New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type and applications
Abstract In this paper, we give the definitions of $q,\omega $-exponential function and $q,\omega $-gamma function. New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type are introduced, meanwhile we discuss some properties. As applications of the new conc...
Ausführliche Beschreibung
Autor*in: |
Wang, Yizhu [verfasserIn] Liu, Yiding [verfasserIn] Hou, Chengmin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Advances in difference equations - [S.l.] : Springer International, 2004, 2018(2018), 1 vom: 28. Aug. |
---|---|
Übergeordnetes Werk: |
volume:2018 ; year:2018 ; number:1 ; day:28 ; month:08 |
Links: |
---|
DOI / URN: |
10.1186/s13662-018-1753-1 |
---|
Katalog-ID: |
SPR032109210 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR032109210 | ||
003 | DE-627 | ||
005 | 20230519181646.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13662-018-1753-1 |2 doi | |
035 | |a (DE-627)SPR032109210 | ||
035 | |a (SPR)s13662-018-1753-1-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 610 |q ASE |
084 | |a 31.49 |2 bkl | ||
100 | 1 | |a Wang, Yizhu |e verfasserin |4 aut | |
245 | 1 | 0 | |a New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type and applications |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract In this paper, we give the definitions of $q,\omega $-exponential function and $q,\omega $-gamma function. New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type are introduced, meanwhile we discuss some properties. As applications of the new concepts, we give the existence result of positive solutions for boundary value problem of fractional $q,\omega $-derivatives equations. We also definite certain $q,\omega $-Mittag-Leffler function by solving the initial value problem of fractional $q,\omega $-equations. | ||
650 | 4 | |a Quantum calculus |7 (dpeaa)DE-He213 | |
650 | 4 | |a -derivative |7 (dpeaa)DE-He213 | |
650 | 4 | |a Boundary value problem |7 (dpeaa)DE-He213 | |
650 | 4 | |a Initial value problem |7 (dpeaa)DE-He213 | |
700 | 1 | |a Liu, Yiding |e verfasserin |4 aut | |
700 | 1 | |a Hou, Chengmin |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Advances in difference equations |d [S.l.] : Springer International, 2004 |g 2018(2018), 1 vom: 28. Aug. |w (DE-627)377755699 |w (DE-600)2132815-8 |x 1687-1847 |7 nnns |
773 | 1 | 8 | |g volume:2018 |g year:2018 |g number:1 |g day:28 |g month:08 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13662-018-1753-1 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.49 |q ASE |
951 | |a AR | ||
952 | |d 2018 |j 2018 |e 1 |b 28 |c 08 |
author_variant |
y w yw y l yl c h ch |
---|---|
matchkey_str |
article:16871847:2018----::ecnetofatoahhsoeaeiaiefimnlovleyen |
hierarchy_sort_str |
2018 |
bklnumber |
31.49 |
publishDate |
2018 |
allfields |
10.1186/s13662-018-1753-1 doi (DE-627)SPR032109210 (SPR)s13662-018-1753-1-e DE-627 ger DE-627 rakwb eng 510 610 ASE 31.49 bkl Wang, Yizhu verfasserin aut New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type and applications 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we give the definitions of $q,\omega $-exponential function and $q,\omega $-gamma function. New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type are introduced, meanwhile we discuss some properties. As applications of the new concepts, we give the existence result of positive solutions for boundary value problem of fractional $q,\omega $-derivatives equations. We also definite certain $q,\omega $-Mittag-Leffler function by solving the initial value problem of fractional $q,\omega $-equations. Quantum calculus (dpeaa)DE-He213 -derivative (dpeaa)DE-He213 Boundary value problem (dpeaa)DE-He213 Initial value problem (dpeaa)DE-He213 Liu, Yiding verfasserin aut Hou, Chengmin verfasserin aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2018(2018), 1 vom: 28. Aug. (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2018 year:2018 number:1 day:28 month:08 https://dx.doi.org/10.1186/s13662-018-1753-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2018 2018 1 28 08 |
spelling |
10.1186/s13662-018-1753-1 doi (DE-627)SPR032109210 (SPR)s13662-018-1753-1-e DE-627 ger DE-627 rakwb eng 510 610 ASE 31.49 bkl Wang, Yizhu verfasserin aut New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type and applications 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we give the definitions of $q,\omega $-exponential function and $q,\omega $-gamma function. New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type are introduced, meanwhile we discuss some properties. As applications of the new concepts, we give the existence result of positive solutions for boundary value problem of fractional $q,\omega $-derivatives equations. We also definite certain $q,\omega $-Mittag-Leffler function by solving the initial value problem of fractional $q,\omega $-equations. Quantum calculus (dpeaa)DE-He213 -derivative (dpeaa)DE-He213 Boundary value problem (dpeaa)DE-He213 Initial value problem (dpeaa)DE-He213 Liu, Yiding verfasserin aut Hou, Chengmin verfasserin aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2018(2018), 1 vom: 28. Aug. (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2018 year:2018 number:1 day:28 month:08 https://dx.doi.org/10.1186/s13662-018-1753-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2018 2018 1 28 08 |
allfields_unstemmed |
10.1186/s13662-018-1753-1 doi (DE-627)SPR032109210 (SPR)s13662-018-1753-1-e DE-627 ger DE-627 rakwb eng 510 610 ASE 31.49 bkl Wang, Yizhu verfasserin aut New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type and applications 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we give the definitions of $q,\omega $-exponential function and $q,\omega $-gamma function. New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type are introduced, meanwhile we discuss some properties. As applications of the new concepts, we give the existence result of positive solutions for boundary value problem of fractional $q,\omega $-derivatives equations. We also definite certain $q,\omega $-Mittag-Leffler function by solving the initial value problem of fractional $q,\omega $-equations. Quantum calculus (dpeaa)DE-He213 -derivative (dpeaa)DE-He213 Boundary value problem (dpeaa)DE-He213 Initial value problem (dpeaa)DE-He213 Liu, Yiding verfasserin aut Hou, Chengmin verfasserin aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2018(2018), 1 vom: 28. Aug. (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2018 year:2018 number:1 day:28 month:08 https://dx.doi.org/10.1186/s13662-018-1753-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2018 2018 1 28 08 |
