An Implicit Iterative Scheme for an Infinite Countable Family of Asymptotically Nonexpansive Mappings in Banach Spaces
Abstract Let be a nonempty closed convex subset of a reflexive Banach space with a weakly continuous dual mapping, and let be an infinite countable family of asymptotically nonexpansive mappings with the sequence satisfying for each , , and for each . In this paper, we introduce a new implicit itera...
Ausführliche Beschreibung
Autor*in: |
Wang, Shenghua [verfasserIn] Yu, Lanxiang [verfasserIn] Guo, Baohua [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2008 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Fixed point theory and applications - Heidelberg : Springer, 2004, 2008(2008), 1 vom: 28. Aug. |
---|---|
Übergeordnetes Werk: |
volume:2008 ; year:2008 ; number:1 ; day:28 ; month:08 |
Links: |
---|
DOI / URN: |
10.1155/2008/350483 |
---|
Katalog-ID: |
SPR032119844 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR032119844 | ||
003 | DE-627 | ||
005 | 20220111200014.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2008 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1155/2008/350483 |2 doi | |
035 | |a (DE-627)SPR032119844 | ||
035 | |a (SPR)350483-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ASE |
082 | 0 | 4 | |a 510 |q ASE |
084 | |a 31.46 |2 bkl | ||
084 | |a 31.65 |2 bkl | ||
100 | 1 | |a Wang, Shenghua |e verfasserin |4 aut | |
245 | 1 | 3 | |a An Implicit Iterative Scheme for an Infinite Countable Family of Asymptotically Nonexpansive Mappings in Banach Spaces |
264 | 1 | |c 2008 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Let be a nonempty closed convex subset of a reflexive Banach space with a weakly continuous dual mapping, and let be an infinite countable family of asymptotically nonexpansive mappings with the sequence satisfying for each , , and for each . In this paper, we introduce a new implicit iterative scheme generated by and prove that the scheme converges strongly to a common fixed point of , which solves some certain variational inequality. | ||
650 | 4 | |a Banach Space |7 (dpeaa)DE-He213 | |
650 | 4 | |a Differential Geometry |7 (dpeaa)DE-He213 | |
650 | 4 | |a Nonexpansive Mapping |7 (dpeaa)DE-He213 | |
650 | 4 | |a Iterative Scheme |7 (dpeaa)DE-He213 | |
650 | 4 | |a Computational Biology |7 (dpeaa)DE-He213 | |
700 | 1 | |a Yu, Lanxiang |e verfasserin |4 aut | |
700 | 1 | |a Guo, Baohua |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Fixed point theory and applications |d Heidelberg : Springer, 2004 |g 2008(2008), 1 vom: 28. Aug. |w (DE-627)379482037 |w (DE-600)2135860-6 |x 1687-1812 |7 nnns |
773 | 1 | 8 | |g volume:2008 |g year:2008 |g number:1 |g day:28 |g month:08 |
856 | 4 | 0 | |u https://dx.doi.org/10.1155/2008/350483 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.46 |q ASE |
936 | b | k | |a 31.65 |q ASE |
951 | |a AR | ||
952 | |d 2008 |j 2008 |e 1 |b 28 |c 08 |
author_variant |
s w sw l y ly b g bg |
---|---|
matchkey_str |
article:16871812:2008----::nmlcttrtvshmfrnniieonalfmloaypoialnnx |
hierarchy_sort_str |
2008 |
bklnumber |
31.46 31.65 |
publishDate |
2008 |
allfields |
10.1155/2008/350483 doi (DE-627)SPR032119844 (SPR)350483-e DE-627 ger DE-627 rakwb eng 510 ASE 510 ASE 31.46 bkl 31.65 bkl Wang, Shenghua verfasserin aut An Implicit Iterative Scheme for an Infinite Countable Family of Asymptotically Nonexpansive Mappings in Banach Spaces 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Let be a nonempty closed convex subset of a reflexive Banach space with a weakly continuous dual mapping, and let be an infinite countable family of asymptotically nonexpansive mappings with the sequence satisfying for each , , and for each . In this paper, we introduce a new implicit iterative scheme generated by and prove that the scheme converges strongly to a common fixed point of , which solves some certain variational inequality. Banach Space (dpeaa)DE-He213 Differential Geometry (dpeaa)DE-He213 Nonexpansive Mapping (dpeaa)DE-He213 Iterative Scheme (dpeaa)DE-He213 Computational Biology (dpeaa)DE-He213 Yu, Lanxiang verfasserin aut Guo, Baohua verfasserin aut Enthalten in Fixed point theory and applications Heidelberg : Springer, 2004 2008(2008), 1 vom: 28. Aug. (DE-627)379482037 (DE-600)2135860-6 1687-1812 nnns volume:2008 year:2008 number:1 day:28 month:08 https://dx.doi.org/10.1155/2008/350483 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.46 ASE 31.65 ASE AR 2008 2008 1 28 08 |
spelling |
