Strong and Δ-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces
Abstract It is our purpose in this paper first to introduce the class of total asymptotically nonexpansive nonself mappings and to prove the demiclosed principle for such mappings in spaces. Then, a new mixed Agarwal-O’Regan-Sahu type iterative scheme for approximating a common fixed point of two to...
Ausführliche Beschreibung
Autor*in: |
Chang, Shih-sen [verfasserIn] Wang, Lin [verfasserIn] Joseph Lee, Heung Wing [verfasserIn] Chan, Chi-kin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
total asymptotically nonexpansive mappings |
---|
Übergeordnetes Werk: |
Enthalten in: Fixed point theory and applications - Heidelberg : Springer, 2004, 2013(2013), 1 vom: 08. Mai |
---|---|
Übergeordnetes Werk: |
volume:2013 ; year:2013 ; number:1 ; day:08 ; month:05 |
Links: |
---|
DOI / URN: |
10.1186/1687-1812-2013-122 |
---|
Katalog-ID: |
SPR032129637 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR032129637 | ||
003 | DE-627 | ||
005 | 20220111200049.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1687-1812-2013-122 |2 doi | |
035 | |a (DE-627)SPR032129637 | ||
035 | |a (SPR)1687-1812-2013-122-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ASE |
082 | 0 | 4 | |a 510 |q ASE |
084 | |a 31.46 |2 bkl | ||
084 | |a 31.65 |2 bkl | ||
100 | 1 | |a Chang, Shih-sen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Strong and Δ-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract It is our purpose in this paper first to introduce the class of total asymptotically nonexpansive nonself mappings and to prove the demiclosed principle for such mappings in spaces. Then, a new mixed Agarwal-O’Regan-Sahu type iterative scheme for approximating a common fixed point of two total asymptotically nonexpansive mappings and two total asymptotically nonexpansive nonself mappings is constructed. Under suitable conditions, some strong convergence theorems and Δ-convergence theorems are proved in a space. Our results improve and extend the corresponding results of Agarwal, O’Regan and Sahu (J. Nonlinear Convex Anal. 8(1):61-79, 2007), Guo et al. (Fixed Point Theory Appl. 2012:224, 2012. doi:10.1186/1687-1812-2012-224), Sahin et al. (Fixed Point Theory Appl. 2013:12, 2013. doi:10.1186/1687-1812-2013-12), Chang et al. (Appl. Math. Comput. 219:2611-2617, 2012), Khan and Abbas (Comput. Math. Appl. 61:109-116, 2011), Khan et al. (Nonlinear Anal. 74:783-791, 2011), Xu (Nonlinear Anal., Theory Methods Appl. 16(12):1139-1146, 1991), Chidume et al. (J. Math. Anal. Appl. 280:364-374, 2003) and others. MSC:47J05, 47H09, 49J25. | ||
650 | 4 | |a total asymptotically nonexpansive mappings |7 (dpeaa)DE-He213 | |
650 | 4 | |a total asymptotically nonexpansive nonself mappings |7 (dpeaa)DE-He213 | |
650 | 4 | |a space |7 (dpeaa)DE-He213 | |
650 | 4 | |a demiclosed principle |7 (dpeaa)DE-He213 | |
650 | 4 | |a Δ-convergence |7 (dpeaa)DE-He213 | |
650 | 4 | |a strong convergence |7 (dpeaa)DE-He213 | |
650 | 4 | |a mixed Agarwal-O’Regan-Sahu type iterative scheme |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wang, Lin |e verfasserin |4 aut | |
700 | 1 | |a Joseph Lee, Heung Wing |e verfasserin |4 aut | |
700 | 1 | |a Chan, Chi-kin |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Fixed point theory and applications |d Heidelberg : Springer, 2004 |g 2013(2013), 1 vom: 08. Mai |w (DE-627)379482037 |w (DE-600)2135860-6 |x 1687-1812 |7 nnns |
773 | 1 | 8 | |g volume:2013 |g year:2013 |g number:1 |g day:08 |g month:05 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1687-1812-2013-122 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.46 |q ASE |
936 | b | k | |a 31.65 |q ASE |
951 | |a AR | ||
952 | |d 2013 |j 2013 |e 1 |b 08 |c 05 |
author_variant |
s s c ssc l w lw l h w j lhw lhwj c k c ckc |
---|---|
matchkey_str |
article:16871812:2013----::togncnegneomxdyeoaaypoialnnxas |
hierarchy_sort_str |
2013 |
bklnumber |
31.46 31.65 |
publishDate |
2013 |
allfields |