allfieldsGer |
10.1186/s13662-018-1753-1 doi (DE-627)SPR032109210 (SPR)s13662-018-1753-1-e DE-627 ger DE-627 rakwb eng 510 610 ASE 31.49 bkl Wang, Yizhu verfasserin aut New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type and applications 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we give the definitions of $q,\omega $-exponential function and $q,\omega $-gamma function. New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type are introduced, meanwhile we discuss some properties. As applications of the new concepts, we give the existence result of positive solutions for boundary value problem of fractional $q,\omega $-derivatives equations. We also definite certain $q,\omega $-Mittag-Leffler function by solving the initial value problem of fractional $q,\omega $-equations. Quantum calculus (dpeaa)DE-He213 -derivative (dpeaa)DE-He213 Boundary value problem (dpeaa)DE-He213 Initial value problem (dpeaa)DE-He213 Liu, Yiding verfasserin aut Hou, Chengmin verfasserin aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2018(2018), 1 vom: 28. Aug. (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2018 year:2018 number:1 day:28 month:08 https://dx.doi.org/10.1186/s13662-018-1753-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2018 2018 1 28 08 |
allfieldsSound |
10.1186/s13662-018-1753-1 doi (DE-627)SPR032109210 (SPR)s13662-018-1753-1-e DE-627 ger DE-627 rakwb eng 510 610 ASE 31.49 bkl Wang, Yizhu verfasserin aut New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type and applications 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we give the definitions of $q,\omega $-exponential function and $q,\omega $-gamma function. New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type are introduced, meanwhile we discuss some properties. As applications of the new concepts, we give the existence result of positive solutions for boundary value problem of fractional $q,\omega $-derivatives equations. We also definite certain $q,\omega $-Mittag-Leffler function by solving the initial value problem of fractional $q,\omega $-equations. Quantum calculus (dpeaa)DE-He213 -derivative (dpeaa)DE-He213 Boundary value problem (dpeaa)DE-He213 Initial value problem (dpeaa)DE-He213 Liu, Yiding verfasserin aut Hou, Chengmin verfasserin aut Enthalten in Advances in difference equations [S.l.] : Springer International, 2004 2018(2018), 1 vom: 28. Aug. (DE-627)377755699 (DE-600)2132815-8 1687-1847 nnns volume:2018 year:2018 number:1 day:28 month:08 https://dx.doi.org/10.1186/s13662-018-1753-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2018 2018 1 28 08 |
language |
English |
source |
Enthalten in Advances in difference equations 2018(2018), 1 vom: 28. Aug. volume:2018 year:2018 number:1 day:28 month:08 |
sourceStr |
Enthalten in Advances in difference equations 2018(2018), 1 vom: 28. Aug. volume:2018 year:2018 number:1 day:28 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Quantum calculus -derivative Boundary value problem Initial value problem |
dewey-raw |
510 |
isfreeaccess_bool |
true |
container_title |
Advances in difference equations |
authorswithroles_txt_mv |
Wang, Yizhu @@aut@@ Liu, Yiding @@aut@@ Hou, Chengmin @@aut@@ |
publishDateDaySort_date |
2018-08-28T00:00:00Z |
hierarchy_top_id |
377755699 |
dewey-sort |
3510 |
id |
SPR032109210 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032109210</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519181646.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13662-018-1753-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032109210</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13662-018-1753-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Yizhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type and applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we give the definitions of $q,\omega $-exponential function and $q,\omega $-gamma function. New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type are introduced, meanwhile we discuss some properties. As applications of the new concepts, we give the existence result of positive solutions for boundary value problem of fractional $q,\omega $-derivatives equations. We also definite certain $q,\omega $-Mittag-Leffler function by solving the initial value problem of fractional $q,\omega $-equations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum calculus</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-derivative</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary value problem</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Initial value problem</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yiding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hou, Chengmin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advances in difference equations</subfield><subfield code="d">[S.l.] : Springer International, 2004</subfield><subfield code="g">2018(2018), 1 vom: 28. Aug.</subfield><subfield code="w">(DE-627)377755699</subfield><subfield code="w">(DE-600)2132815-8</subfield><subfield code="x">1687-1847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2018</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:28</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13662-018-1753-1</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2018</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">28</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
Wang, Yizhu |
spellingShingle |
Wang, Yizhu ddc 510 bkl 31.49 misc Quantum calculus misc -derivative misc Boundary value problem misc Initial value problem New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type and applications |
