Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model
Abstract This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function of the speech spectral amplitude is model...
Ausführliche Beschreibung
Autor*in: |
Lotter, Thomas [verfasserIn] Vary, Peter [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2005 |
---|
Übergeordnetes Werk: |
Enthalten in: EURASIP journal on advances in signal processing - Heidelberg : Springer, 2007, 2005(2005), 7 vom: 22. Mai |
---|---|
Übergeordnetes Werk: |
volume:2005 ; year:2005 ; number:7 ; day:22 ; month:05 |
Links: |
---|
DOI / URN: |
10.1155/ASP.2005.1110 |
---|
Katalog-ID: |
SPR031980333 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR031980333 | ||
003 | DE-627 | ||
005 | 20220111194932.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2005 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1155/ASP.2005.1110 |2 doi | |
035 | |a (DE-627)SPR031980333 | ||
035 | |a (SPR)ASP.2005.1110-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q ASE |
084 | |a 53.73 |2 bkl | ||
100 | 1 | |a Lotter, Thomas |e verfasserin |4 aut | |
245 | 1 | 0 | |a Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model |
264 | 1 | |c 2005 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function of the speech spectral amplitude is modelled with a simple parametric function, which allows a high approximation accuracy for Laplace- or Gamma-distributed real and imaginary parts of the speech DFT coefficients. Also, the statistical model can be adapted to optimally fit the distribution of the speech spectral amplitudes for a specific noise reduction system. Based on the super-Gaussian statistical model, computationally efficient maximum a posteriori speech estimators are derived, which outperform the commonly applied Ephraim-Malah algorithm. | ||
700 | 1 | |a Vary, Peter |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t EURASIP journal on advances in signal processing |d Heidelberg : Springer, 2007 |g 2005(2005), 7 vom: 22. Mai |w (DE-627)534054277 |w (DE-600)2364203-8 |x 1687-6180 |7 nnns |
773 | 1 | 8 | |g volume:2005 |g year:2005 |g number:7 |g day:22 |g month:05 |
856 | 4 | 0 | |u https://dx.doi.org/10.1155/ASP.2005.1110 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2522 | ||
936 | b | k | |a 53.73 |q ASE |
951 | |a AR | ||
952 | |d 2005 |j 2005 |e 7 |b 22 |c 05 |
author_variant |
t l tl p v pv |
---|---|
matchkey_str |
article:16876180:2005----::pehnacmnbmppcrlmltdetmtouigs |
hierarchy_sort_str |
2005 |
bklnumber |
53.73 |
publishDate |
2005 |
allfields |
10.1155/ASP.2005.1110 doi (DE-627)SPR031980333 (SPR)ASP.2005.1110-e DE-627 ger DE-627 rakwb eng 620 ASE 53.73 bkl Lotter, Thomas verfasserin aut Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model 2005 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function of the speech spectral amplitude is modelled with a simple parametric function, which allows a high approximation accuracy for Laplace- or Gamma-distributed real and imaginary parts of the speech DFT coefficients. Also, the statistical model can be adapted to optimally fit the distribution of the speech spectral amplitudes for a specific noise reduction system. Based on the super-Gaussian statistical model, computationally efficient maximum a posteriori speech estimators are derived, which outperform the commonly applied Ephraim-Malah algorithm. Vary, Peter verfasserin aut Enthalten in EURASIP journal on advances in signal processing Heidelberg : Springer, 2007 2005(2005), 7 vom: 22. Mai (DE-627)534054277 (DE-600)2364203-8 1687-6180 nnns volume:2005 year:2005 number:7 day:22 month:05 https://dx.doi.org/10.1155/ASP.2005.1110 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_161 GBV_ILN_170 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2522 53.73 ASE AR 2005 2005 7 22 05 |
spelling |
10.1155/ASP.2005.1110 doi (DE-627)SPR031980333 (SPR)ASP.2005.1110-e DE-627 ger DE-627 rakwb eng 620 ASE 53.73 bkl Lotter, Thomas verfasserin aut Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model 2005 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function of the speech spectral amplitude is modelled with a simple parametric function, which allows a high approximation accuracy for Laplace- or Gamma-distributed real and imaginary parts of the speech DFT coefficients. Also, the statistical model can be adapted to optimally fit the distribution of the speech spectral amplitudes for a specific noise reduction system. Based on the super-Gaussian statistical model, computationally efficient maximum a posteriori speech estimators are derived, which outperform the commonly applied Ephraim-Malah algorithm. Vary, Peter verfasserin aut Enthalten in EURASIP journal on advances in signal processing Heidelberg : Springer, 2007 2005(2005), 7 vom: 22. Mai (DE-627)534054277 (DE-600)2364203-8 1687-6180 nnns volume:2005 year:2005 number:7 day:22 month:05 https://dx.doi.org/10.1155/ASP.2005.1110 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_161 GBV_ILN_170 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2522 53.73 ASE AR 2005 2005 7 22 05 |
allfields_unstemmed |
10.1155/ASP.2005.1110 doi (DE-627)SPR031980333 (SPR)ASP.2005.1110-e DE-627 ger DE-627 rakwb eng 620 ASE 53.73 bkl Lotter, Thomas verfasserin aut Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model 2005 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function of the speech spectral amplitude is modelled with a simple parametric function, which allows a high approximation accuracy for Laplace- or Gamma-distributed real and imaginary parts of the speech DFT coefficients. Also, the statistical model can be adapted to optimally fit the distribution of the speech spectral amplitudes for a specific noise reduction system. Based on the super-Gaussian statistical model, computationally efficient maximum a posteriori speech estimators are derived, which outperform the commonly applied Ephraim-Malah algorithm. Vary, Peter verfasserin aut Enthalten in EURASIP journal on advances in signal processing Heidelberg : Springer, 2007 2005(2005), 7 vom: 22. Mai (DE-627)534054277 (DE-600)2364203-8 1687-6180 nnns volume:2005 year:2005 number:7 day:22 month:05 https://dx.doi.org/10.1155/ASP.2005.1110 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_161 GBV_ILN_170 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2522 53.73 ASE AR 2005 2005 7 22 05 |
