind of disorders are complex in various ways; multiple risk factors, environmental as well as genetic, contribute to the disorder individually or by means of interaction. Also genetic component is complex: genetic heterogeneity (production of apparently identical disorders by different genetic mechanisms or by genes at different loci) has been described in a lot of neurological disorders. Therefore genetic analysis in this field are complex and require a lot of time. NGS approaches will allow to scan several genes responsible of a pathology, faster and cheaper than ever, improving the quality of the process that in this year has been too slow and expensive to produce molecular information useful for the clinical management of a neurological patient.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neurological disorders</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA sequencing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Next Generation Sequencing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Albano, Veronica</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Campopiano, Rosa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferese, Rosangela</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scala, Simona</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Storto, Marianna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zampatti, Stefania</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Romoli, Edoardo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">La Rivista italiana della medicina di laboratorio</subfield><subfield code="d">Milan : Springer Italia, 2005</subfield><subfield code="g">11(2014), 1 vom: 31. Okt., Seite 1-13</subfield><subfield code="w">(DE-627)688606407</subfield><subfield code="w">(DE-600)2654093-9</subfield><subfield code="x">2039-6821</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:31</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1-13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13631-014-0066-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">31</subfield><subfield code="c">10</subfield><subfield code="h">1-13</subfield></datafield></record></collection>
|
score |
7.4012547 |