Image Variational Denoising Using Gradient Fidelity on Curvelet Shrinkage
Abstract A new variational image model is presented for image restoration using a combination of the curvelet shrinkage method and the total variation (TV) functional. In order to suppress the staircasing effect and curvelet-like artifacts, we use the multiscale curvelet shrinkage to compute an init...
Ausführliche Beschreibung
Autor*in: |
Xiao, Liang [verfasserIn] Huang, Li-Li [verfasserIn] Roysam, Badrinath [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: EURASIP journal on advances in signal processing - Heidelberg : Springer, 2007, 2010(2010), 1 vom: 30. Juni |
---|---|
Übergeordnetes Werk: |
volume:2010 ; year:2010 ; number:1 ; day:30 ; month:06 |
Links: |
---|
DOI / URN: |
10.1155/2010/398410 |
---|
Katalog-ID: |
SPR031993990 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR031993990 | ||
003 | DE-627 | ||
005 | 20220111195028.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2010 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1155/2010/398410 |2 doi | |
035 | |a (DE-627)SPR031993990 | ||
035 | |a (SPR)398410-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q ASE |
084 | |a 53.73 |2 bkl | ||
100 | 1 | |a Xiao, Liang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Image Variational Denoising Using Gradient Fidelity on Curvelet Shrinkage |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract A new variational image model is presented for image restoration using a combination of the curvelet shrinkage method and the total variation (TV) functional. In order to suppress the staircasing effect and curvelet-like artifacts, we use the multiscale curvelet shrinkage to compute an initial estimated image, and then we propose a new gradient fidelity term, which is designed to force the gradients of desired image to be close to the curvelet approximation gradients. Then, we introduce the Euler-Lagrange equation and make an investigation on the mathematical properties. To improve the ability of preserving the details of edges and texture, the spatial-varying parameters are adaptively estimated in the iterative process of the gradient descent flow algorithm. Numerical experiments demonstrate that our proposed method has good performance in alleviating both the staircasing effect and curvelet-like artifacts, while preserving fine details. | ||
650 | 4 | |a Wavelet Shrinkage |7 (dpeaa)DE-He213 | |
650 | 4 | |a Total Variational Model |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fidelity Term |7 (dpeaa)DE-He213 | |
650 | 4 | |a Staircase Effect |7 (dpeaa)DE-He213 | |
650 | 4 | |a Curvelet Coefficient |7 (dpeaa)DE-He213 | |
700 | 1 | |a Huang, Li-Li |e verfasserin |4 aut | |
700 | 1 | |a Roysam, Badrinath |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t EURASIP journal on advances in signal processing |d Heidelberg : Springer, 2007 |g 2010(2010), 1 vom: 30. Juni |w (DE-627)534054277 |w (DE-600)2364203-8 |x 1687-6180 |7 nnns |
773 | 1 | 8 | |g volume:2010 |g year:2010 |g number:1 |g day:30 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1155/2010/398410 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 53.73 |q ASE |
951 | |a AR | ||
952 | |d 2010 |j 2010 |e 1 |b 30 |c 06 |
author_variant |
l x lx l l h llh b r br |
---|---|
matchkey_str |
article:16876180:2010----::mgvrainleosnuigrdetieiyn |
hierarchy_sort_str |
2010 |
bklnumber |
53.73 |
publishDate |
2010 |
allfields |
10.1155/2010/398410 doi (DE-627)SPR031993990 (SPR)398410-e DE-627 ger DE-627 rakwb eng 620 ASE 53.73 bkl Xiao, Liang verfasserin aut Image Variational Denoising Using Gradient Fidelity on Curvelet Shrinkage 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A new variational image model is presented for image restoration using a combination of the curvelet shrinkage method and the total variation (TV) functional. In order to suppress the staircasing effect and curvelet-like artifacts, we use the multiscale curvelet shrinkage to compute an initial estimated image, and then we propose a new gradient fidelity term, which is designed to force the gradients of desired image to be close to the curvelet approximation gradients. Then, we introduce the Euler-Lagrange equation and make an investigation on the mathematical properties. To improve the ability of preserving the details of edges and texture, the spatial-varying parameters are adaptively estimated in the iterative process of the gradient descent flow algorithm. Numerical experiments demonstrate that our proposed method has good performance in alleviating both the staircasing effect and curvelet-like artifacts, while preserving fine details. Wavelet Shrinkage (dpeaa)DE-He213 Total Variational Model (dpeaa)DE-He213 Fidelity Term (dpeaa)DE-He213 Staircase Effect (dpeaa)DE-He213 Curvelet Coefficient (dpeaa)DE-He213 Huang, Li-Li verfasserin aut Roysam, Badrinath verfasserin aut Enthalten in EURASIP journal on advances in signal processing Heidelberg : Springer, 2007 2010(2010), 1 vom: 30. Juni (DE-627)534054277 (DE-600)2364203-8 1687-6180 nnns volume:2010 year:2010 number:1 day:30 month:06 https://dx.doi.org/10.1155/2010/398410 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 53.73 ASE AR 2010 2010 1 30 06 |