allfieldsGer |
10.1155/ASP.2005.1110 doi (DE-627)SPR031980333 (SPR)ASP.2005.1110-e DE-627 ger DE-627 rakwb eng 620 ASE 53.73 bkl Lotter, Thomas verfasserin aut Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model 2005 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function of the speech spectral amplitude is modelled with a simple parametric function, which allows a high approximation accuracy for Laplace- or Gamma-distributed real and imaginary parts of the speech DFT coefficients. Also, the statistical model can be adapted to optimally fit the distribution of the speech spectral amplitudes for a specific noise reduction system. Based on the super-Gaussian statistical model, computationally efficient maximum a posteriori speech estimators are derived, which outperform the commonly applied Ephraim-Malah algorithm. Vary, Peter verfasserin aut Enthalten in EURASIP journal on advances in signal processing Heidelberg : Springer, 2007 2005(2005), 7 vom: 22. Mai (DE-627)534054277 (DE-600)2364203-8 1687-6180 nnns volume:2005 year:2005 number:7 day:22 month:05 https://dx.doi.org/10.1155/ASP.2005.1110 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_161 GBV_ILN_170 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2522 53.73 ASE AR 2005 2005 7 22 05 |
allfieldsSound |
10.1155/ASP.2005.1110 doi (DE-627)SPR031980333 (SPR)ASP.2005.1110-e DE-627 ger DE-627 rakwb eng 620 ASE 53.73 bkl Lotter, Thomas verfasserin aut Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model 2005 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function of the speech spectral amplitude is modelled with a simple parametric function, which allows a high approximation accuracy for Laplace- or Gamma-distributed real and imaginary parts of the speech DFT coefficients. Also, the statistical model can be adapted to optimally fit the distribution of the speech spectral amplitudes for a specific noise reduction system. Based on the super-Gaussian statistical model, computationally efficient maximum a posteriori speech estimators are derived, which outperform the commonly applied Ephraim-Malah algorithm. Vary, Peter verfasserin aut Enthalten in EURASIP journal on advances in signal processing Heidelberg : Springer, 2007 2005(2005), 7 vom: 22. Mai (DE-627)534054277 (DE-600)2364203-8 1687-6180 nnns volume:2005 year:2005 number:7 day:22 month:05 https://dx.doi.org/10.1155/ASP.2005.1110 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_161 GBV_ILN_170 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2522 53.73 ASE AR 2005 2005 7 22 05 |
language |
English |
source |
Enthalten in EURASIP journal on advances in signal processing 2005(2005), 7 vom: 22. Mai volume:2005 year:2005 number:7 day:22 month:05 |
sourceStr |
Enthalten in EURASIP journal on advances in signal processing 2005(2005), 7 vom: 22. Mai volume:2005 year:2005 number:7 day:22 month:05 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
EURASIP journal on advances in signal processing |
authorswithroles_txt_mv |
Lotter, Thomas @@aut@@ Vary, Peter @@aut@@ |
publishDateDaySort_date |
2005-05-22T00:00:00Z |
hierarchy_top_id |
534054277 |
dewey-sort |
3620 |
id |
SPR031980333 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031980333</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111194932.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2005 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/ASP.2005.1110</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031980333</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)ASP.2005.1110-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lotter, Thomas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function of the speech spectral amplitude is modelled with a simple parametric function, which allows a high approximation accuracy for Laplace- or Gamma-distributed real and imaginary parts of the speech DFT coefficients. Also, the statistical model can be adapted to optimally fit the distribution of the speech spectral amplitudes for a specific noise reduction system. Based on the super-Gaussian statistical model, computationally efficient maximum a posteriori speech estimators are derived, which outperform the commonly applied Ephraim-Malah algorithm.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vary, Peter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">EURASIP journal on advances in signal processing</subfield><subfield code="d">Heidelberg : Springer, 2007</subfield><subfield code="g">2005(2005), 7 vom: 22. Mai</subfield><subfield code="w">(DE-627)534054277</subfield><subfield code="w">(DE-600)2364203-8</subfield><subfield code="x">1687-6180</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2005</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:7</subfield><subfield code="g">day:22</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1155/ASP.2005.1110</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.73</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2005</subfield><subfield code="j">2005</subfield><subfield code="e">7</subfield><subfield code="b">22</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
author |
Lotter, Thomas |
spellingShingle |
Lotter, Thomas ddc 620 bkl 53.73 Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model |
authorStr |