10.1186/1687-1812-2013-122 doi (DE-627)SPR032129637 (SPR)1687-1812-2013-122-e DE-627 ger DE-627 rakwb eng 510 ASE 510 ASE 31.46 bkl 31.65 bkl Chang, Shih-sen verfasserin aut Strong and Δ-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract It is our purpose in this paper first to introduce the class of total asymptotically nonexpansive nonself mappings and to prove the demiclosed principle for such mappings in spaces. Then, a new mixed Agarwal-O’Regan-Sahu type iterative scheme for approximating a common fixed point of two total asymptotically nonexpansive mappings and two total asymptotically nonexpansive nonself mappings is constructed. Under suitable conditions, some strong convergence theorems and Δ-convergence theorems are proved in a space. Our results improve and extend the corresponding results of Agarwal, O’Regan and Sahu (J. Nonlinear Convex Anal. 8(1):61-79, 2007), Guo et al. (Fixed Point Theory Appl. 2012:224, 2012. doi:10.1186/1687-1812-2012-224), Sahin et al. (Fixed Point Theory Appl. 2013:12, 2013. doi:10.1186/1687-1812-2013-12), Chang et al. (Appl. Math. Comput. 219:2611-2617, 2012), Khan and Abbas (Comput. Math. Appl. 61:109-116, 2011), Khan et al. (Nonlinear Anal. 74:783-791, 2011), Xu (Nonlinear Anal., Theory Methods Appl. 16(12):1139-1146, 1991), Chidume et al. (J. Math. Anal. Appl. 280:364-374, 2003) and others. MSC:47J05, 47H09, 49J25. total asymptotically nonexpansive mappings (dpeaa)DE-He213 total asymptotically nonexpansive nonself mappings (dpeaa)DE-He213 space (dpeaa)DE-He213 demiclosed principle (dpeaa)DE-He213 Δ-convergence (dpeaa)DE-He213 strong convergence (dpeaa)DE-He213 mixed Agarwal-O’Regan-Sahu type iterative scheme (dpeaa)DE-He213 Wang, Lin verfasserin aut Joseph Lee, Heung Wing verfasserin aut Chan, Chi-kin verfasserin aut Enthalten in Fixed point theory and applications Heidelberg : Springer, 2004 2013(2013), 1 vom: 08. Mai (DE-627)379482037 (DE-600)2135860-6 1687-1812 nnns volume:2013 year:2013 number:1 day:08 month:05 https://dx.doi.org/10.1186/1687-1812-2013-122 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.46 ASE 31.65 ASE AR 2013 2013 1 08 05 |
spelling |
10.1186/1687-1812-2013-122 doi (DE-627)SPR032129637 (SPR)1687-1812-2013-122-e DE-627 ger DE-627 rakwb eng 510 ASE 510 ASE 31.46 bkl 31.65 bkl Chang, Shih-sen verfasserin aut Strong and Δ-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract It is our purpose in this paper first to introduce the class of total asymptotically nonexpansive nonself mappings and to prove the demiclosed principle for such mappings in spaces. Then, a new mixed Agarwal-O’Regan-Sahu type iterative scheme for approximating a common fixed point of two total asymptotically nonexpansive mappings and two total asymptotically nonexpansive nonself mappings is constructed. Under suitable conditions, some strong convergence theorems and Δ-convergence theorems are proved in a space. Our results improve and extend the corresponding results of Agarwal, O’Regan and Sahu (J. Nonlinear Convex Anal. 8(1):61-79, 2007), Guo et al. (Fixed Point Theory Appl. 2012:224, 2012. doi:10.1186/1687-1812-2012-224), Sahin et al. (Fixed Point Theory Appl. 2013:12, 2013. doi:10.1186/1687-1812-2013-12), Chang et al. (Appl. Math. Comput. 219:2611-2617, 2012), Khan and Abbas (Comput. Math. Appl. 61:109-116, 2011), Khan et al. (Nonlinear Anal. 74:783-791, 2011), Xu (Nonlinear Anal., Theory Methods Appl. 16(12):1139-1146, 1991), Chidume et al. (J. Math. Anal. Appl. 280:364-374, 2003) and others. MSC:47J05, 47H09, 49J25. total asymptotically nonexpansive mappings (dpeaa)DE-He213 total asymptotically nonexpansive nonself mappings (dpeaa)DE-He213 space (dpeaa)DE-He213 demiclosed principle (dpeaa)DE-He213 Δ-convergence (dpeaa)DE-He213 strong convergence (dpeaa)DE-He213 mixed Agarwal-O’Regan-Sahu type iterative scheme (dpeaa)DE-He213 Wang, Lin verfasserin aut Joseph Lee, Heung Wing verfasserin aut Chan, Chi-kin verfasserin aut Enthalten in Fixed point theory and applications Heidelberg : Springer, 2004 2013(2013), 1 vom: 08. Mai (DE-627)379482037 (DE-600)2135860-6 1687-1812 nnns volume:2013 year:2013 number:1 day:08 month:05 https://dx.doi.org/10.1186/1687-1812-2013-122 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.46 ASE 31.65 ASE AR 2013 2013 1 08 05 |
allfields_unstemmed |
