Rapid Cartilage Regeneration of Spheroids Composed of Human Nasal Septum-Derived Chondrocyte in Rat Osteochondral Defect Model
Background: Cell-based therapies have been studied for articular cartilage regeneration. Articular cartilage defects have little treatments because articular cartilage was limited regenerative capacity. Damaged articular cartilage is difficult to obtain a successful therapeutic effect. In additional...
Ausführliche Beschreibung
Autor*in: |
Jeon, Jung Ho [verfasserIn] Yun, Byeong Gon [verfasserIn] Lim, Min Jae [verfasserIn] Kim, Seok Jung [verfasserIn] Lim, Mi Hyun [verfasserIn] Lim, Jung Yeon [verfasserIn] Park, Sun Hwa [verfasserIn] Kim, Sung Won [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Tissue Engineering and Regenerative Medicine - Springer Netherlands, 2012, 17(2020), 1 vom: 25. Jan., Seite 81-90 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2020 ; number:1 ; day:25 ; month:01 ; pages:81-90 |
Links: |
---|
DOI / URN: |
10.1007/s13770-019-00231-w |
---|
Katalog-ID: |
SPR032351232 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR032351232 | ||
003 | DE-627 | ||
005 | 20230520004044.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13770-019-00231-w |2 doi | |
035 | |a (DE-627)SPR032351232 | ||
035 | |a (SPR)s13770-019-00231-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Jeon, Jung Ho |e verfasserin |4 aut | |
245 | 1 | 0 | |a Rapid Cartilage Regeneration of Spheroids Composed of Human Nasal Septum-Derived Chondrocyte in Rat Osteochondral Defect Model |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background: Cell-based therapies have been studied for articular cartilage regeneration. Articular cartilage defects have little treatments because articular cartilage was limited regenerative capacity. Damaged articular cartilage is difficult to obtain a successful therapeutic effect. In additionally these articular cartilage defects often cause osteoarthritis. Chondrocyte implantation is a widely available therapy used for regeneration of articular cartilage because this tissue has poor repair capacity after injury. Human nasal septum-drived chondrocytes (hNCs) from the septum show greater proliferation ability and chondrogenic capacity than human articular chondrocytes (hACs), even across different donors with different ages. Moreover, the chondrogenic properties of hNCs can be maintained after extensive culture expansion. Methods: In this study, 2 dimensional (2D) monolayer cultured hNCs (hNCs-2D) and 3 dimensional (3D) spheroids cultured hNCs (hNCs-3D) were examined for chondrogenic capacity in vitro by PCR and immunofluorescence staining for chondrogenic marker, cell survival during cultured and for cartilage regeneration ability in vivo in a rat osteochondral defect model. Results: hNCs-3D showed higher viability and more uniform morphology than 3D spheroids cultured hACs (hACs-3D) in culture. hNCs-3D also showed greater expression levels of the chondrocyte-specific marker Type II collagen (COL2A1) and sex-determining region Y (SRY)-box 9 (SOX9) than hNCs-2D. hNCs-3D also expressed chondrogenic markers in collagen. Specially, in the osteochondral defect model, implantation of hNCs-3D led to greater chondrogenic repair of focal cartilage defects in rats than implantation of hNCs-2D. Conclusion: These data suggest that hNCs-3D are valuable therapeutic agents for repair and regeneration of cartilage defects. | ||
650 | 4 | |a Spheroid culture |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cartilage |7 (dpeaa)DE-He213 | |
650 | 4 | |a Chondrocyte |7 (dpeaa)DE-He213 | |
650 | 4 | |a Osteochondral defect model |7 (dpeaa)DE-He213 | |
700 | 1 | |a Yun, Byeong Gon |e verfasserin |4 aut | |
700 | 1 | |a Lim, Min Jae |e verfasserin |4 aut | |
700 | 1 | |a Kim, Seok Jung |e verfasserin |4 aut | |
700 | 1 | |a Lim, Mi Hyun |e verfasserin |4 aut | |
700 | 1 | |a Lim, Jung Yeon |e verfasserin |4 aut | |
700 | 1 | |a Park, Sun Hwa |e verfasserin |4 aut | |
700 | 1 | |a Kim, Sung Won |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Tissue Engineering and Regenerative Medicine |d Springer Netherlands, 2012 |g 17(2020), 1 vom: 25. Jan., Seite 81-90 |w (DE-627)SPR032345240 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2020 |g number:1 |g day:25 |g month:01 |g pages:81-90 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s13770-019-00231-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_61 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_285 | ||
951 | |a AR | ||
952 | |d 17 |j 2020 |e 1 |b 25 |c 01 |h 81-90 |