10.1155/2008/350483 doi (DE-627)SPR032119844 (SPR)350483-e DE-627 ger DE-627 rakwb eng 510 ASE 510 ASE 31.46 bkl 31.65 bkl Wang, Shenghua verfasserin aut An Implicit Iterative Scheme for an Infinite Countable Family of Asymptotically Nonexpansive Mappings in Banach Spaces 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Let be a nonempty closed convex subset of a reflexive Banach space with a weakly continuous dual mapping, and let be an infinite countable family of asymptotically nonexpansive mappings with the sequence satisfying for each , , and for each . In this paper, we introduce a new implicit iterative scheme generated by and prove that the scheme converges strongly to a common fixed point of , which solves some certain variational inequality. Banach Space (dpeaa)DE-He213 Differential Geometry (dpeaa)DE-He213 Nonexpansive Mapping (dpeaa)DE-He213 Iterative Scheme (dpeaa)DE-He213 Computational Biology (dpeaa)DE-He213 Yu, Lanxiang verfasserin aut Guo, Baohua verfasserin aut Enthalten in Fixed point theory and applications Heidelberg : Springer, 2004 2008(2008), 1 vom: 28. Aug. (DE-627)379482037 (DE-600)2135860-6 1687-1812 nnns volume:2008 year:2008 number:1 day:28 month:08 https://dx.doi.org/10.1155/2008/350483 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.46 ASE 31.65 ASE AR 2008 2008 1 28 08 |
allfields_unstemmed |
10.1155/2008/350483 doi (DE-627)SPR032119844 (SPR)350483-e DE-627 ger DE-627 rakwb eng 510 ASE 510 ASE 31.46 bkl 31.65 bkl Wang, Shenghua verfasserin aut An Implicit Iterative Scheme for an Infinite Countable Family of Asymptotically Nonexpansive Mappings in Banach Spaces 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Let be a nonempty closed convex subset of a reflexive Banach space with a weakly continuous dual mapping, and let be an infinite countable family of asymptotically nonexpansive mappings with the sequence satisfying for each , , and for each . In this paper, we introduce a new implicit iterative scheme generated by and prove that the scheme converges strongly to a common fixed point of , which solves some certain variational inequality. Banach Space (dpeaa)DE-He213 Differential Geometry (dpeaa)DE-He213 Nonexpansive Mapping (dpeaa)DE-He213 Iterative Scheme (dpeaa)DE-He213 Computational Biology (dpeaa)DE-He213 Yu, Lanxiang verfasserin aut Guo, Baohua verfasserin aut Enthalten in Fixed point theory and applications Heidelberg : Springer, 2004 2008(2008), 1 vom: 28. Aug. (DE-627)379482037 (DE-600)2135860-6 1687-1812 nnns volume:2008 year:2008 number:1 day:28 month:08 https://dx.doi.org/10.1155/2008/350483 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.46 ASE 31.65 ASE AR 2008 2008 1 28 08 |
allfieldsGer |
10.1155/2008/350483 doi (DE-627)SPR032119844 (SPR)350483-e DE-627 ger DE-627 rakwb eng 510 ASE 510 ASE 31.46 bkl 31.65 bkl Wang, Shenghua verfasserin aut An Implicit Iterative Scheme for an Infinite Countable Family of Asymptotically Nonexpansive Mappings in Banach Spaces 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Let be a nonempty closed convex subset of a reflexive Banach space with a weakly continuous dual mapping, and let be an infinite countable family of asymptotically nonexpansive mappings with the sequence satisfying for each , , and for each . In this paper, we introduce a new implicit iterative scheme generated by and prove that the scheme converges strongly to a common fixed point of , which solves some certain variational inequality. Banach Space (dpeaa)DE-He213 Differential Geometry (dpeaa)DE-He213 Nonexpansive Mapping (dpeaa)DE-He213 Iterative Scheme (dpeaa)DE-He213 Computational Biology (dpeaa)DE-He213 Yu, Lanxiang verfasserin aut Guo, Baohua verfasserin aut Enthalten in Fixed point theory and applications Heidelberg : Springer, 2004 2008(2008), 1 vom: 28. Aug. (DE-627)379482037 (DE-600)2135860-6 1687-1812 nnns volume:2008 year:2008 number:1 day:28 month:08 https://dx.doi.org/10.1155/2008/350483 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.46 ASE 31.65 ASE AR 2008 2008 1 28 08 |
allfieldsSound |
10.1155/2008/350483 doi (DE-627)SPR032119844 (SPR)350483-e DE-627 ger DE-627 rakwb eng 510 ASE 510 ASE 31.46 bkl 31.65 bkl Wang, Shenghua verfasserin aut An Implicit Iterative Scheme for an Infinite Countable Family of Asymptotically Nonexpansive Mappings in Banach Spaces 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Let be a nonempty closed convex subset of a reflexive Banach space with a weakly continuous dual mapping, and let be an infinite countable family of asymptotically nonexpansive mappings with the sequence satisfying for each , , and for each . In this paper, we introduce a new implicit iterative scheme generated by and prove that the scheme converges strongly to a common fixed point of , which solves some certain variational inequality. Banach Space (dpeaa)DE-He213 Differential Geometry (dpeaa)DE-He213 Nonexpansive Mapping (dpeaa)DE-He213 Iterative Scheme (dpeaa)DE-He213 Computational Biology (dpeaa)DE-He213 Yu, Lanxiang verfasserin aut Guo, Baohua verfasserin aut Enthalten in Fixed point theory and applications Heidelberg : Springer, 2004 2008(2008), 1 vom: 28. Aug. (DE-627)379482037 (DE-600)2135860-6 1687-1812 nnns volume:2008 year:2008 number:1 day:28 month:08 https://dx.doi.org/10.1155/2008/350483 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.46 ASE 31.65 ASE AR 2008 2008 1 28 08 |
language |
English |
source |
Enthalten in Fixed point theory and applications 2008(2008), 1 vom: 28. Aug. volume:2008 year:2008 number:1 day:28 month:08 |
sourceStr |