10.1186/1687-1812-2013-122 doi (DE-627)SPR032129637 (SPR)1687-1812-2013-122-e DE-627 ger DE-627 rakwb eng 510 ASE 510 ASE 31.46 bkl 31.65 bkl Chang, Shih-sen verfasserin aut Strong and Δ-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract It is our purpose in this paper first to introduce the class of total asymptotically nonexpansive nonself mappings and to prove the demiclosed principle for such mappings in spaces. Then, a new mixed Agarwal-O’Regan-Sahu type iterative scheme for approximating a common fixed point of two total asymptotically nonexpansive mappings and two total asymptotically nonexpansive nonself mappings is constructed. Under suitable conditions, some strong convergence theorems and Δ-convergence theorems are proved in a space. Our results improve and extend the corresponding results of Agarwal, O’Regan and Sahu (J. Nonlinear Convex Anal. 8(1):61-79, 2007), Guo et al. (Fixed Point Theory Appl. 2012:224, 2012. doi:10.1186/1687-1812-2012-224), Sahin et al. (Fixed Point Theory Appl. 2013:12, 2013. doi:10.1186/1687-1812-2013-12), Chang et al. (Appl. Math. Comput. 219:2611-2617, 2012), Khan and Abbas (Comput. Math. Appl. 61:109-116, 2011), Khan et al. (Nonlinear Anal. 74:783-791, 2011), Xu (Nonlinear Anal., Theory Methods Appl. 16(12):1139-1146, 1991), Chidume et al. (J. Math. Anal. Appl. 280:364-374, 2003) and others. MSC:47J05, 47H09, 49J25. total asymptotically nonexpansive mappings (dpeaa)DE-He213 total asymptotically nonexpansive nonself mappings (dpeaa)DE-He213 space (dpeaa)DE-He213 demiclosed principle (dpeaa)DE-He213 Δ-convergence (dpeaa)DE-He213 strong convergence (dpeaa)DE-He213 mixed Agarwal-O’Regan-Sahu type iterative scheme (dpeaa)DE-He213 Wang, Lin verfasserin aut Joseph Lee, Heung Wing verfasserin aut Chan, Chi-kin verfasserin aut Enthalten in Fixed point theory and applications Heidelberg : Springer, 2004 2013(2013), 1 vom: 08. Mai (DE-627)379482037 (DE-600)2135860-6 1687-1812 nnns volume:2013 year:2013 number:1 day:08 month:05 https://dx.doi.org/10.1186/1687-1812-2013-122 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.46 ASE 31.65 ASE AR 2013 2013 1 08 05 |
allfieldsGer |
10.1186/1687-1812-2013-122 doi (DE-627)SPR032129637 (SPR)1687-1812-2013-122-e DE-627 ger DE-627 rakwb eng 510 ASE 510 ASE 31.46 bkl 31.65 bkl Chang, Shih-sen verfasserin aut Strong and Δ-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract It is our purpose in this paper first to introduce the class of total asymptotically nonexpansive nonself mappings and to prove the demiclosed principle for such mappings in spaces. Then, a new mixed Agarwal-O’Regan-Sahu type iterative scheme for approximating a common fixed point of two total asymptotically nonexpansive mappings and two total asymptotically nonexpansive nonself mappings is constructed. Under suitable conditions, some strong convergence theorems and Δ-convergence theorems are proved in a space. Our results improve and extend the corresponding results of Agarwal, O’Regan and Sahu (J. Nonlinear Convex Anal. 8(1):61-79, 2007), Guo et al. (Fixed Point Theory Appl. 2012:224, 2012. doi:10.1186/1687-1812-2012-224), Sahin et al. (Fixed Point Theory Appl. 2013:12, 2013. doi:10.1186/1687-1812-2013-12), Chang et al. (Appl. Math. Comput. 219:2611-2617, 2012), Khan and Abbas (Comput. Math. Appl. 61:109-116, 2011), Khan et al. (Nonlinear Anal. 74:783-791, 2011), Xu (Nonlinear Anal., Theory Methods Appl. 16(12):1139-1146, 1991), Chidume et al. (J. Math. Anal. Appl. 280:364-374, 2003) and others. MSC:47J05, 47H09, 49J25. total asymptotically nonexpansive mappings (dpeaa)DE-He213 total asymptotically nonexpansive nonself mappings (dpeaa)DE-He213 space (dpeaa)DE-He213 demiclosed principle (dpeaa)DE-He213 Δ-convergence (dpeaa)DE-He213 strong convergence (dpeaa)DE-He213 mixed Agarwal-O’Regan-Sahu type iterative scheme (dpeaa)DE-He213 Wang, Lin verfasserin aut Joseph Lee, Heung Wing verfasserin aut Chan, Chi-kin verfasserin aut Enthalten in Fixed point theory and applications Heidelberg : Springer, 2004 2013(2013), 1 vom: 08. Mai (DE-627)379482037 (DE-600)2135860-6 1687-1812 nnns volume:2013 year:2013 number:1 day:08 month:05 https://dx.doi.org/10.1186/1687-1812-2013-122 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.46 ASE 31.65 ASE AR 2013 2013 1 08 05 |
