Approximating the Riemann-Stieltjes integral of smooth integrands and of bounded variation integrators
Abstract In the present paper, we investigate the problem of approximating the Riemann-Stieltjes integral in the case when the integrand f is n-time differentiable and the derivative is either of locally bounded variation, or Lipschitzian on an interval incorporating . A priory error bounds for seve...
Ausführliche Beschreibung
Autor*in: |
Dragomir, SS [verfasserIn] Abelman, S [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
functions of bounded variation |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of inequalities and applications - Heidelberg : Springer, 2005, 2013(2013), 1 vom: 04. Apr. |
---|---|
Übergeordnetes Werk: |
volume:2013 ; year:2013 ; number:1 ; day:04 ; month:04 |
Links: |
---|
DOI / URN: |
10.1186/1029-242X-2013-154 |
---|
Katalog-ID: |
SPR032400632 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR032400632 | ||
003 | DE-627 | ||
005 | 20220111201057.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1029-242X-2013-154 |2 doi | |
035 | |a (DE-627)SPR032400632 | ||
035 | |a (SPR)1029-242X-2013-154-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ASE |
084 | |a 31.49 |2 bkl | ||
100 | 1 | |a Dragomir, SS |e verfasserin |4 aut | |
245 | 1 | 0 | |a Approximating the Riemann-Stieltjes integral of smooth integrands and of bounded variation integrators |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract In the present paper, we investigate the problem of approximating the Riemann-Stieltjes integral in the case when the integrand f is n-time differentiable and the derivative is either of locally bounded variation, or Lipschitzian on an interval incorporating . A priory error bounds for several classes of integrators u and applications in approximating the finite Laplace-Stieltjes transform and the finite Fourier-Stieltjes sine and cosine transforms are provided as well. MSC:41A51, 26D15, 26D10. | ||
650 | 4 | |a Riemann-Stieltjes integral |7 (dpeaa)DE-He213 | |
650 | 4 | |a Taylor’s representation |7 (dpeaa)DE-He213 | |
650 | 4 | |a functions of bounded variation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Lipschitzian functions |7 (dpeaa)DE-He213 | |
650 | 4 | |a integral transforms |7 (dpeaa)DE-He213 | |
650 | 4 | |a finite Laplace-Stieltjes transform |7 (dpeaa)DE-He213 | |
650 | 4 | |a finite Fourier-Stieltjes sine and cosine transforms |7 (dpeaa)DE-He213 | |
700 | 1 | |a Abelman, S |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of inequalities and applications |d Heidelberg : Springer, 2005 |g 2013(2013), 1 vom: 04. Apr. |w (DE-627)320977056 |w (DE-600)2028512-7 |x 1029-242X |7 nnns |
773 | 1 | 8 | |g volume:2013 |g year:2013 |g number:1 |g day:04 |g month:04 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1029-242X-2013-154 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.49 |q ASE |
951 | |a AR | ||
952 | |d 2013 |j 2013 |e 1 |b 04 |c 04 |
author_variant |
s d sd s a sa |
---|---|
matchkey_str |
article:1029242X:2013----::prxmtnteimnsiljsnerlfmohnernsnobu |
hierarchy_sort_str |
2013 |
bklnumber |
31.49 |
publishDate |
2013 |
allfields |
10.1186/1029-242X-2013-154 doi (DE-627)SPR032400632 (SPR)1029-242X-2013-154-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Dragomir, SS verfasserin aut Approximating the Riemann-Stieltjes integral of smooth integrands and of bounded variation integrators 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In the present paper, we investigate the problem of approximating the Riemann-Stieltjes integral in the case when the integrand f is n-time differentiable and the derivative is either of locally bounded variation, or Lipschitzian on an interval incorporating . A priory error bounds for several classes of integrators u and applications in approximating the finite Laplace-Stieltjes transform and the finite Fourier-Stieltjes sine and cosine transforms are provided as well. MSC:41A51, 26D15, 26D10. Riemann-Stieltjes integral (dpeaa)DE-He213 Taylor’s representation (dpeaa)DE-He213 functions of bounded variation (dpeaa)DE-He213 Lipschitzian functions (dpeaa)DE-He213 integral transforms (dpeaa)DE-He213 finite Laplace-Stieltjes transform (dpeaa)DE-He213 finite Fourier-Stieltjes sine and cosine transforms (dpeaa)DE-He213 Abelman, S verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2013(2013), 1 vom: 04. Apr. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2013 year:2013 number:1 day:04 month:04 https://dx.doi.org/10.1186/1029-242X-2013-154 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2013 2013 1 04 04 |
spelling |