author_variant |
j h j jh jhj b g y bg bgy m j l mj mjl s j k sj sjk m h l mh mhl j y l jy jyl s h p sh shp s w k sw swk |
---|---|
matchkey_str |
jeonjunghoyunbyeonggonlimminjaekimseokju:2020----:aicriaeeeeainfpeodcmoeohmnaaspudrvdhnrct |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s13770-019-00231-w doi (DE-627)SPR032351232 (SPR)s13770-019-00231-w-e DE-627 ger DE-627 rakwb eng Jeon, Jung Ho verfasserin aut Rapid Cartilage Regeneration of Spheroids Composed of Human Nasal Septum-Derived Chondrocyte in Rat Osteochondral Defect Model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Cell-based therapies have been studied for articular cartilage regeneration. Articular cartilage defects have little treatments because articular cartilage was limited regenerative capacity. Damaged articular cartilage is difficult to obtain a successful therapeutic effect. In additionally these articular cartilage defects often cause osteoarthritis. Chondrocyte implantation is a widely available therapy used for regeneration of articular cartilage because this tissue has poor repair capacity after injury. Human nasal septum-drived chondrocytes (hNCs) from the septum show greater proliferation ability and chondrogenic capacity than human articular chondrocytes (hACs), even across different donors with different ages. Moreover, the chondrogenic properties of hNCs can be maintained after extensive culture expansion. Methods: In this study, 2 dimensional (2D) monolayer cultured hNCs (hNCs-2D) and 3 dimensional (3D) spheroids cultured hNCs (hNCs-3D) were examined for chondrogenic capacity in vitro by PCR and immunofluorescence staining for chondrogenic marker, cell survival during cultured and for cartilage regeneration ability in vivo in a rat osteochondral defect model. Results: hNCs-3D showed higher viability and more uniform morphology than 3D spheroids cultured hACs (hACs-3D) in culture. hNCs-3D also showed greater expression levels of the chondrocyte-specific marker Type II collagen (COL2A1) and sex-determining region Y (SRY)-box 9 (SOX9) than hNCs-2D. hNCs-3D also expressed chondrogenic markers in collagen. Specially, in the osteochondral defect model, implantation of hNCs-3D led to greater chondrogenic repair of focal cartilage defects in rats than implantation of hNCs-2D. Conclusion: These data suggest that hNCs-3D are valuable therapeutic agents for repair and regeneration of cartilage defects. Spheroid culture (dpeaa)DE-He213 Cartilage (dpeaa)DE-He213 Chondrocyte (dpeaa)DE-He213 Osteochondral defect model (dpeaa)DE-He213 Yun, Byeong Gon verfasserin aut Lim, Min Jae verfasserin aut Kim, Seok Jung verfasserin aut Lim, Mi Hyun verfasserin aut Lim, Jung Yeon verfasserin aut Park, Sun Hwa verfasserin aut Kim, Sung Won verfasserin aut Enthalten in Tissue Engineering and Regenerative Medicine Springer Netherlands, 2012 17(2020), 1 vom: 25. Jan., Seite 81-90 (DE-627)SPR032345240 nnns volume:17 year:2020 number:1 day:25 month:01 pages:81-90 https://dx.doi.org/10.1007/s13770-019-00231-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_61 GBV_ILN_65 GBV_ILN_69 GBV_ILN_130 GBV_ILN_285 AR 17 2020 1 25 01 81-90 |
spelling |
10.1007/s13770-019-00231-w doi (DE-627)SPR032351232 (SPR)s13770-019-00231-w-e DE-627 ger DE-627 rakwb eng Jeon, Jung Ho verfasserin aut Rapid Cartilage Regeneration of Spheroids Composed of Human Nasal Septum-Derived Chondrocyte in Rat Osteochondral Defect Model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Cell-based therapies have been studied for articular cartilage regeneration. Articular cartilage defects have little treatments because articular cartilage was limited regenerative capacity. Damaged articular cartilage is difficult to obtain a successful therapeutic effect. In additionally these articular cartilage defects often cause osteoarthritis. Chondrocyte implantation is a widely available therapy used for regeneration of articular cartilage because this tissue has poor repair capacity after injury. Human nasal septum-drived chondrocytes (hNCs) from the septum show greater proliferation ability and chondrogenic capacity than human articular chondrocytes (hACs), even across different donors with different ages. Moreover, the chondrogenic properties of hNCs can be maintained after extensive culture expansion. Methods: In this study, 2 dimensional (2D) monolayer cultured hNCs (hNCs-2D) and 3 dimensional (3D) spheroids cultured hNCs (hNCs-3D) were examined for chondrogenic capacity in vitro by PCR and immunofluorescence staining for chondrogenic marker, cell survival during cultured and