allfieldsSound |
10.1186/1687-1812-2013-122 doi (DE-627)SPR032129637 (SPR)1687-1812-2013-122-e DE-627 ger DE-627 rakwb eng 510 ASE 510 ASE 31.46 bkl 31.65 bkl Chang, Shih-sen verfasserin aut Strong and Δ-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract It is our purpose in this paper first to introduce the class of total asymptotically nonexpansive nonself mappings and to prove the demiclosed principle for such mappings in spaces. Then, a new mixed Agarwal-O’Regan-Sahu type iterative scheme for approximating a common fixed point of two total asymptotically nonexpansive mappings and two total asymptotically nonexpansive nonself mappings is constructed. Under suitable conditions, some strong convergence theorems and Δ-convergence theorems are proved in a space. Our results improve and extend the corresponding results of Agarwal, O’Regan and Sahu (J. Nonlinear Convex Anal. 8(1):61-79, 2007), Guo et al. (Fixed Point Theory Appl. 2012:224, 2012. doi:10.1186/1687-1812-2012-224), Sahin et al. (Fixed Point Theory Appl. 2013:12, 2013. doi:10.1186/1687-1812-2013-12), Chang et al. (Appl. Math. Comput. 219:2611-2617, 2012), Khan and Abbas (Comput. Math. Appl. 61:109-116, 2011), Khan et al. (Nonlinear Anal. 74:783-791, 2011), Xu (Nonlinear Anal., Theory Methods Appl. 16(12):1139-1146, 1991), Chidume et al. (J. Math. Anal. Appl. 280:364-374, 2003) and others. MSC:47J05, 47H09, 49J25. total asymptotically nonexpansive mappings (dpeaa)DE-He213 total asymptotically nonexpansive nonself mappings (dpeaa)DE-He213 space (dpeaa)DE-He213 demiclosed principle (dpeaa)DE-He213 Δ-convergence (dpeaa)DE-He213 strong convergence (dpeaa)DE-He213 mixed Agarwal-O’Regan-Sahu type iterative scheme (dpeaa)DE-He213 Wang, Lin verfasserin aut Joseph Lee, Heung Wing verfasserin aut Chan, Chi-kin verfasserin aut Enthalten in Fixed point theory and applications Heidelberg : Springer, 2004 2013(2013), 1 vom: 08. Mai (DE-627)379482037 (DE-600)2135860-6 1687-1812 nnns volume:2013 year:2013 number:1 day:08 month:05 https://dx.doi.org/10.1186/1687-1812-2013-122 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.46 ASE 31.65 ASE AR 2013 2013 1 08 05 |
language |
English |
source |
Enthalten in Fixed point theory and applications 2013(2013), 1 vom: 08. Mai volume:2013 year:2013 number:1 day:08 month:05 |
sourceStr |
Enthalten in Fixed point theory and applications 2013(2013), 1 vom: 08. Mai volume:2013 year:2013 number:1 day:08 month:05 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
total asymptotically nonexpansive mappings total asymptotically nonexpansive nonself mappings space demiclosed principle Δ-convergence strong convergence mixed Agarwal-O’Regan-Sahu type iterative scheme |
dewey-raw |
510 |
isfreeaccess_bool |
true |
container_title |
Fixed point theory and applications |
authorswithroles_txt_mv |
Chang, Shih-sen @@aut@@ Wang, Lin @@aut@@ Joseph Lee, Heung Wing @@aut@@ Chan, Chi-kin @@aut@@ |
publishDateDaySort_date |
2013-05-08T00:00:00Z |
hierarchy_top_id |
379482037 |
dewey-sort |
3510 |
id |
SPR032129637 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032129637</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111200049.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1687-1812-2013-122</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032129637</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1687-1812-2013-122-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.46</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.65</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chang, Shih-sen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strong and Δ-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It is our purpose in this paper first to introduce the class of total asymptotically nonexpansive nonself mappings and to prove the demiclosed principle for such mappings in spaces. Then, a new mixed Agarwal-O’Regan-Sahu type iterative scheme for approximating a common fixed point of two total asymptotically nonexpansive mappings and two total asymptotically nonexpansive nonself mappings is constructed. Under suitable conditions, some strong convergence theorems and Δ-convergence theorems are proved in a space. Our results improve and extend the corresponding results of Agarwal, O’Regan and Sahu (J. Nonlinear Convex Anal. 8(1):61-79, 2007), Guo et al. (Fixed Point Theory Appl. 2012:224, 2012. doi:10.1186/1687-1812-2012-224), Sahin et al. (Fixed Point Theory Appl. 2013:12, 2013. doi:10.1186/1687-1812-2013-12), Chang et al. (Appl. Math. Comput. 