spelling |
10.1155/2010/398410 doi (DE-627)SPR031993990 (SPR)398410-e DE-627 ger DE-627 rakwb eng 620 ASE 53.73 bkl Xiao, Liang verfasserin aut Image Variational Denoising Using Gradient Fidelity on Curvelet Shrinkage 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A new variational image model is presented for image restoration using a combination of the curvelet shrinkage method and the total variation (TV) functional. In order to suppress the staircasing effect and curvelet-like artifacts, we use the multiscale curvelet shrinkage to compute an initial estimated image, and then we propose a new gradient fidelity term, which is designed to force the gradients of desired image to be close to the curvelet approximation gradients. Then, we introduce the Euler-Lagrange equation and make an investigation on the mathematical properties. To improve the ability of preserving the details of edges and texture, the spatial-varying parameters are adaptively estimated in the iterative process of the gradient descent flow algorithm. Numerical experiments demonstrate that our proposed method has good performance in alleviating both the staircasing effect and curvelet-like artifacts, while preserving fine details. Wavelet Shrinkage (dpeaa)DE-He213 Total Variational Model (dpeaa)DE-He213 Fidelity Term (dpeaa)DE-He213 Staircase Effect (dpeaa)DE-He213 Curvelet Coefficient (dpeaa)DE-He213 Huang, Li-Li verfasserin aut Roysam, Badrinath verfasserin aut Enthalten in EURASIP journal on advances in signal processing Heidelberg : Springer, 2007 2010(2010), 1 vom: 30. Juni (DE-627)534054277 (DE-600)2364203-8 1687-6180 nnns volume:2010 year:2010 number:1 day:30 month:06 https://dx.doi.org/10.1155/2010/398410 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 53.73 ASE AR 2010 2010 1 30 06 |
allfields_unstemmed |
10.1155/2010/398410 doi (DE-627)SPR031993990 (SPR)398410-e DE-627 ger DE-627 rakwb eng 620 ASE 53.73 bkl Xiao, Liang verfasserin aut Image Variational Denoising Using Gradient Fidelity on Curvelet Shrinkage 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A new variational image model is presented for image restoration using a combination of the curvelet shrinkage method and the total variation (TV) functional. In order to suppress the staircasing effect and curvelet-like artifacts, we use the multiscale curvelet shrinkage to compute an initial estimated image, and then we propose a new gradient fidelity term, which is designed to force the gradients of desired image to be close to the curvelet approximation gradients. Then, we introduce the Euler-Lagrange equation and make an investigation on the mathematical properties. To improve the ability of preserving the details of edges and texture, the spatial-varying parameters are adaptively estimated in the iterative process of the gradient descent flow algorithm. Numerical experiments demonstrate that our proposed method has good performance in alleviating both the staircasing effect and curvelet-like artifacts, while preserving fine details. Wavelet Shrinkage (dpeaa)DE-He213 Total Variational Model (dpeaa)DE-He213 Fidelity Term (dpeaa)DE-He213 Staircase Effect (dpeaa)DE-He213 Curvelet Coefficient (dpeaa)DE-He213 Huang, Li-Li verfasserin aut Roysam, Badrinath verfasserin aut Enthalten in EURASIP journal on advances in signal processing Heidelberg : Springer, 2007 2010(2010), 1 vom: 30. Juni (DE-627)534054277 (DE-600)2364203-8 1687-6180 nnns volume:2010 year:2010 number:1 day:30 month:06 https://dx.doi.org/10.1155/2010/398410 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 53.73 ASE AR 2010 2010 1 30 06 |
allfieldsGer |
10.1155/2010/398410 doi (DE-627)SPR031993990 (SPR)398410-e DE-627 ger DE-627 rakwb eng 620 ASE 53.73 bkl Xiao, Liang verfasserin aut Image Variational Denoising Using Gradient Fidelity on Curvelet Shrinkage 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A new variational image model is presented for image restoration using a combination of the curvelet shrinkage method and the total variation (TV) functional. In order to suppress the staircasing effect and curvelet-like artifacts, we use the multiscale curvelet shrinkage to compute an initial estimated image, and then we propose a new gradient fidelity term, which is designed to force the gradients of desired image to be close to the curvelet approximation gradients. Then, we introduce the Euler-Lagrange equation and make an investigation on the mathematical properties. To improve the ability of preserving the details of edges and texture, the spatial-varying parameters are adaptively estimated in the iterative process