for cartilage regeneration ability in vivo in a rat osteochondral defect model. Results: hNCs-3D showed higher viability and more uniform morphology than 3D spheroids cultured hACs (hACs-3D) in culture. hNCs-3D also showed greater expression levels of the chondrocyte-specific marker Type II collagen (COL2A1) and sex-determining region Y (SRY)-box 9 (SOX9) than hNCs-2D. hNCs-3D also expressed chondrogenic markers in collagen. Specially, in the osteochondral defect model, implantation of hNCs-3D led to greater chondrogenic repair of focal cartilage defects in rats than implantation of hNCs-2D. Conclusion: These data suggest that hNCs-3D are valuable therapeutic agents for repair and regeneration of cartilage defects. Spheroid culture (dpeaa)DE-He213 Cartilage (dpeaa)DE-He213 Chondrocyte (dpeaa)DE-He213 Osteochondral defect model (dpeaa)DE-He213 Yun, Byeong Gon verfasserin aut Lim, Min Jae verfasserin aut Kim, Seok Jung verfasserin aut Lim, Mi Hyun verfasserin aut Lim, Jung Yeon verfasserin aut Park, Sun Hwa verfasserin aut Kim, Sung Won verfasserin aut Enthalten in Tissue Engineering and Regenerative Medicine Springer Netherlands, 2012 17(2020), 1 vom: 25. Jan., Seite 81-90 (DE-627)SPR032345240 nnns volume:17 year:2020 number:1 day:25 month:01 pages:81-90 https://dx.doi.org/10.1007/s13770-019-00231-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_61 GBV_ILN_65 GBV_ILN_69 GBV_ILN_130 GBV_ILN_285 AR 17 2020 1 25 01 81-90 |
allfields_unstemmed |
10.1007/s13770-019-00231-w doi (DE-627)SPR032351232 (SPR)s13770-019-00231-w-e DE-627 ger DE-627 rakwb eng Jeon, Jung Ho verfasserin aut Rapid Cartilage Regeneration of Spheroids Composed of Human Nasal Septum-Derived Chondrocyte in Rat Osteochondral Defect Model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Cell-based therapies have been studied for articular cartilage regeneration. Articular cartilage defects have little treatments because articular cartilage was limited regenerative capacity. Damaged articular cartilage is difficult to obtain a successful therapeutic effect. In additionally these articular cartilage defects often cause osteoarthritis. Chondrocyte implantation is a widely available therapy used for regeneration of articular cartilage because this tissue has poor repair capacity after injury. Human nasal septum-drived chondrocytes (hNCs) from the septum show greater proliferation ability and chondrogenic capacity than human articular chondrocytes (hACs), even across different donors with different ages. Moreover, the chondrogenic properties of hNCs can be maintained after extensive culture expansion. Methods: In this study, 2 dimensional (2D) monolayer cultured hNCs (hNCs-2D) and 3 dimensional (3D) spheroids cultured hNCs (hNCs-3D) were examined for chondrogenic capacity in vitro by PCR and immunofluorescence staining for chondrogenic marker, cell survival during cultured and for cartilage regeneration ability in vivo in a rat osteochondral defect model. Results: hNCs-3D showed higher viability and more uniform morphology than 3D spheroids cultured hACs (hACs-3D) in culture. hNCs-3D also showed greater expression levels of the chondrocyte-specific marker Type II collagen (COL2A1) and sex-determining region Y (SRY)-box 9 (SOX9) than hNCs-2D. hNCs-3D also expressed chondrogenic markers in collagen. Specially, in the osteochondral defect model, implantation of hNCs-3D led to greater chondrogenic repair of focal cartilage defects in rats than implantation of hNCs-2D. Conclusion: These data suggest that hNCs-3D are valuable therapeutic agents for repair and regeneration of cartilage defects. Spheroid culture (dpeaa)DE-He213 Cartilage (dpeaa)DE-He213 Chondrocyte (dpeaa)DE-He213 Osteochondral defect model (dpeaa)DE-He213 Yun, Byeong Gon verfasserin aut Lim, Min Jae verfasserin aut Kim, Seok Jung verfasserin aut Lim, Mi Hyun verfasserin aut Lim, Jung Yeon verfasserin aut Park, Sun Hwa verfasserin aut Kim, Sung Won verfasserin aut Enthalten in Tissue Engineering and Regenerative Medicine Springer Netherlands, 2012 17(2020), 1 vom: 25. Jan., Seite 81-90 (DE-627)SPR032345240 nnns volume:17 year:2020 number:1 day:25 month:01 pages:81-90 https://dx.doi.org/10.1007/s13770-019-00231-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_61 GBV_ILN_65 GBV_ILN_69 GBV_ILN_130 GBV_ILN_285 AR 17 2020 1 25 01 81-90 |
allfieldsGer |