10.1186/1029-242X-2013-154 doi (DE-627)SPR032400632 (SPR)1029-242X-2013-154-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Dragomir, SS verfasserin aut Approximating the Riemann-Stieltjes integral of smooth integrands and of bounded variation integrators 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In the present paper, we investigate the problem of approximating the Riemann-Stieltjes integral in the case when the integrand f is n-time differentiable and the derivative is either of locally bounded variation, or Lipschitzian on an interval incorporating . A priory error bounds for several classes of integrators u and applications in approximating the finite Laplace-Stieltjes transform and the finite Fourier-Stieltjes sine and cosine transforms are provided as well. MSC:41A51, 26D15, 26D10. Riemann-Stieltjes integral (dpeaa)DE-He213 Taylor’s representation (dpeaa)DE-He213 functions of bounded variation (dpeaa)DE-He213 Lipschitzian functions (dpeaa)DE-He213 integral transforms (dpeaa)DE-He213 finite Laplace-Stieltjes transform (dpeaa)DE-He213 finite Fourier-Stieltjes sine and cosine transforms (dpeaa)DE-He213 Abelman, S verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2013(2013), 1 vom: 04. Apr. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2013 year:2013 number:1 day:04 month:04 https://dx.doi.org/10.1186/1029-242X-2013-154 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2013 2013 1 04 04 |
allfields_unstemmed |
10.1186/1029-242X-2013-154 doi (DE-627)SPR032400632 (SPR)1029-242X-2013-154-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Dragomir, SS verfasserin aut Approximating the Riemann-Stieltjes integral of smooth integrands and of bounded variation integrators 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In the present paper, we investigate the problem of approximating the Riemann-Stieltjes integral in the case when the integrand f is n-time differentiable and the derivative is either of locally bounded variation, or Lipschitzian on an interval incorporating . A priory error bounds for several classes of integrators u and applications in approximating the finite Laplace-Stieltjes transform and the finite Fourier-Stieltjes sine and cosine transforms are provided as well. MSC:41A51, 26D15, 26D10. Riemann-Stieltjes integral (dpeaa)DE-He213 Taylor’s representation (dpeaa)DE-He213 functions of bounded variation (dpeaa)DE-He213 Lipschitzian functions (dpeaa)DE-He213 integral transforms (dpeaa)DE-He213 finite Laplace-Stieltjes transform (dpeaa)DE-He213 finite Fourier-Stieltjes sine and cosine transforms (dpeaa)DE-He213 Abelman, S verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2013(2013), 1 vom: 04. Apr. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2013 year:2013 number:1 day:04 month:04 https://dx.doi.org/10.1186/1029-242X-2013-154 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2013 2013 1 04 04 |
allfieldsGer |
10.1186/1029-242X-2013-154 doi (DE-627)SPR032400632 (SPR)1029-242X-2013-154-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Dragomir, SS verfasserin aut Approximating the Riemann-Stieltjes integral of smooth integrands and of bounded variation integrators 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In the present paper, we investigate the problem of approximating the Riemann-Stieltjes integral in the case when the integrand f is n-time differentiable and the derivative is either of locally bounded variation, or Lipschitzian on an interval incorporating . A priory error bounds for several classes of integrators u and applications in approximating the finite Laplace-Stieltjes transform and the finite Fourier-Stieltjes sine and cosine transforms are provided as well. MSC:41A51, 26D15, 26D10. Riemann-Stieltjes integral (dpeaa)DE-He213 Taylor’s representation (dpeaa)DE-He213 functions of bounded variation (dpeaa)DE-He213 Lipschitzian functions (dpeaa)DE-He213 integral transforms (dpeaa)DE-He213 finite Laplace-Stieltjes transform (dpeaa)DE-He213 finite Fourier-Stieltjes sine and cosine transforms (dpeaa)DE-He213 Abelman, S verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2013(2013), 1 vom: 04. Apr. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2013 year:2013 number:1 day:04 month:04 https://dx.doi.org/10.1186/1029-242X-2013-154 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2013 2013 1 04 04 |
allfieldsSound |
10.1186/1029-242X-2013-154 doi (DE-627)SPR032400632 (SPR)1029-242X-2013-154-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Dragomir, SS verfasserin aut Approximating the Riemann-Stieltjes integral of smooth integrands and of bounded variation integrators 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In the present paper, we investigate the problem of approximating the Riemann-Stieltjes integral in the case when the integrand f is n-time differentiable and the derivative is either of locally bounded variation, or Lipschitzian on an interval incorporating . A priory error bounds for several classes of integrators u and applications in approximating the finite Laplace-Stieltjes transform and the finite Fourier-Stieltjes sine and cosine transforms are provided as well. MSC:41A51, 26D15, 26D10. Riemann-Stieltjes integral (dpeaa)DE-He213 Taylor’s representation (dpeaa)DE-He213 functions of bounded variation (dpeaa)DE-He213 Lipschitzian functions (dpeaa)DE-He213 integral transforms (dpeaa)DE-He213 finite Laplace-Stieltjes transform (dpeaa)DE-He213 finite Fourier-Stieltjes sine and cosine transforms (dpeaa)DE-He213 Abelman, S verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2013(2013), 1 vom: 04. Apr. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2013 year:2013 number:1 day:04 month:04 https://dx.doi.org/10.1186/1029-242X-2013-154 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2013 2013 1 04 04 |
language |
English |
source |
Enthalten in Journal of inequalities and applications 2013(2013), 1 vom: 04. Apr. volume:2013 year:2013 number:1 day:04 month:04 |
sourceStr |