219:2611-2617, 2012), Khan and Abbas (Comput. Math. Appl. 61:109-116, 2011), Khan et al. (Nonlinear Anal. 74:783-791, 2011), Xu (Nonlinear Anal., Theory Methods Appl. 16(12):1139-1146, 1991), Chidume et al. (J. Math. Anal. Appl. 280:364-374, 2003) and others. MSC:47J05, 47H09, 49J25.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">total asymptotically nonexpansive mappings</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">total asymptotically nonexpansive nonself mappings</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">space</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">demiclosed principle</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Δ-convergence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strong convergence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mixed Agarwal-O’Regan-Sahu type iterative scheme</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Joseph Lee, Heung Wing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chan, Chi-kin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Fixed point theory and applications</subfield><subfield code="d">Heidelberg : Springer, 2004</subfield><subfield code="g">2013(2013), 1 vom: 08. Mai</subfield><subfield code="w">(DE-627)379482037</subfield><subfield code="w">(DE-600)2135860-6</subfield><subfield code="x">1687-1812</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2013</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1687-1812-2013-122</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.46</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.65</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2013</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
author |
Chang, Shih-sen |
spellingShingle |
Chang, Shih-sen ddc 510 bkl 31.46 bkl 31.65 misc total asymptotically nonexpansive mappings misc total asymptotically nonexpansive nonself mappings misc space misc demiclosed principle misc Δ-convergence misc strong convergence misc mixed Agarwal-O’Regan-Sahu type iterative scheme Strong and Δ-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces |
authorStr |
Chang, Shih-sen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)379482037 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1687-1812 |
topic_title |
510 ASE 31.46 bkl 31.65 bkl Strong and Δ-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces total asymptotically nonexpansive mappings (dpeaa)DE-He213 total asymptotically nonexpansive nonself mappings (dpeaa)DE-He213 space (dpeaa)DE-He213 demiclosed principle (dpeaa)DE-He213 Δ-convergence (dpeaa)DE-He213 strong convergence (dpeaa)DE-He213 mixed Agarwal-O’Regan-Sahu type iterative scheme (dpeaa)DE-He213 |
topic |
ddc 510 bkl 31.46 bkl 31.65 misc total asymptotically nonexpansive mappings misc total asymptotically nonexpansive nonself mappings misc space misc demiclosed principle misc Δ-convergence misc strong convergence misc mixed Agarwal-O’Regan-Sahu type iterative scheme |
topic_unstemmed |
ddc 510 bkl 31.46 bkl 31.65 misc total asymptotically nonexpansive mappings misc total asymptotically nonexpansive nonself mappings misc space misc demiclosed principle misc Δ-convergence misc strong convergence misc mixed Agarwal-O’Regan-Sahu type iterative scheme |
topic_browse |
ddc 510 bkl 31.46 bkl 31.65 misc total asymptotically nonexpansive mappings misc total asymptotically nonexpansive nonself mappings misc space misc demiclosed principle misc Δ-convergence misc strong convergence misc mixed Agarwal-O’Regan-Sahu type iterative scheme |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Fixed point theory and applications |