10.1007/s13770-019-00231-w doi (DE-627)SPR032351232 (SPR)s13770-019-00231-w-e DE-627 ger DE-627 rakwb eng Jeon, Jung Ho verfasserin aut Rapid Cartilage Regeneration of Spheroids Composed of Human Nasal Septum-Derived Chondrocyte in Rat Osteochondral Defect Model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Cell-based therapies have been studied for articular cartilage regeneration. Articular cartilage defects have little treatments because articular cartilage was limited regenerative capacity. Damaged articular cartilage is difficult to obtain a successful therapeutic effect. In additionally these articular cartilage defects often cause osteoarthritis. Chondrocyte implantation is a widely available therapy used for regeneration of articular cartilage because this tissue has poor repair capacity after injury. Human nasal septum-drived chondrocytes (hNCs) from the septum show greater proliferation ability and chondrogenic capacity than human articular chondrocytes (hACs), even across different donors with different ages. Moreover, the chondrogenic properties of hNCs can be maintained after extensive culture expansion. Methods: In this study, 2 dimensional (2D) monolayer cultured hNCs (hNCs-2D) and 3 dimensional (3D) spheroids cultured hNCs (hNCs-3D) were examined for chondrogenic capacity in vitro by PCR and immunofluorescence staining for chondrogenic marker, cell survival during cultured and for cartilage regeneration ability in vivo in a rat osteochondral defect model. Results: hNCs-3D showed higher viability and more uniform morphology than 3D spheroids cultured hACs (hACs-3D) in culture. hNCs-3D also showed greater expression levels of the chondrocyte-specific marker Type II collagen (COL2A1) and sex-determining region Y (SRY)-box 9 (SOX9) than hNCs-2D. hNCs-3D also expressed chondrogenic markers in collagen. Specially, in the osteochondral defect model, implantation of hNCs-3D led to greater chondrogenic repair of focal cartilage defects in rats than implantation of hNCs-2D. Conclusion: These data suggest that hNCs-3D are valuable therapeutic agents for repair and regeneration of cartilage defects. Spheroid culture (dpeaa)DE-He213 Cartilage (dpeaa)DE-He213 Chondrocyte (dpeaa)DE-He213 Osteochondral defect model (dpeaa)DE-He213 Yun, Byeong Gon verfasserin aut Lim, Min Jae verfasserin aut Kim, Seok Jung verfasserin aut Lim, Mi Hyun verfasserin aut Lim, Jung Yeon verfasserin aut Park, Sun Hwa verfasserin aut Kim, Sung Won verfasserin aut Enthalten in Tissue Engineering and Regenerative Medicine Springer Netherlands, 2012 17(2020), 1 vom: 25. Jan., Seite 81-90 (DE-627)SPR032345240 nnns volume:17 year:2020 number:1 day:25 month:01 pages:81-90 https://dx.doi.org/10.1007/s13770-019-00231-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_61 GBV_ILN_65 GBV_ILN_69 GBV_ILN_130 GBV_ILN_285 AR 17 2020 1 25 01 81-90 |
allfieldsSound |
10.1007/s13770-019-00231-w doi (DE-627)SPR032351232 (SPR)s13770-019-00231-w-e DE-627 ger DE-627 rakwb eng Jeon, Jung Ho verfasserin aut Rapid Cartilage Regeneration of Spheroids Composed of Human Nasal Septum-Derived Chondrocyte in Rat Osteochondral Defect Model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Cell-based therapies have been studied for articular cartilage regeneration. Articular cartilage defects have little treatments because articular cartilage was limited regenerative capacity. Damaged articular cartilage is difficult to obtain a successful therapeutic effect. In additionally these articular cartilage defects often cause osteoarthritis. Chondrocyte implantation is a widely available therapy used for regeneration of articular cartilage because this tissue has poor repair capacity after injury. Human nasal septum-drived chondrocytes (hNCs) from the septum show greater proliferation ability and chondrogenic capacity than human articular chondrocytes (hACs), even across different donors with different ages. Moreover, the chondrogenic properties of hNCs can be maintained after extensive culture expansion. Methods: In this study, 2 dimensional (2D) monolayer cultured hNCs (hNCs-2D) and 3 dimensional (3D) spheroids cultured hNCs (hNCs-3D) were examined for chondrogenic capacity in vitro by PCR and immunofluorescence staining for chondrogenic marker, cell survival during cultured and for cartilage regeneration ability in vivo in a rat osteochondral defect model. Results: hNCs-3D showed higher viability and more uniform morphology than 3D spheroids cultured hACs (hACs-3D) in culture. hNCs-3D also showed greater expression levels of the chondrocyte-specific marker Type II collagen (COL2A1) and sex-determining region Y (SRY)-box 9 (SOX9) than hNCs-2D. hNCs-3D also expressed chondrogenic markers in collagen. Specially, in the osteochondral defect model, implantation