Enthalten in Journal of inequalities and applications 2013(2013), 1 vom: 04. Apr. volume:2013 year:2013 number:1 day:04 month:04 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Riemann-Stieltjes integral Taylor’s representation functions of bounded variation Lipschitzian functions integral transforms finite Laplace-Stieltjes transform finite Fourier-Stieltjes sine and cosine transforms |
dewey-raw |
510 |
isfreeaccess_bool |
true |
container_title |
Journal of inequalities and applications |
authorswithroles_txt_mv |
Dragomir, SS @@aut@@ Abelman, S @@aut@@ |
publishDateDaySort_date |
2013-04-04T00:00:00Z |
hierarchy_top_id |
320977056 |
dewey-sort |
3510 |
id |
SPR032400632 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032400632</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111201057.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1029-242X-2013-154</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032400632</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1029-242X-2013-154-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dragomir, SS</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Approximating the Riemann-Stieltjes integral of smooth integrands and of bounded variation integrators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the present paper, we investigate the problem of approximating the Riemann-Stieltjes integral in the case when the integrand f is n-time differentiable and the derivative is either of locally bounded variation, or Lipschitzian on an interval incorporating . A priory error bounds for several classes of integrators u and applications in approximating the finite Laplace-Stieltjes transform and the finite Fourier-Stieltjes sine and cosine transforms are provided as well. MSC:41A51, 26D15, 26D10.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann-Stieltjes integral</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taylor’s representation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">functions of bounded variation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipschitzian functions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integral transforms</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite Laplace-Stieltjes transform</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite Fourier-Stieltjes sine and cosine transforms</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abelman, S</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of inequalities and applications</subfield><subfield code="d">Heidelberg : Springer, 2005</subfield><subfield code="g">2013(2013), 1 vom: 04. Apr.</subfield><subfield code="w">(DE-627)320977056</subfield><subfield code="w">(DE-600)2028512-7</subfield><subfield code="x">1029-242X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2013</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:04</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1029-242X-2013-154</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2013</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">04</subfield></datafield></record></collection>
|
author |
Dragomir, SS |
spellingShingle |
Dragomir, SS ddc 510 bkl 31.49 misc Riemann-Stieltjes integral misc Taylor’s representation misc functions of bounded variation misc Lipschitzian functions misc integral transforms misc finite Laplace-Stieltjes transform misc finite Fourier-Stieltjes sine and cosine transforms Approximating the Riemann-Stieltjes integral of smooth integrands and of bounded variation integrators |
authorStr |
Dragomir, SS |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320977056 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1029-242X |
topic_title |
510 ASE 31.49 bkl Approximating the Riemann-Stieltjes integral of smooth integrands and of bounded variation integrators Riemann-Stieltjes integral (dpeaa)DE-He213 Taylor’s representation (dpeaa)DE-He213 functions of bounded variation (dpeaa)DE-He213 Lipschitzian functions (dpeaa)DE-He213 integral transforms (dpeaa)DE-He213 finite Laplace-Stieltjes transform (dpeaa)DE-He213 finite Fourier-Stieltjes sine and cosine transforms (dpeaa)DE-He213 |
topic |
ddc 510 bkl 31.49 misc Riemann-Stieltjes integral misc Taylor’s representation misc functions of bounded variation misc Lipschitzian functions misc integral transforms misc finite Laplace-Stieltjes transform misc finite Fourier-Stieltjes sine and cosine transforms |
topic_unstemmed |
ddc 510 bkl 31.49 misc Riemann-Stieltjes integral misc Taylor’s representation misc functions of bounded variation misc Lipschitzian functions misc integral transforms misc finite Laplace-Stieltjes transform misc finite Fourier-Stieltjes sine and cosine transforms |
topic_browse |
ddc 510 bkl 31.49 misc Riemann-Stieltjes integral misc Taylor’s representation misc functions of bounded variation misc Lipschitzian functions misc integral transforms misc finite Laplace-Stieltjes transform misc finite Fourier-Stieltjes sine and cosine transforms |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of inequalities and applications |
hierarchy_parent_id |
320977056 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of inequalities and applications |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320977056 (DE-600)2028512-7 |
title |
Approximating the Riemann-Stieltjes integral of smooth integrands and of bounded variation integrators |
