A primal-dual algorithm framework for convex saddle-point optimization
Abstract In this study, we introduce a primal-dual prediction-correction algorithm framework for convex optimization problems with known saddle-point structure. Our unified frame adds the proximal term with a positive definite weighting matrix. Moreover, different proximal parameters in the frame ca...
Ausführliche Beschreibung
Autor*in: |
Zhang, Benxin [verfasserIn] Zhu, Zhibin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of inequalities and applications - Heidelberg : Springer, 2005, 2017(2017), 1 vom: 25. Okt. |
---|---|
Übergeordnetes Werk: |
volume:2017 ; year:2017 ; number:1 ; day:25 ; month:10 |
Links: |
---|
DOI / URN: |
10.1186/s13660-017-1548-z |
---|
Katalog-ID: |
SPR032566255 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR032566255 | ||
003 | DE-627 | ||
005 | 20220111201219.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13660-017-1548-z |2 doi | |
035 | |a (DE-627)SPR032566255 | ||
035 | |a (SPR)s13660-017-1548-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ASE |
084 | |a 31.49 |2 bkl | ||
100 | 1 | |a Zhang, Benxin |e verfasserin |4 aut | |
245 | 1 | 2 | |a A primal-dual algorithm framework for convex saddle-point optimization |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract In this study, we introduce a primal-dual prediction-correction algorithm framework for convex optimization problems with known saddle-point structure. Our unified frame adds the proximal term with a positive definite weighting matrix. Moreover, different proximal parameters in the frame can derive some existing well-known algorithms and yield a class of new primal-dual schemes. We prove the convergence of the proposed frame from the perspective of proximal point algorithm-like contraction methods and variational inequalities approach. The convergence rate $O(1/t)$ in the ergodic and nonergodic senses is also given, where t denotes the iteration number. | ||
650 | 4 | |a primal-dual method |7 (dpeaa)DE-He213 | |
650 | 4 | |a proximal point algorithm |7 (dpeaa)DE-He213 | |
650 | 4 | |a convex optimization |7 (dpeaa)DE-He213 | |
650 | 4 | |a variational inequalities |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zhu, Zhibin |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of inequalities and applications |d Heidelberg : Springer, 2005 |g 2017(2017), 1 vom: 25. Okt. |w (DE-627)320977056 |w (DE-600)2028512-7 |x 1029-242X |7 nnns |
773 | 1 | 8 | |g volume:2017 |g year:2017 |g number:1 |g day:25 |g month:10 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13660-017-1548-z |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.49 |q ASE |
951 | |a AR | ||
952 | |d 2017 |j 2017 |e 1 |b 25 |c 10 |
author_variant |
b z bz z z zz |
---|---|
matchkey_str |
article:1029242X:2017----::piadaagrtmrmwrfrovxade |
hierarchy_sort_str |
2017 |
bklnumber |
31.49 |
publishDate |
2017 |
allfields |
10.1186/s13660-017-1548-z doi (DE-627)SPR032566255 (SPR)s13660-017-1548-z-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Zhang, Benxin verfasserin aut A primal-dual algorithm framework for convex saddle-point optimization 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this study, we introduce a primal-dual prediction-correction algorithm framework for convex optimization problems with known saddle-point structure. Our unified frame adds the proximal term with a positive definite weighting matrix. Moreover, different proximal parameters in the frame can derive some existing well-known algorithms and yield a class of new primal-dual schemes. We prove the convergence of the proposed frame from the perspective of proximal point algorithm-like contraction methods and variational inequalities approach. The convergence rate $O(1/t)$ in the ergodic and nonergodic senses is also given, where t denotes the iteration number. primal-dual method (dpeaa)DE-He213 proximal point algorithm (dpeaa)DE-He213 convex optimization (dpeaa)DE-He213 variational inequalities (dpeaa)DE-He213 Zhu, Zhibin verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2017(2017), 1 vom: 25. Okt. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2017 year:2017 number:1 day:25 month:10 https://dx.doi.org/10.1186/s13660-017-1548-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2017 2017 1 25 10 |
spelling |
10.1186/s13660-017-1548-z doi (DE-627)SPR032566255 (SPR)s13660-017-1548-z-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Zhang, Benxin verfasserin aut A primal-dual algorithm framework for convex saddle-point optimization 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this study, we introduce a primal-dual prediction-correction algorithm framework for convex optimization problems with known saddle-point structure. Our unified frame adds the proximal term with a positive definite weighting matrix. Moreover, different proximal parameters in the frame can derive some existing well-known algorithms and yield a class of new primal-dual schemes. We prove the convergence of the proposed frame from the perspective of proximal point algorithm-like contraction methods and variational inequalities approach. The convergence rate $O(1/t)$ in the ergodic and nonergodic senses is also given, where t denotes the iteration number. primal-dual method (dpeaa)DE-He213 proximal point algorithm (dpeaa)DE-He213 convex optimization (dpeaa)DE-He213 variational inequalities (dpeaa)DE-He213 Zhu, Zhibin verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2017(2017), 1 vom: 25. Okt. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2017 year:2017 number:1 day:25 month:10 https://dx.doi.org/10.1186/s13660-017-1548-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2017 2017 1 25 10 |