of hNCs-3D led to greater chondrogenic repair of focal cartilage defects in rats than implantation of hNCs-2D. Conclusion: These data suggest that hNCs-3D are valuable therapeutic agents for repair and regeneration of cartilage defects. Spheroid culture (dpeaa)DE-He213 Cartilage (dpeaa)DE-He213 Chondrocyte (dpeaa)DE-He213 Osteochondral defect model (dpeaa)DE-He213 Yun, Byeong Gon verfasserin aut Lim, Min Jae verfasserin aut Kim, Seok Jung verfasserin aut Lim, Mi Hyun verfasserin aut Lim, Jung Yeon verfasserin aut Park, Sun Hwa verfasserin aut Kim, Sung Won verfasserin aut Enthalten in Tissue Engineering and Regenerative Medicine Springer Netherlands, 2012 17(2020), 1 vom: 25. Jan., Seite 81-90 (DE-627)SPR032345240 nnns volume:17 year:2020 number:1 day:25 month:01 pages:81-90 https://dx.doi.org/10.1007/s13770-019-00231-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_61 GBV_ILN_65 GBV_ILN_69 GBV_ILN_130 GBV_ILN_285 AR 17 2020 1 25 01 81-90 |
language |
English |
source |
Enthalten in Tissue Engineering and Regenerative Medicine 17(2020), 1 vom: 25. Jan., Seite 81-90 volume:17 year:2020 number:1 day:25 month:01 pages:81-90 |
sourceStr |
Enthalten in Tissue Engineering and Regenerative Medicine 17(2020), 1 vom: 25. Jan., Seite 81-90 volume:17 year:2020 number:1 day:25 month:01 pages:81-90 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Spheroid culture Cartilage Chondrocyte Osteochondral defect model |
isfreeaccess_bool |
false |
container_title |
Tissue Engineering and Regenerative Medicine |
authorswithroles_txt_mv |
Jeon, Jung Ho @@aut@@ Yun, Byeong Gon @@aut@@ Lim, Min Jae @@aut@@ Kim, Seok Jung @@aut@@ Lim, Mi Hyun @@aut@@ Lim, Jung Yeon @@aut@@ Park, Sun Hwa @@aut@@ Kim, Sung Won @@aut@@ |
publishDateDaySort_date |
2020-01-25T00:00:00Z |
hierarchy_top_id |
SPR032345240 |
id |
SPR032351232 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032351232</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520004044.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13770-019-00231-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032351232</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13770-019-00231-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jeon, Jung Ho</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rapid Cartilage Regeneration of Spheroids Composed of Human Nasal Septum-Derived Chondrocyte in Rat Osteochondral Defect Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: Cell-based therapies have been studied for articular cartilage regeneration. Articular cartilage defects have little treatments because articular cartilage was limited regenerative capacity. Damaged articular cartilage is difficult to obtain a successful therapeutic effect. In additionally these articular cartilage defects often cause osteoarthritis. Chondrocyte implantation is a widely available therapy used for regeneration of articular cartilage because this tissue has poor repair capacity after injury. Human nasal septum-drived chondrocytes (hNCs) from the septum show greater proliferation ability and chondrogenic capacity than human articular chondrocytes (hACs), even across different donors with different ages. Moreover, the chondrogenic properties of hNCs can be maintained after extensive culture expansion. Methods: In this study, 2 dimensional (2D) monolayer cultured hNCs (hNCs-2D) and 3 dimensional (3D) spheroids cultured hNCs (hNCs-3D) were examined for chondrogenic capacity in vitro by PCR and immunofluorescence staining for chondrogenic marker, cell survival during cultured and for cartilage regeneration ability in vivo in a rat osteochondral defect model. Results: hNCs-3D showed higher viability and more uniform morphology than 3D spheroids cultured hACs (hACs-3D) in culture. hNCs-3D also showed greater expression levels of the chondrocyte-specific marker Type II collagen (COL2A1) and sex-determining region Y (SRY)-box 9 (SOX9) than hNCs-2D. hNCs-3D also expressed chondrogenic markers in collagen. Specially, in the osteochondral defect model, implantation of hNCs-3D led to greater chondrogenic repair of focal cartilage defects in rats than implantation of hNCs-2D. Conclusion: These data suggest that hNCs-3D are valuable therapeutic agents for repair and regeneration of cartilage defects.