ctrlnum |
(DE-627)SPR032400632 (SPR)1029-242X-2013-154-e |
title_full |
Approximating the Riemann-Stieltjes integral of smooth integrands and of bounded variation integrators |
author_sort |
Dragomir, SS |
journal |
Journal of inequalities and applications |
journalStr |
Journal of inequalities and applications |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
author_browse |
Dragomir, SS Abelman, S |
container_volume |
2013 |
class |
510 ASE 31.49 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Dragomir, SS |
doi_str_mv |
10.1186/1029-242X-2013-154 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
approximating the riemann-stieltjes integral of smooth integrands and of bounded variation integrators |
title_auth |
Approximating the Riemann-Stieltjes integral of smooth integrands and of bounded variation integrators |
abstract |
Abstract In the present paper, we investigate the problem of approximating the Riemann-Stieltjes integral in the case when the integrand f is n-time differentiable and the derivative is either of locally bounded variation, or Lipschitzian on an interval incorporating . A priory error bounds for several classes of integrators u and applications in approximating the finite Laplace-Stieltjes transform and the finite Fourier-Stieltjes sine and cosine transforms are provided as well. MSC:41A51, 26D15, 26D10. |
abstractGer |
Abstract In the present paper, we investigate the problem of approximating the Riemann-Stieltjes integral in the case when the integrand f is n-time differentiable and the derivative is either of locally bounded variation, or Lipschitzian on an interval incorporating . A priory error bounds for several classes of integrators u and applications in approximating the finite Laplace-Stieltjes transform and the finite Fourier-Stieltjes sine and cosine transforms are provided as well. MSC:41A51, 26D15, 26D10. |
abstract_unstemmed |
Abstract In the present paper, we investigate the problem of approximating the Riemann-Stieltjes integral in the case when the integrand f is n-time differentiable and the derivative is either of locally bounded variation, or Lipschitzian on an interval incorporating . A priory error bounds for several classes of integrators u and applications in approximating the finite Laplace-Stieltjes transform and the finite Fourier-Stieltjes sine and cosine transforms are provided as well. MSC:41A51, 26D15, 26D10. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Approximating the Riemann-Stieltjes integral of smooth integrands and of bounded variation integrators |
url |
https://dx.doi.org/10.1186/1029-242X-2013-154 |
remote_bool |
true |
author2 |
Abelman, S |
author2Str |
Abelman, S |
ppnlink |
320977056 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1029-242X-2013-154 |
up_date |
2024-07-04T03:20:19.549Z |
_version_ |
1803617010512297984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032400632</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111201057.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1029-242X-2013-154</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032400632</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1029-242X-2013-154-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dragomir, SS</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Approximating the Riemann-Stieltjes integral of smooth integrands and of bounded variation integrators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the present paper, we investigate the problem of approximating the Riemann-Stieltjes integral in the case when the integrand f is n-time differentiable and the derivative is either of locally bounded variation, or Lipschitzian on an interval incorporating . A priory error bounds for several classes of integrators u and applications in approximating the finite Laplace-Stieltjes transform and the finite Fourier-Stieltjes sine and cosine transforms are provided as well. MSC:41A51, 26D15, 26D10.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann-Stieltjes integral</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taylor’s representation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">functions of bounded variation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipschitzian functions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integral transforms</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite Laplace-Stieltjes transform</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite Fourier-Stieltjes sine and cosine transforms</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abelman, S</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of inequalities and applications</subfield><subfield code="d">Heidelberg : Springer, 2005</subfield><subfield code="g">2013(2013), 1 vom: 04. Apr.</subfield><subfield code="w">(DE-627)320977056</subfield><subfield code="w">(DE-600)2028512-7</subfield><subfield code="x">1029-242X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2013</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:04</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1029-242X-2013-154</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2013</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">04</subfield></datafield></record></collection>
|
score |
7.4012156 |