Enthalten in Fixed point theory and applications 2008(2008), 1 vom: 28. Aug. volume:2008 year:2008 number:1 day:28 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Banach Space Differential Geometry Nonexpansive Mapping Iterative Scheme Computational Biology |
dewey-raw |
510 |
isfreeaccess_bool |
true |
container_title |
Fixed point theory and applications |
authorswithroles_txt_mv |
Wang, Shenghua @@aut@@ Yu, Lanxiang @@aut@@ Guo, Baohua @@aut@@ |
publishDateDaySort_date |
2008-08-28T00:00:00Z |
hierarchy_top_id |
379482037 |
dewey-sort |
3510 |
id |
SPR032119844 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032119844</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111200014.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2008 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2008/350483</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032119844</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)350483-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.46</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.65</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Shenghua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Implicit Iterative Scheme for an Infinite Countable Family of Asymptotically Nonexpansive Mappings in Banach Spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let be a nonempty closed convex subset of a reflexive Banach space with a weakly continuous dual mapping, and let be an infinite countable family of asymptotically nonexpansive mappings with the sequence satisfying for each , , and for each . In this paper, we introduce a new implicit iterative scheme generated by and prove that the scheme converges strongly to a common fixed point of , which solves some certain variational inequality.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach Space</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonexpansive Mapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterative Scheme</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Biology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Lanxiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Baohua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Fixed point theory and applications</subfield><subfield code="d">Heidelberg : Springer, 2004</subfield><subfield code="g">2008(2008), 1 vom: 28. Aug.</subfield><subfield code="w">(DE-627)379482037</subfield><subfield code="w">(DE-600)2135860-6</subfield><subfield code="x">1687-1812</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2008</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:1</subfield><subfield code="g">day:28</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1155/2008/350483</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.46</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.65</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2008</subfield><subfield code="j">2008</subfield><subfield code="e">1</subfield><subfield code="b">28</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
Wang, Shenghua |
spellingShingle |
Wang, Shenghua ddc 510 bkl 31.46 bkl 31.65 misc Banach Space misc Differential Geometry misc Nonexpansive Mapping misc Iterative Scheme misc Computational Biology An Implicit Iterative Scheme for an Infinite Countable Family of Asymptotically Nonexpansive Mappings in Banach Spaces |
authorStr |
Wang, Shenghua |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)379482037 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1687-1812 |
topic_title |
510 ASE 31.46 bkl 31.65 bkl An Implicit Iterative Scheme for an Infinite Countable Family of Asymptotically Nonexpansive Mappings in Banach Spaces Banach Space (dpeaa)DE-He213 Differential Geometry (dpeaa)DE-He213 Nonexpansive Mapping (dpeaa)DE-He213 Iterative Scheme (dpeaa)DE-He213 Computational Biology (dpeaa)DE-He213 |
topic |
ddc 510 bkl 31.46 bkl 31.65 misc Banach Space misc Differential Geometry misc Nonexpansive Mapping misc Iterative Scheme misc Computational Biology |
topic_unstemmed |
ddc 510 bkl 31.46 bkl 31.65 misc Banach Space misc Differential Geometry misc Nonexpansive Mapping misc Iterative Scheme misc Computational Biology |
topic_browse |
ddc 510 bkl 31.46 bkl 31.65 misc Banach Space misc Differential Geometry misc Nonexpansive Mapping misc Iterative Scheme misc Computational Biology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Fixed point theory and applications |
hierarchy_parent_id |
379482037 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Fixed point theory and applications |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)379482037 (DE-600)2135860-6 |
title |
An Implicit Iterative Scheme for an Infinite Countable Family of Asymptotically Nonexpansive Mappings in Banach Spaces |
ctrlnum |
(DE-627)SPR032119844 (SPR)350483-e |
title_full |
An Implicit Iterative Scheme for an Infinite Countable Family of Asymptotically Nonexpansive Mappings in Banach Spaces |
author_sort |
Wang, Shenghua |
journal |
Fixed point theory and applications |