of the gradient descent flow algorithm. Numerical experiments demonstrate that our proposed method has good performance in alleviating both the staircasing effect and curvelet-like artifacts, while preserving fine details. Wavelet Shrinkage (dpeaa)DE-He213 Total Variational Model (dpeaa)DE-He213 Fidelity Term (dpeaa)DE-He213 Staircase Effect (dpeaa)DE-He213 Curvelet Coefficient (dpeaa)DE-He213 Huang, Li-Li verfasserin aut Roysam, Badrinath verfasserin aut Enthalten in EURASIP journal on advances in signal processing Heidelberg : Springer, 2007 2010(2010), 1 vom: 30. Juni (DE-627)534054277 (DE-600)2364203-8 1687-6180 nnns volume:2010 year:2010 number:1 day:30 month:06 https://dx.doi.org/10.1155/2010/398410 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 53.73 ASE AR 2010 2010 1 30 06 |
allfieldsSound |
10.1155/2010/398410 doi (DE-627)SPR031993990 (SPR)398410-e DE-627 ger DE-627 rakwb eng 620 ASE 53.73 bkl Xiao, Liang verfasserin aut Image Variational Denoising Using Gradient Fidelity on Curvelet Shrinkage 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A new variational image model is presented for image restoration using a combination of the curvelet shrinkage method and the total variation (TV) functional. In order to suppress the staircasing effect and curvelet-like artifacts, we use the multiscale curvelet shrinkage to compute an initial estimated image, and then we propose a new gradient fidelity term, which is designed to force the gradients of desired image to be close to the curvelet approximation gradients. Then, we introduce the Euler-Lagrange equation and make an investigation on the mathematical properties. To improve the ability of preserving the details of edges and texture, the spatial-varying parameters are adaptively estimated in the iterative process of the gradient descent flow algorithm. Numerical experiments demonstrate that our proposed method has good performance in alleviating both the staircasing effect and curvelet-like artifacts, while preserving fine details. Wavelet Shrinkage (dpeaa)DE-He213 Total Variational Model (dpeaa)DE-He213 Fidelity Term (dpeaa)DE-He213 Staircase Effect (dpeaa)DE-He213 Curvelet Coefficient (dpeaa)DE-He213 Huang, Li-Li verfasserin aut Roysam, Badrinath verfasserin aut Enthalten in EURASIP journal on advances in signal processing Heidelberg : Springer, 2007 2010(2010), 1 vom: 30. Juni (DE-627)534054277 (DE-600)2364203-8 1687-6180 nnns volume:2010 year:2010 number:1 day:30 month:06 https://dx.doi.org/10.1155/2010/398410 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 53.73 ASE AR 2010 2010 1 30 06 |
language |
English |
source |
Enthalten in EURASIP journal on advances in signal processing 2010(2010), 1 vom: 30. Juni volume:2010 year:2010 number:1 day:30 month:06 |
sourceStr |
Enthalten in EURASIP journal on advances in signal processing 2010(2010), 1 vom: 30. Juni volume:2010 year:2010 number:1 day:30 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Wavelet Shrinkage Total Variational Model Fidelity Term Staircase Effect Curvelet Coefficient |
dewey-raw |
620 |
isfreeaccess_bool |
true |
container_title |
EURASIP journal on advances in signal processing |
authorswithroles_txt_mv |
Xiao, Liang @@aut@@ Huang, Li-Li @@aut@@ Roysam, Badrinath @@aut@@ |
publishDateDaySort_date |
2010-06-30T00:00:00Z |
hierarchy_top_id |
534054277 |
dewey-sort |
3620 |
id |
SPR031993990 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031993990</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111195028.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2010/398410</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031993990</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)398410-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xiao, Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Image Variational Denoising Using Gradient Fidelity on Curvelet Shrinkage</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A new variational image model is presented for image restoration using a combination of the curvelet shrinkage method and the total variation (TV) functional. In order to suppress the staircasing effect and curvelet-like artifacts, we use the multiscale curvelet shrinkage to compute an initial estimated image, and then we propose a new gradient fidelity term, which is designed to force the gradients of desired image to be close to the curvelet approximation gradients. Then, we introduce the Euler-Lagrange equation and make an investigation on the mathematical properties. To improve the ability of preserving the details of edges and texture, the spatial-varying parameters are adaptively estimated in the iterative process of the gradient descent flow algorithm. Numerical experiments demonstrate that our proposed method has good performance in alleviating both the staircasing effect and curvelet-like artifacts, while preserving fine details.