authorStr |
Wang, Yizhu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)377755699 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1687-1847 |
topic_title |
510 610 ASE 31.49 bkl New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type and applications Quantum calculus (dpeaa)DE-He213 -derivative (dpeaa)DE-He213 Boundary value problem (dpeaa)DE-He213 Initial value problem (dpeaa)DE-He213 |
topic |
ddc 510 bkl 31.49 misc Quantum calculus misc -derivative misc Boundary value problem misc Initial value problem |
topic_unstemmed |
ddc 510 bkl 31.49 misc Quantum calculus misc -derivative misc Boundary value problem misc Initial value problem |
topic_browse |
ddc 510 bkl 31.49 misc Quantum calculus misc -derivative misc Boundary value problem misc Initial value problem |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Advances in difference equations |
hierarchy_parent_id |
377755699 |
dewey-tens |
510 - Mathematics 610 - Medicine & health |
hierarchy_top_title |
Advances in difference equations |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)377755699 (DE-600)2132815-8 |
title |
New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type and applications |
ctrlnum |
(DE-627)SPR032109210 (SPR)s13662-018-1753-1-e |
title_full |
New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type and applications |
author_sort |
Wang, Yizhu |
journal |
Advances in difference equations |
journalStr |
Advances in difference equations |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Wang, Yizhu Liu, Yiding Hou, Chengmin |
container_volume |
2018 |
class |
510 610 ASE 31.49 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Yizhu |
doi_str_mv |
10.1186/s13662-018-1753-1 |
dewey-full |
510 610 |
author2-role |
verfasserin |
title_sort |
new concepts of fractional hahn’s $q,\omega $-derivative of riemann–liouville type and caputo type and applications |
title_auth |
New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type and applications |
abstract |
Abstract In this paper, we give the definitions of $q,\omega $-exponential function and $q,\omega $-gamma function. New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type are introduced, meanwhile we discuss some properties. As applications of the new concepts, we give the existence result of positive solutions for boundary value problem of fractional $q,\omega $-derivatives equations. We also definite certain $q,\omega $-Mittag-Leffler function by solving the initial value problem of fractional $q,\omega $-equations. |
abstractGer |
Abstract In this paper, we give the definitions of $q,\omega $-exponential function and $q,\omega $-gamma function. New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type are introduced, meanwhile we discuss some properties. As applications of the new concepts, we give the existence result of positive solutions for boundary value problem of fractional $q,\omega $-derivatives equations. We also definite certain $q,\omega $-Mittag-Leffler function by solving the initial value problem of fractional $q,\omega $-equations. |
abstract_unstemmed |
Abstract In this paper, we give the definitions of $q,\omega $-exponential function and $q,\omega $-gamma function. New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type are introduced, meanwhile we discuss some properties. As applications of the new concepts, we give the existence result of positive solutions for boundary value problem of fractional $q,\omega $-derivatives equations. We also definite certain $q,\omega $-Mittag-Leffler function by solving the initial value problem of fractional $q,\omega $-equations. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type and applications |
url |
https://dx.doi.org/10.1186/s13662-018-1753-1 |
remote_bool |
true |
author2 |
Liu, Yiding Hou, Chengmin |
author2Str |
Liu, Yiding Hou, Chengmin |
ppnlink |
377755699 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13662-018-1753-1 |
up_date |
2024-07-04T02:27:21.642Z |
_version_ |
1803613678227947520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032109210</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519181646.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13662-018-1753-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032109210</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13662-018-1753-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Yizhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type and applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we give the definitions of $q,\omega $-exponential function and $q,\omega $-gamma function. New concepts of fractional Hahn’s $q,\omega $-derivative of Riemann–Liouville type and Caputo type are introduced, meanwhile we discuss some properties. As applications of the new concepts, we give the existence result of positive solutions for boundary value problem of fractional $q,\omega $-derivatives equations. We also definite certain $q,\omega $-Mittag-Leffler function by solving the initial value problem of fractional $q,\omega $-equations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum calculus</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-derivative</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary value problem</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Initial value problem</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yiding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hou, Chengmin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advances in difference equations</subfield><subfield code="d">[S.l.] : Springer International, 2004</subfield><subfield code="g">2018(2018), 1 vom: 28. Aug.</subfield><subfield code="w">(DE-627)377755699</subfield><subfield code="w">(DE-600)2132815-8</subfield><subfield code="x">1687-1847</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2018</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:28</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13662-018-1753-1</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2018</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">28</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.402011 |