journalStr |
Fixed point theory and applications |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2008 |
contenttype_str_mv |
txt |
author_browse |
Wang, Shenghua Yu, Lanxiang Guo, Baohua |
container_volume |
2008 |
class |
510 ASE 31.46 bkl 31.65 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Shenghua |
doi_str_mv |
10.1155/2008/350483 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
implicit iterative scheme for an infinite countable family of asymptotically nonexpansive mappings in banach spaces |
title_auth |
An Implicit Iterative Scheme for an Infinite Countable Family of Asymptotically Nonexpansive Mappings in Banach Spaces |
abstract |
Abstract Let be a nonempty closed convex subset of a reflexive Banach space with a weakly continuous dual mapping, and let be an infinite countable family of asymptotically nonexpansive mappings with the sequence satisfying for each , , and for each . In this paper, we introduce a new implicit iterative scheme generated by and prove that the scheme converges strongly to a common fixed point of , which solves some certain variational inequality. |
abstractGer |
Abstract Let be a nonempty closed convex subset of a reflexive Banach space with a weakly continuous dual mapping, and let be an infinite countable family of asymptotically nonexpansive mappings with the sequence satisfying for each , , and for each . In this paper, we introduce a new implicit iterative scheme generated by and prove that the scheme converges strongly to a common fixed point of , which solves some certain variational inequality. |
abstract_unstemmed |
Abstract Let be a nonempty closed convex subset of a reflexive Banach space with a weakly continuous dual mapping, and let be an infinite countable family of asymptotically nonexpansive mappings with the sequence satisfying for each , , and for each . In this paper, we introduce a new implicit iterative scheme generated by and prove that the scheme converges strongly to a common fixed point of , which solves some certain variational inequality. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
An Implicit Iterative Scheme for an Infinite Countable Family of Asymptotically Nonexpansive Mappings in Banach Spaces |
url |
https://dx.doi.org/10.1155/2008/350483 |
remote_bool |
true |
author2 |
Yu, Lanxiang Guo, Baohua |
author2Str |
Yu, Lanxiang Guo, Baohua |
ppnlink |
379482037 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1155/2008/350483 |
up_date |
2024-07-04T02:28:57.384Z |
_version_ |
1803613778618613760 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032119844</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111200014.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2008 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2008/350483</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032119844</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)350483-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.46</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.65</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Shenghua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Implicit Iterative Scheme for an Infinite Countable Family of Asymptotically Nonexpansive Mappings in Banach Spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let be a nonempty closed convex subset of a reflexive Banach space with a weakly continuous dual mapping, and let be an infinite countable family of asymptotically nonexpansive mappings with the sequence satisfying for each , , and for each . In this paper, we introduce a new implicit iterative scheme generated by and prove that the scheme converges strongly to a common fixed point of , which solves some certain variational inequality.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach Space</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonexpansive Mapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterative Scheme</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Biology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Lanxiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Baohua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Fixed point theory and applications</subfield><subfield code="d">Heidelberg : Springer, 2004</subfield><subfield code="g">2008(2008), 1 vom: 28. Aug.</subfield><subfield code="w">(DE-627)379482037</subfield><subfield code="w">(DE-600)2135860-6</subfield><subfield code="x">1687-1812</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2008</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:1</subfield><subfield code="g">day:28</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1155/2008/350483</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.46</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.65</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2008</subfield><subfield code="j">2008</subfield><subfield code="e">1</subfield><subfield code="b">28</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.401473 |