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spheroid culture</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cartilage</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chondrocyte</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Osteochondral defect model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yun, Byeong Gon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lim, Min Jae</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Seok Jung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lim, Mi Hyun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lim, Jung Yeon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Park, Sun Hwa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Sung Won</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Tissue Engineering and Regenerative Medicine</subfield><subfield code="d">Springer Netherlands, 2012</subfield><subfield code="g">17(2020), 1 vom: 25. Jan., Seite 81-90</subfield><subfield code="w">(DE-627)SPR032345240</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:25</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:81-90</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13770-019-00231-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_61</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">25</subfield><subfield code="c">01</subfield><subfield code="h">81-90</subfield></datafield></record></collection>
|
author |
Jeon, Jung Ho |
spellingShingle |
Jeon, Jung Ho misc Spheroid culture misc Cartilage misc Chondrocyte misc Osteochondral defect model Rapid Cartilage Regeneration of Spheroids Composed of Human Nasal Septum-Derived Chondrocyte in Rat Osteochondral Defect Model |
authorStr |
Jeon, Jung Ho |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR032345240 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
Rapid Cartilage Regeneration of Spheroids Composed of Human Nasal Septum-Derived Chondrocyte in Rat Osteochondral Defect Model Spheroid culture (dpeaa)DE-He213 Cartilage (dpeaa)DE-He213 Chondrocyte (dpeaa)DE-He213 Osteochondral defect model (dpeaa)DE-He213 |
topic |
misc Spheroid culture misc Cartilage misc Chondrocyte misc Osteochondral defect model |
topic_unstemmed |
misc Spheroid culture misc Cartilage misc Chondrocyte misc Osteochondral defect model |
topic_browse |
misc Spheroid culture misc Cartilage misc Chondrocyte misc Osteochondral defect model |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Tissue Engineering and Regenerative Medicine |
hierarchy_parent_id |
SPR032345240 |
hierarchy_top_title |
Tissue Engineering and Regenerative Medicine |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR032345240 |
title |
Rapid Cartilage Regeneration of Spheroids Composed of Human Nasal Septum-Derived Chondrocyte in Rat Osteochondral Defect Model |
ctrlnum |
(DE-627)SPR032351232 (SPR)s13770-019-00231-w-e |
title_full |
Rapid Cartilage Regeneration of Spheroids Composed of Human Nasal Septum-Derived Chondrocyte in Rat Osteochondral Defect Model |
author_sort |
Jeon, Jung Ho |
journal |
Tissue Engineering and Regenerative Medicine |
journalStr |
Tissue Engineering and Regenerative Medicine |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
81 |
author_browse |
Jeon, Jung Ho Yun, Byeong Gon Lim, Min Jae Kim, Seok Jung Lim, Mi Hyun Lim, Jung Yeon Park, Sun Hwa Kim, Sung Won |
container_volume |
17 |
format_se |
Elektronische Aufsätze |
author-letter |
Jeon, Jung Ho |
doi_str_mv |
10.1007/s13770-019-00231-w |
author2-role |
verfasserin |
title_sort |
rapid cartilage regeneration of spheroids composed of human nasal septum-derived chondrocyte in rat osteochondral defect model |
title_auth |
Rapid Cartilage Regeneration of Spheroids Composed of Human Nasal Septum-Derived Chondrocyte in Rat Osteochondral Defect Model |
abstract |
Background: Cell-based therapies have been studied for articular cartilage regeneration. Articular cartilage defects have little treatments because articular cartilage was limited regenerative capacity. Damaged articular cartilage is difficult to obtain a successful therapeutic effect. In additionally these articular cartilage defects often cause osteoarthritis. Chondrocyte implantation is a widely available therapy used for regeneration of articular cartilage because this tissue has poor repair capacity after injury. Human nasal septum-drived chondrocytes (hNCs) from the septum show greater proliferation ability and chondrogenic capacity than human articular chondrocytes (hACs), even across different donors with different ages. Moreover, the chondrogenic properties of hNCs can be maintained after extensive culture expansion. Methods: In this study, 2 dimensional (2D) monolayer cultured hNCs (hNCs-2D) and 3 dimensional (3D) spheroids cultured hNCs (hNCs-3D) were examined for chondrogenic capacity in vitro by PCR and immunofluorescence