hierarchy_parent_id |
379482037 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Fixed point theory and applications |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)379482037 (DE-600)2135860-6 |
title |
Strong and Δ-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces |
ctrlnum |
(DE-627)SPR032129637 (SPR)1687-1812-2013-122-e |
title_full |
Strong and Δ-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces |
author_sort |
Chang, Shih-sen |
journal |
Fixed point theory and applications |
journalStr |
Fixed point theory and applications |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
author_browse |
Chang, Shih-sen Wang, Lin Joseph Lee, Heung Wing Chan, Chi-kin |
container_volume |
2013 |
class |
510 ASE 31.46 bkl 31.65 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chang, Shih-sen |
doi_str_mv |
10.1186/1687-1812-2013-122 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
strong and δ-convergence for mixed type total asymptotically nonexpansive mappings in cat(0) spaces |
title_auth |
Strong and Δ-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces |
abstract |
Abstract It is our purpose in this paper first to introduce the class of total asymptotically nonexpansive nonself mappings and to prove the demiclosed principle for such mappings in spaces. Then, a new mixed Agarwal-O’Regan-Sahu type iterative scheme for approximating a common fixed point of two total asymptotically nonexpansive mappings and two total asymptotically nonexpansive nonself mappings is constructed. Under suitable conditions, some strong convergence theorems and Δ-convergence theorems are proved in a space. Our results improve and extend the corresponding results of Agarwal, O’Regan and Sahu (J. Nonlinear Convex Anal. 8(1):61-79, 2007), Guo et al. (Fixed Point Theory Appl. 2012:224, 2012. doi:10.1186/1687-1812-2012-224), Sahin et al. (Fixed Point Theory Appl. 2013:12, 2013. doi:10.1186/1687-1812-2013-12), Chang et al. (Appl. Math. Comput. 219:2611-2617, 2012), Khan and Abbas (Comput. Math. Appl. 61:109-116, 2011), Khan et al. (Nonlinear Anal. 74:783-791, 2011), Xu (Nonlinear Anal., Theory Methods Appl. 16(12):1139-1146, 1991), Chidume et al. (J. Math. Anal. Appl. 280:364-374, 2003) and others. MSC:47J05, 47H09, 49J25. |
abstractGer |
Abstract It is our purpose in this paper first to introduce the class of total asymptotically nonexpansive nonself mappings and to prove the demiclosed principle for such mappings in spaces. Then, a new mixed Agarwal-O’Regan-Sahu type iterative scheme for approximating a common fixed point of two total asymptotically nonexpansive mappings and two total asymptotically nonexpansive nonself mappings is constructed. Under suitable conditions, some strong convergence theorems and Δ-convergence theorems are proved in a space. Our results improve and extend the corresponding results of Agarwal, O’Regan and Sahu (J. Nonlinear Convex Anal. 8(1):61-79, 2007), Guo et al. (Fixed Point Theory Appl. 2012:224, 2012. doi:10.1186/1687-1812-2012-224), Sahin et al. (Fixed Point Theory Appl. 2013:12, 2013. doi:10.1186/1687-1812-2013-12), Chang et al. (Appl. Math. Comput. 219:2611-2617, 2012), Khan and Abbas (Comput. Math. Appl. 61:109-116, 2011), Khan et al. (Nonlinear Anal. 74:783-791, 2011), Xu (Nonlinear Anal., Theory Methods Appl. 16(12):1139-1146, 1991), Chidume et al. (J. Math. Anal. Appl. 280:364-374, 2003) and others. MSC:47J05, 47H09, 49J25. |
abstract_unstemmed |
Abstract It is our purpose in this paper first to introduce the class of total asymptotically nonexpansive nonself mappings and to prove the demiclosed principle for such mappings in spaces. Then, a new mixed Agarwal-O’Regan-Sahu type iterative scheme for approximating a common fixed point of two total asymptotically nonexpansive mappings and two total asymptotically nonexpansive nonself mappings is constructed. Under suitable conditions, some strong convergence theorems and Δ-convergence theorems are proved in a space. Our results improve and extend the corresponding results of Agarwal, O’Regan and Sahu (J. Nonlinear Convex Anal. 8(1):61-79, 2007), Guo et al. (Fixed Point Theory Appl. 2012:224, 2012. doi:10.1186/1687-1812-2012-224), Sahin et al. (Fixed Point Theory Appl. 2013:12, 2013. doi:10.1186/1687-1812-2013-12), Chang et al. (Appl. Math. Comput. 219:2611-2617, 2012), Khan and Abbas (Comput. Math. Appl. 61:109-116, 2011), Khan et al. (Nonlinear Anal. 74:783-791, 2011), Xu (Nonlinear Anal., Theory Methods Appl. 16(12):1139-1146, 1991), Chidume et al. (J. Math. Anal. Appl. 280:364-374, 2003) and others. MSC:47J05, 47H09, 49J25. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Strong and Δ-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces |
