Realified L1-PCA for direction-of-arrival estimation: theory and algorithms

Abstract Subspace-based direction-of-arrival (DoA) estimation commonly relies on the Principal-Component Analysis (PCA) of the sensor-array recorded snapshots. Therefore, it naturally inherits the sensitivity of PCA against outliers that may exist among the collected snapshots (e.g., due to unexpect...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Markopoulos, Panos P. [verfasserIn]

Tsagkarakis, Nicholas [verfasserIn]

Pados, Dimitris A. [verfasserIn]

Karystinos, George N. [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2019

Schlagwörter:

Data contamination

Direction-of-arrival estimation

Faulty measurements

L1 norm

L2 norm

Multiple signal classification

Principal-component analysis

Outlier resistance

Singular-value decomposition

Subspace data processing

Übergeordnetes Werk:

Enthalten in: EURASIP journal on advances in signal processing - Heidelberg : Springer, 2007, 2019(2019), 1 vom: 25. Juni

Übergeordnetes Werk:

volume:2019 ; year:2019 ; number:1 ; day:25 ; month:06

Links:

Volltext

DOI / URN:

10.1186/s13634-019-0625-5

Katalog-ID:

SPR032011091

Nicht das Richtige dabei?

Schreiben Sie uns!