staining for chondrogenic marker, cell survival during cultured and for cartilage regeneration ability in vivo in a rat osteochondral defect model. Results: hNCs-3D showed higher viability and more uniform morphology than 3D spheroids cultured hACs (hACs-3D) in culture. hNCs-3D also showed greater expression levels of the chondrocyte-specific marker Type II collagen (COL2A1) and sex-determining region Y (SRY)-box 9 (SOX9) than hNCs-2D. hNCs-3D also expressed chondrogenic markers in collagen. Specially, in the osteochondral defect model, implantation of hNCs-3D led to greater chondrogenic repair of focal cartilage defects in rats than implantation of hNCs-2D. Conclusion: These data suggest that hNCs-3D are valuable therapeutic agents for repair and regeneration of cartilage defects. |
abstractGer |
Background: Cell-based therapies have been studied for articular cartilage regeneration. Articular cartilage defects have little treatments because articular cartilage was limited regenerative capacity. Damaged articular cartilage is difficult to obtain a successful therapeutic effect. In additionally these articular cartilage defects often cause osteoarthritis. Chondrocyte implantation is a widely available therapy used for regeneration of articular cartilage because this tissue has poor repair capacity after injury. Human nasal septum-drived chondrocytes (hNCs) from the septum show greater proliferation ability and chondrogenic capacity than human articular chondrocytes (hACs), even across different donors with different ages. Moreover, the chondrogenic properties of hNCs can be maintained after extensive culture expansion. Methods: In this study, 2 dimensional (2D) monolayer cultured hNCs (hNCs-2D) and 3 dimensional (3D) spheroids cultured hNCs (hNCs-3D) were examined for chondrogenic capacity in vitro by PCR and immunofluorescence staining for chondrogenic marker, cell survival during cultured and for cartilage regeneration ability in vivo in a rat osteochondral defect model. Results: hNCs-3D showed higher viability and more uniform morphology than 3D spheroids cultured hACs (hACs-3D) in culture. hNCs-3D also showed greater expression levels of the chondrocyte-specific marker Type II collagen (COL2A1) and sex-determining region Y (SRY)-box 9 (SOX9) than hNCs-2D. hNCs-3D also expressed chondrogenic markers in collagen. Specially, in the osteochondral defect model, implantation of hNCs-3D led to greater chondrogenic repair of focal cartilage defects in rats than implantation of hNCs-2D. Conclusion: These data suggest that hNCs-3D are valuable therapeutic agents for repair and regeneration of cartilage defects. |
abstract_unstemmed |
Background: Cell-based therapies have been studied for articular cartilage regeneration. Articular cartilage defects have little treatments because articular cartilage was limited regenerative capacity. Damaged articular cartilage is difficult to obtain a successful therapeutic effect. In additionally these articular cartilage defects often cause osteoarthritis. Chondrocyte implantation is a widely available therapy used for regeneration of articular cartilage because this tissue has poor repair capacity after injury. Human nasal septum-drived chondrocytes (hNCs) from the septum show greater proliferation ability and chondrogenic capacity than human articular chondrocytes (hACs), even across different donors with different ages. Moreover, the chondrogenic properties of hNCs can be maintained after extensive culture expansion. Methods: In this study, 2 dimensional (2D) monolayer cultured hNCs (hNCs-2D) and 3 dimensional (3D) spheroids cultured hNCs (hNCs-3D) were examined for chondrogenic capacity in vitro by PCR and immunofluorescence staining for chondrogenic marker, cell survival during cultured and for cartilage regeneration ability in vivo in a rat osteochondral defect model. Results: hNCs-3D showed higher viability and more uniform morphology than 3D spheroids cultured hACs (hACs-3D) in culture. hNCs-3D also showed greater expression levels of the chondrocyte-specific marker Type II collagen (COL2A1) and sex-determining region Y (SRY)-box 9 (SOX9) than hNCs-2D. hNCs-3D also expressed chondrogenic markers in collagen. Specially, in the osteochondral defect model, implantation of hNCs-3D led to greater chondrogenic repair of focal cartilage defects in rats than implantation of hNCs-2D. Conclusion: These data suggest that hNCs-3D are valuable therapeutic agents for repair and regeneration of cartilage defects. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_61 GBV_ILN_65 GBV_ILN_69 GBV_ILN_130 GBV_ILN_285 |
