On the mean value of the two-term Dedekind sums
Abstract The main purpose of this paper is, using the properties of Gauss sums, the estimate for character sums and the analytic method, to study the mean value of the two-term Dedekind sums and give an interesting asymptotic formula for it. MSC:11F20, 11L40.
Autor*in: |
Xiaoyu, Kang [verfasserIn] Zhengang, Wu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of inequalities and applications - Heidelberg : Springer, 2005, 2013(2013), 1 vom: 11. Dez. |
---|---|
Übergeordnetes Werk: |
volume:2013 ; year:2013 ; number:1 ; day:11 ; month:12 |
Links: |
---|
DOI / URN: |
10.1186/1029-242X-2013-579 |
---|
Katalog-ID: |
SPR032379080 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR032379080 | ||
003 | DE-627 | ||
005 | 20220111201049.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1029-242X-2013-579 |2 doi | |
035 | |a (DE-627)SPR032379080 | ||
035 | |a (SPR)1029-242X-2013-579-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ASE |
084 | |a 31.49 |2 bkl | ||
100 | 1 | |a Xiaoyu, Kang |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the mean value of the two-term Dedekind sums |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The main purpose of this paper is, using the properties of Gauss sums, the estimate for character sums and the analytic method, to study the mean value of the two-term Dedekind sums and give an interesting asymptotic formula for it. MSC:11F20, 11L40. | ||
650 | 4 | |a two-term Dedekind sums |7 (dpeaa)DE-He213 | |
650 | 4 | |a character sums |7 (dpeaa)DE-He213 | |
650 | 4 | |a mean value |7 (dpeaa)DE-He213 | |
650 | 4 | |a asymptotic formula |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zhengang, Wu |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of inequalities and applications |d Heidelberg : Springer, 2005 |g 2013(2013), 1 vom: 11. Dez. |w (DE-627)320977056 |w (DE-600)2028512-7 |x 1029-242X |7 nnns |
773 | 1 | 8 | |g volume:2013 |g year:2013 |g number:1 |g day:11 |g month:12 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1029-242X-2013-579 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.49 |q ASE |
951 | |a AR | ||
952 | |d 2013 |j 2013 |e 1 |b 11 |c 12 |
author_variant |
k x kx w z wz |
---|---|
matchkey_str |
article:1029242X:2013----::nhmavlefhtoem |
hierarchy_sort_str |
2013 |
bklnumber |
31.49 |
publishDate |
2013 |
allfields |
10.1186/1029-242X-2013-579 doi (DE-627)SPR032379080 (SPR)1029-242X-2013-579-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Xiaoyu, Kang verfasserin aut On the mean value of the two-term Dedekind sums 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The main purpose of this paper is, using the properties of Gauss sums, the estimate for character sums and the analytic method, to study the mean value of the two-term Dedekind sums and give an interesting asymptotic formula for it. MSC:11F20, 11L40. two-term Dedekind sums (dpeaa)DE-He213 character sums (dpeaa)DE-He213 mean value (dpeaa)DE-He213 asymptotic formula (dpeaa)DE-He213 Zhengang, Wu verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2013(2013), 1 vom: 11. Dez. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2013 year:2013 number:1 day:11 month:12 https://dx.doi.org/10.1186/1029-242X-2013-579 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2013 2013 1 11 12 |
spelling |
10.1186/1029-242X-2013-579 doi (DE-627)SPR032379080 (SPR)1029-242X-2013-579-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Xiaoyu, Kang verfasserin aut On the mean value of the two-term Dedekind sums 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The main purpose of this paper is, using the properties of Gauss sums, the estimate for character sums and the analytic method, to study the mean value of the two-term Dedekind sums and give an interesting asymptotic formula for it. MSC:11F20, 11L40. two-term Dedekind sums (dpeaa)DE-He213 character sums (dpeaa)DE-He213 mean value (dpeaa)DE-He213 asymptotic formula (dpeaa)DE-He213 Zhengang, Wu verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2013(2013), 1 vom: 11. Dez. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2013 year:2013 number:1 day:11 month:12 https://dx.doi.org/10.1186/1029-242X-2013-579 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2013 2013 1 11 12 |
allfields_unstemmed |
10.1186/1029-242X-2013-579 doi (DE-627)SPR032379080 (SPR)1029-242X-2013-579-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Xiaoyu, Kang verfasserin aut On the mean value of the two-term Dedekind sums 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The main purpose of this paper is, using the properties of Gauss sums, the estimate for character sums and the analytic method, to study the mean value of the two-term Dedekind sums and give an interesting asymptotic formula for it. MSC:11F20, 11L40. two-term Dedekind sums (dpeaa)DE-He213 character sums (dpeaa)DE-He213 mean value (dpeaa)DE-He213 asymptotic formula (dpeaa)DE-He213 Zhengang, Wu verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2013(2013), 1 vom: 11. Dez. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2013 year:2013 number:1 day:11 month:12 https://dx.doi.org/10.1186/1029-242X-2013-579 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2013 2013 1 11 12 |