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wavelet Shrinkage</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total Variational Model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fidelity Term</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staircase Effect</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curvelet Coefficient</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Li-Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roysam, Badrinath</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">EURASIP journal on advances in signal processing</subfield><subfield code="d">Heidelberg : Springer, 2007</subfield><subfield code="g">2010(2010), 1 vom: 30. Juni</subfield><subfield code="w">(DE-627)534054277</subfield><subfield code="w">(DE-600)2364203-8</subfield><subfield code="x">1687-6180</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2010</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1</subfield><subfield code="g">day:30</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1155/2010/398410</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.73</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2010</subfield><subfield code="j">2010</subfield><subfield code="e">1</subfield><subfield code="b">30</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Xiao, Liang |
spellingShingle |
Xiao, Liang ddc 620 bkl 53.73 misc Wavelet Shrinkage misc Total Variational Model misc Fidelity Term misc Staircase Effect misc Curvelet Coefficient Image Variational Denoising Using Gradient Fidelity on Curvelet Shrinkage |
authorStr |
Xiao, Liang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)534054277 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1687-6180 |
topic_title |
620 ASE 53.73 bkl Image Variational Denoising Using Gradient Fidelity on Curvelet Shrinkage Wavelet Shrinkage (dpeaa)DE-He213 Total Variational Model (dpeaa)DE-He213 Fidelity Term (dpeaa)DE-He213 Staircase Effect (dpeaa)DE-He213 Curvelet Coefficient (dpeaa)DE-He213 |
topic |
ddc 620 bkl 53.73 misc Wavelet Shrinkage misc Total Variational Model misc Fidelity Term misc Staircase Effect misc Curvelet Coefficient |
topic_unstemmed |
ddc 620 bkl 53.73 misc Wavelet Shrinkage misc Total Variational Model misc Fidelity Term misc Staircase Effect misc Curvelet Coefficient |
topic_browse |
ddc 620 bkl 53.73 misc Wavelet Shrinkage misc Total Variational Model misc Fidelity Term misc Staircase Effect misc Curvelet Coefficient |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
EURASIP journal on advances in signal processing |
hierarchy_parent_id |
534054277 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
EURASIP journal on advances in signal processing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)534054277 (DE-600)2364203-8 |
title |
Image Variational Denoising Using Gradient Fidelity on Curvelet Shrinkage |
ctrlnum |
(DE-627)SPR031993990 (SPR)398410-e |
title_full |
Image Variational Denoising Using Gradient Fidelity on Curvelet Shrinkage |
author_sort |
Xiao, Liang |
journal |
EURASIP journal on advances in signal processing |
journalStr |
EURASIP journal on advances in signal processing |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
author_browse |
Xiao, Liang Huang, Li-Li Roysam, Badrinath |
container_volume |
2010 |
class |
620 ASE 53.73 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Xiao, Liang |
doi_str_mv |
10.1155/2010/398410 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
image variational denoising using gradient fidelity on curvelet shrinkage |
title_auth |
Image Variational Denoising Using Gradient Fidelity on Curvelet Shrinkage |
abstract |
Abstract A new variational image model is presented for image restoration using a combination of the curvelet shrinkage method and the total variation (TV) functional. In order to suppress the staircasing effect and curvelet-like artifacts, we use the multiscale curvelet shrinkage to compute an initial estimated image, and then we propose a new gradient fidelity term, which is designed to force the gradients of desired image to be close to the curvelet approximation gradients. Then, we introduce the Euler-Lagrange equation and make an investigation on the mathematical properties. To improve the ability of preserving the details of edges and texture, the spatial-varying parameters are adaptively estimated in the iterative process of the gradient descent flow algorithm. Numerical experiments demonstrate that our proposed method has good performance in alleviating both the staircasing effect and curvelet-like artifacts, while preserving fine details. |
abstractGer |