url |
https://dx.doi.org/10.1186/1687-1812-2013-122 |
remote_bool |
true |
author2 |
Wang, Lin Joseph Lee, Heung Wing Chan, Chi-kin |
author2Str |
Wang, Lin Joseph Lee, Heung Wing Chan, Chi-kin |
ppnlink |
379482037 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1687-1812-2013-122 |
up_date |
2024-07-04T02:30:19.168Z |
_version_ |
1803613864377450496 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032129637</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111200049.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1687-1812-2013-122</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032129637</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1687-1812-2013-122-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.46</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.65</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chang, Shih-sen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strong and Δ-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It is our purpose in this paper first to introduce the class of total asymptotically nonexpansive nonself mappings and to prove the demiclosed principle for such mappings in spaces. Then, a new mixed Agarwal-O’Regan-Sahu type iterative scheme for approximating a common fixed point of two total asymptotically nonexpansive mappings and two total asymptotically nonexpansive nonself mappings is constructed. Under suitable conditions, some strong convergence theorems and Δ-convergence theorems are proved in a space. Our results improve and extend the corresponding results of Agarwal, O’Regan and Sahu (J. Nonlinear Convex Anal. 8(1):61-79, 2007), Guo et al. (Fixed Point Theory Appl. 2012:224, 2012. doi:10.1186/1687-1812-2012-224), Sahin et al. (Fixed Point Theory Appl. 2013:12, 2013. doi:10.1186/1687-1812-2013-12), Chang et al. (Appl. Math. Comput. 219:2611-2617, 2012), Khan and Abbas (Comput. Math. Appl. 61:109-116, 2011), Khan et al. (Nonlinear Anal. 74:783-791, 2011), Xu (Nonlinear Anal., Theory Methods Appl. 16(12):1139-1146, 1991), Chidume et al. (J. Math. Anal. Appl. 280:364-374, 2003) and others. MSC:47J05, 47H09, 49J25.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">total asymptotically nonexpansive mappings</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">total asymptotically nonexpansive nonself mappings</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">space</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">demiclosed principle</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Δ-convergence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strong convergence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mixed Agarwal-O’Regan-Sahu type iterative scheme</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Joseph Lee, Heung Wing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chan, Chi-kin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Fixed point theory and applications</subfield><subfield code="d">Heidelberg : Springer, 2004</subfield><subfield code="g">2013(2013), 1 vom: 08. Mai</subfield><subfield code="w">(DE-627)379482037</subfield><subfield code="w">(DE-600)2135860-6</subfield><subfield code="x">1687-1812</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2013</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1687-1812-2013-122</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.46</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.65</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2013</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
score |
7.4009514 |