allfieldsGer |
10.1186/1029-242X-2013-579 doi (DE-627)SPR032379080 (SPR)1029-242X-2013-579-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Xiaoyu, Kang verfasserin aut On the mean value of the two-term Dedekind sums 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The main purpose of this paper is, using the properties of Gauss sums, the estimate for character sums and the analytic method, to study the mean value of the two-term Dedekind sums and give an interesting asymptotic formula for it. MSC:11F20, 11L40. two-term Dedekind sums (dpeaa)DE-He213 character sums (dpeaa)DE-He213 mean value (dpeaa)DE-He213 asymptotic formula (dpeaa)DE-He213 Zhengang, Wu verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2013(2013), 1 vom: 11. Dez. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2013 year:2013 number:1 day:11 month:12 https://dx.doi.org/10.1186/1029-242X-2013-579 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2013 2013 1 11 12 |
allfieldsSound |
10.1186/1029-242X-2013-579 doi (DE-627)SPR032379080 (SPR)1029-242X-2013-579-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Xiaoyu, Kang verfasserin aut On the mean value of the two-term Dedekind sums 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The main purpose of this paper is, using the properties of Gauss sums, the estimate for character sums and the analytic method, to study the mean value of the two-term Dedekind sums and give an interesting asymptotic formula for it. MSC:11F20, 11L40. two-term Dedekind sums (dpeaa)DE-He213 character sums (dpeaa)DE-He213 mean value (dpeaa)DE-He213 asymptotic formula (dpeaa)DE-He213 Zhengang, Wu verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2013(2013), 1 vom: 11. Dez. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2013 year:2013 number:1 day:11 month:12 https://dx.doi.org/10.1186/1029-242X-2013-579 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2013 2013 1 11 12 |
language |
English |
source |
Enthalten in Journal of inequalities and applications 2013(2013), 1 vom: 11. Dez. volume:2013 year:2013 number:1 day:11 month:12 |
sourceStr |
Enthalten in Journal of inequalities and applications 2013(2013), 1 vom: 11. Dez. volume:2013 year:2013 number:1 day:11 month:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
two-term Dedekind sums character sums mean value asymptotic formula |
dewey-raw |
510 |
isfreeaccess_bool |
true |
container_title |
Journal of inequalities and applications |
authorswithroles_txt_mv |
Xiaoyu, Kang @@aut@@ Zhengang, Wu @@aut@@ |
publishDateDaySort_date |
2013-12-11T00:00:00Z |
hierarchy_top_id |
320977056 |
dewey-sort |
3510 |
id |
SPR032379080 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032379080</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111201049.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1029-242X-2013-579</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032379080</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1029-242X-2013-579-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xiaoyu, Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the mean value of the two-term Dedekind sums</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The main purpose of this paper is, using the properties of Gauss sums, the estimate for character sums and the analytic method, to study the mean value of the two-term Dedekind sums and give an interesting asymptotic formula for it. MSC:11F20, 11L40.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">two-term Dedekind sums</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">character sums</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mean value</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">asymptotic formula</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhengang, Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of inequalities and applications</subfield><subfield code="d">Heidelberg : Springer, 2005</subfield><subfield code="g">2013(2013), 1 vom: 11. Dez.</subfield><subfield code="w">(DE-627)320977056</subfield><subfield code="w">(DE-600)2028512-7</subfield><subfield code="x">1029-242X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2013</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:11</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1029-242X-2013-579</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2013</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">11</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
author |
Xiaoyu, Kang |
spellingShingle |