container_issue |
1 |
title_short |
Rapid Cartilage Regeneration of Spheroids Composed of Human Nasal Septum-Derived Chondrocyte in Rat Osteochondral Defect Model |
url |
https://dx.doi.org/10.1007/s13770-019-00231-w |
remote_bool |
true |
author2 |
Yun, Byeong Gon Lim, Min Jae Kim, Seok Jung Lim, Mi Hyun Lim, Jung Yeon Park, Sun Hwa Kim, Sung Won |
author2Str |
Yun, Byeong Gon Lim, Min Jae Kim, Seok Jung Lim, Mi Hyun Lim, Jung Yeon Park, Sun Hwa Kim, Sung Won |
ppnlink |
SPR032345240 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13770-019-00231-w |
up_date |
2024-07-04T03:13:01.183Z |
_version_ |
1803616550848036864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032351232</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520004044.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13770-019-00231-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032351232</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13770-019-00231-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jeon, Jung Ho</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rapid Cartilage Regeneration of Spheroids Composed of Human Nasal Septum-Derived Chondrocyte in Rat Osteochondral Defect Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: Cell-based therapies have been studied for articular cartilage regeneration. Articular cartilage defects have little treatments because articular cartilage was limited regenerative capacity. Damaged articular cartilage is difficult to obtain a successful therapeutic effect. In additionally these articular cartilage defects often cause osteoarthritis. Chondrocyte implantation is a widely available therapy used for regeneration of articular cartilage because this tissue has poor repair capacity after injury. Human nasal septum-drived chondrocytes (hNCs) from the septum show greater proliferation ability and chondrogenic capacity than human articular chondrocytes (hACs), even across different donors with different ages. Moreover, the chondrogenic properties of hNCs can be maintained after extensive culture expansion. Methods: In this study, 2 dimensional (2D) monolayer cultured hNCs (hNCs-2D) and 3 dimensional (3D) spheroids cultured hNCs (hNCs-3D) were examined for chondrogenic capacity in vitro by PCR and immunofluorescence staining for chondrogenic marker, cell survival during cultured and for cartilage regeneration ability in vivo in a rat osteochondral defect model. Results: hNCs-3D showed higher viability and more uniform morphology than 3D spheroids cultured hACs (hACs-3D) in culture. hNCs-3D also showed greater expression levels of the chondrocyte-specific marker Type II collagen (COL2A1) and sex-determining region Y (SRY)-box 9 (SOX9) than hNCs-2D. hNCs-3D also expressed chondrogenic markers in collagen. Specially, in the osteochondral defect model, implantation of hNCs-3D led to greater chondrogenic repair of focal cartilage defects in rats than implantation of hNCs-2D. Conclusion: These data suggest that hNCs-3D are valuable therapeutic agents for repair and regeneration of cartilage defects.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spheroid culture</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cartilage</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chondrocyte</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Osteochondral defect model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yun, Byeong Gon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lim, Min Jae</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Seok Jung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lim, Mi Hyun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lim, Jung Yeon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Park, Sun Hwa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Sung Won</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Tissue Engineering and Regenerative Medicine</subfield><subfield code="d">Springer Netherlands, 2012</subfield><subfield code="g">17(2020), 1 vom: 25. Jan., Seite 81-90</subfield><subfield code="w">(DE-627)SPR032345240</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:25</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:81-90</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13770-019-00231-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_61</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">25</subfield><subfield code="c">01</subfield><subfield code="h">81-90</subfield></datafield></record></collection>
|
score |
7.401127 |