Abstract A new variational image model is presented for image restoration using a combination of the curvelet shrinkage method and the total variation (TV) functional. In order to suppress the staircasing effect and curvelet-like artifacts, we use the multiscale curvelet shrinkage to compute an initial estimated image, and then we propose a new gradient fidelity term, which is designed to force the gradients of desired image to be close to the curvelet approximation gradients. Then, we introduce the Euler-Lagrange equation and make an investigation on the mathematical properties. To improve the ability of preserving the details of edges and texture, the spatial-varying parameters are adaptively estimated in the iterative process of the gradient descent flow algorithm. Numerical experiments demonstrate that our proposed method has good performance in alleviating both the staircasing effect and curvelet-like artifacts, while preserving fine details. |
abstract_unstemmed |
Abstract A new variational image model is presented for image restoration using a combination of the curvelet shrinkage method and the total variation (TV) functional. In order to suppress the staircasing effect and curvelet-like artifacts, we use the multiscale curvelet shrinkage to compute an initial estimated image, and then we propose a new gradient fidelity term, which is designed to force the gradients of desired image to be close to the curvelet approximation gradients. Then, we introduce the Euler-Lagrange equation and make an investigation on the mathematical properties. To improve the ability of preserving the details of edges and texture, the spatial-varying parameters are adaptively estimated in the iterative process of the gradient descent flow algorithm. Numerical experiments demonstrate that our proposed method has good performance in alleviating both the staircasing effect and curvelet-like artifacts, while preserving fine details. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Image Variational Denoising Using Gradient Fidelity on Curvelet Shrinkage |
url |
https://dx.doi.org/10.1155/2010/398410 |
remote_bool |
true |
author2 |
Huang, Li-Li Roysam, Badrinath |
author2Str |
Huang, Li-Li Roysam, Badrinath |
ppnlink |
534054277 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1155/2010/398410 |
up_date |
2024-07-04T02:05:18.162Z |
_version_ |
1803612290456485888 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR031993990</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111195028.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2010/398410</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR031993990</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)398410-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xiao, Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Image Variational Denoising Using Gradient Fidelity on Curvelet Shrinkage</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A new variational image model is presented for image restoration using a combination of the curvelet shrinkage method and the total variation (TV) functional. In order to suppress the staircasing effect and curvelet-like artifacts, we use the multiscale curvelet shrinkage to compute an initial estimated image, and then we propose a new gradient fidelity term, which is designed to force the gradients of desired image to be close to the curvelet approximation gradients. Then, we introduce the Euler-Lagrange equation and make an investigation on the mathematical properties. To improve the ability of preserving the details of edges and texture, the spatial-varying parameters are adaptively estimated in the iterative process of the gradient descent flow algorithm. Numerical experiments demonstrate that our proposed method has good performance in alleviating both the staircasing effect and curvelet-like artifacts, while preserving fine details.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wavelet Shrinkage</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total Variational Model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fidelity Term</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Staircase Effect</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curvelet Coefficient</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Li-Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roysam, Badrinath</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">EURASIP journal on advances in signal processing</subfield><subfield code="d">Heidelberg : Springer, 2007</subfield><subfield code="g">2010(2010), 1 vom: 30. Juni</subfield><subfield code="w">(DE-627)534054277</subfield><subfield code="w">(DE-600)2364203-8</subfield><subfield code="x">1687-6180</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2010</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1</subfield><subfield code="g">day:30</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1155/2010/398410</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.73</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2010</subfield><subfield code="j">2010</subfield><subfield code="e">1</subfield><subfield code="b">30</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.4008055 |