Xiaoyu, Kang ddc 510 bkl 31.49 misc two-term Dedekind sums misc character sums misc mean value misc asymptotic formula On the mean value of the two-term Dedekind sums |
authorStr |
Xiaoyu, Kang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320977056 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1029-242X |
topic_title |
510 ASE 31.49 bkl On the mean value of the two-term Dedekind sums two-term Dedekind sums (dpeaa)DE-He213 character sums (dpeaa)DE-He213 mean value (dpeaa)DE-He213 asymptotic formula (dpeaa)DE-He213 |
topic |
ddc 510 bkl 31.49 misc two-term Dedekind sums misc character sums misc mean value misc asymptotic formula |
topic_unstemmed |
ddc 510 bkl 31.49 misc two-term Dedekind sums misc character sums misc mean value misc asymptotic formula |
topic_browse |
ddc 510 bkl 31.49 misc two-term Dedekind sums misc character sums misc mean value misc asymptotic formula |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of inequalities and applications |
hierarchy_parent_id |
320977056 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of inequalities and applications |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320977056 (DE-600)2028512-7 |
title |
On the mean value of the two-term Dedekind sums |
ctrlnum |
(DE-627)SPR032379080 (SPR)1029-242X-2013-579-e |
title_full |
On the mean value of the two-term Dedekind sums |
author_sort |
Xiaoyu, Kang |
journal |
Journal of inequalities and applications |
journalStr |
Journal of inequalities and applications |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
author_browse |
Xiaoyu, Kang Zhengang, Wu |
container_volume |
2013 |
class |
510 ASE 31.49 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Xiaoyu, Kang |
doi_str_mv |
10.1186/1029-242X-2013-579 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
on the mean value of the two-term dedekind sums |
title_auth |
On the mean value of the two-term Dedekind sums |
abstract |
Abstract The main purpose of this paper is, using the properties of Gauss sums, the estimate for character sums and the analytic method, to study the mean value of the two-term Dedekind sums and give an interesting asymptotic formula for it. MSC:11F20, 11L40. |
abstractGer |
Abstract The main purpose of this paper is, using the properties of Gauss sums, the estimate for character sums and the analytic method, to study the mean value of the two-term Dedekind sums and give an interesting asymptotic formula for it. MSC:11F20, 11L40. |
abstract_unstemmed |
Abstract The main purpose of this paper is, using the properties of Gauss sums, the estimate for character sums and the analytic method, to study the mean value of the two-term Dedekind sums and give an interesting asymptotic formula for it. MSC:11F20, 11L40. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
On the mean value of the two-term Dedekind sums |
url |
https://dx.doi.org/10.1186/1029-242X-2013-579 |
remote_bool |
true |
author2 |
Zhengang, Wu |
author2Str |
Zhengang, Wu |
ppnlink |
320977056 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1029-242X-2013-579 |
up_date |
2024-07-04T03:17:09.163Z |
_version_ |
1803616810868670464 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032379080</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111201049.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1029-242X-2013-579</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032379080</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1029-242X-2013-579-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xiaoyu, Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the mean value of the two-term Dedekind sums</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The main purpose of this paper is, using the properties of Gauss sums, the estimate for character sums and the analytic method, to study the mean value of the two-term Dedekind sums and give an interesting asymptotic formula for it. MSC:11F20, 11L40.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">two-term Dedekind sums</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">character sums</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mean value</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">asymptotic formula</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhengang, Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of inequalities and applications</subfield><subfield code="d">Heidelberg : Springer, 2005</subfield><subfield code="g">2013(2013), 1 vom: 11. Dez.</subfield><subfield code="w">(DE-627)320977056</subfield><subfield code="w">(DE-600)2028512-7</subfield><subfield code="x">1029-242X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2013</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:11</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1029-242X-2013-579</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2013</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">11</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
score |
7.402815 |