Lotter, Thomas |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)534054277 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1687-6180 |
topic_title |
620 ASE 53.73 bkl Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model |
topic |
ddc 620 bkl 53.73 |
topic_unstemmed |
ddc 620 bkl 53.73 |
topic_browse |
ddc 620 bkl 53.73 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
EURASIP journal on advances in signal processing |
hierarchy_parent_id |
534054277 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
EURASIP journal on advances in signal processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)534054277 (DE-600)2364203-8 |
title |
Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model |
ctrlnum |
(DE-627)SPR031980333 (SPR)ASP.2005.1110-e |
title_full |
Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model |
author_sort |
Lotter, Thomas |
journal |
EURASIP journal on advances in signal processing |
journalStr |
EURASIP journal on advances in signal processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2005 |
contenttype_str_mv |
txt |
author_browse |
Lotter, Thomas Vary, Peter |
container_volume |
2005 |
class |
620 ASE 53.73 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Lotter, Thomas |
doi_str_mv |
10.1155/ASP.2005.1110 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
speech enhancement by map spectral amplitude estimation using a super-gaussian speech model |
title_auth |
Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model |
abstract |
Abstract This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function of the speech spectral amplitude is modelled with a simple parametric function, which allows a high approximation accuracy for Laplace- or Gamma-distributed real and imaginary parts of the speech DFT coefficients. Also, the statistical model can be adapted to optimally fit the distribution of the speech spectral amplitudes for a specific noise reduction system. Based on the super-Gaussian statistical model, computationally efficient maximum a posteriori speech estimators are derived, which outperform the commonly applied Ephraim-Malah algorithm. |
abstractGer |
Abstract This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function of the speech spectral amplitude is modelled with a simple parametric function, which allows a high approximation accuracy for Laplace- or Gamma-distributed real and imaginary parts of the speech DFT coefficients. Also, the statistical model can be adapted to optimally fit the distribution of the speech spectral amplitudes for a specific noise reduction system. Based on the super-Gaussian statistical model, computationally efficient maximum a posteriori speech estimators are derived, which outperform the commonly applied Ephraim-Malah algorithm. |
abstract_unstemmed |
Abstract This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function of the speech spectral amplitude is modelled with a simple parametric function, which allows a high approximation accuracy for Laplace- or Gamma-distributed real and imaginary parts of the speech DFT coefficients. Also, the statistical model can be adapted to optimally fit the distribution of the speech spectral amplitudes for a specific noise reduction system. Based on the super-Gaussian statistical model, computationally efficient maximum a posteriori speech estimators are derived, which outperform the commonly applied Ephraim-Malah algorithm. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_161 GBV_ILN_170 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2522 |
container_issue |
7 |
title_short |
Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model |
url |
https://dx.doi.org/10.1155/ASP.2005.1110 |
remote_bool |
true |
author2 |
Vary, Peter |
author2Str |
Vary, Peter |
ppnlink |
534054277 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1155/ASP.2005.1110 |
up_date |
2024-07-04T02:02:51.874Z |
_version_ |
1803612137063448576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031980333</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111194932.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2005 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/ASP.2005.1110</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031980333</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)ASP.2005.1110-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lotter, Thomas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function of the speech spectral amplitude is modelled with a simple parametric function, which allows a high approximation accuracy for Laplace- or Gamma-distributed real and imaginary parts of the speech DFT coefficients. Also, the statistical model can be adapted to optimally fit the distribution of the speech spectral amplitudes for a specific noise reduction system. Based on the super-Gaussian statistical model, computationally efficient maximum a posteriori speech estimators are derived, which outperform the commonly applied Ephraim-Malah algorithm.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vary, Peter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">EURASIP journal on advances in signal processing</subfield><subfield code="d">Heidelberg : Springer, 2007</subfield><subfield code="g">2005(2005), 7 vom: 22. Mai</subfield><subfield code="w">(DE-627)534054277</subfield><subfield code="w">(DE-600)2364203-8</subfield><subfield code="x">1687-6180</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2005</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:7</subfield><subfield code="g">day:22</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1155/ASP.2005.1110</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.73</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2005</subfield><subfield code="j">2005</subfield><subfield code="e">7</subfield><subfield code="b">22</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
score |
7.4009056 |