allfields_unstemmed |
10.1186/s13660-017-1548-z doi (DE-627)SPR032566255 (SPR)s13660-017-1548-z-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Zhang, Benxin verfasserin aut A primal-dual algorithm framework for convex saddle-point optimization 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this study, we introduce a primal-dual prediction-correction algorithm framework for convex optimization problems with known saddle-point structure. Our unified frame adds the proximal term with a positive definite weighting matrix. Moreover, different proximal parameters in the frame can derive some existing well-known algorithms and yield a class of new primal-dual schemes. We prove the convergence of the proposed frame from the perspective of proximal point algorithm-like contraction methods and variational inequalities approach. The convergence rate $O(1/t)$ in the ergodic and nonergodic senses is also given, where t denotes the iteration number. primal-dual method (dpeaa)DE-He213 proximal point algorithm (dpeaa)DE-He213 convex optimization (dpeaa)DE-He213 variational inequalities (dpeaa)DE-He213 Zhu, Zhibin verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2017(2017), 1 vom: 25. Okt. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2017 year:2017 number:1 day:25 month:10 https://dx.doi.org/10.1186/s13660-017-1548-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2017 2017 1 25 10 |
allfieldsGer |
10.1186/s13660-017-1548-z doi (DE-627)SPR032566255 (SPR)s13660-017-1548-z-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Zhang, Benxin verfasserin aut A primal-dual algorithm framework for convex saddle-point optimization 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this study, we introduce a primal-dual prediction-correction algorithm framework for convex optimization problems with known saddle-point structure. Our unified frame adds the proximal term with a positive definite weighting matrix. Moreover, different proximal parameters in the frame can derive some existing well-known algorithms and yield a class of new primal-dual schemes. We prove the convergence of the proposed frame from the perspective of proximal point algorithm-like contraction methods and variational inequalities approach. The convergence rate $O(1/t)$ in the ergodic and nonergodic senses is also given, where t denotes the iteration number. primal-dual method (dpeaa)DE-He213 proximal point algorithm (dpeaa)DE-He213 convex optimization (dpeaa)DE-He213 variational inequalities (dpeaa)DE-He213 Zhu, Zhibin verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2017(2017), 1 vom: 25. Okt. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2017 year:2017 number:1 day:25 month:10 https://dx.doi.org/10.1186/s13660-017-1548-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2017 2017 1 25 10 |
allfieldsSound |
10.1186/s13660-017-1548-z doi (DE-627)SPR032566255 (SPR)s13660-017-1548-z-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Zhang, Benxin verfasserin aut A primal-dual algorithm framework for convex saddle-point optimization 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this study, we introduce a primal-dual prediction-correction algorithm framework for convex optimization problems with known saddle-point structure. Our unified frame adds the proximal term with a positive definite weighting matrix. Moreover, different proximal parameters in the frame can derive some existing well-known algorithms and yield a class of new primal-dual schemes. We prove the convergence of the proposed frame from the perspective of proximal point algorithm-like contraction methods and variational inequalities approach. The convergence rate $O(1/t)$ in the ergodic and nonergodic senses is also given, where t denotes the iteration number. primal-dual method (dpeaa)DE-He213 proximal point algorithm (dpeaa)DE-He213 convex optimization (dpeaa)DE-He213 variational inequalities (dpeaa)DE-He213 Zhu, Zhibin verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2017(2017), 1 vom: 25. Okt. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2017 year:2017 number:1 day:25 month:10 https://dx.doi.org/10.1186/s13660-017-1548-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2017 2017 1 25 10 |
language |
English |
source |
Enthalten in Journal of inequalities and applications 2017(2017), 1 vom: 25. Okt. volume:2017 year:2017 number:1 day:25 month:10 |
sourceStr |
Enthalten in Journal of inequalities and applications 2017(2017), 1 vom: 25. Okt. volume:2017 year:2017 number:1 day:25 month:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
primal-dual method proximal point algorithm convex optimization variational inequalities |
dewey-raw |
510 |
isfreeaccess_bool |
true |
container_title |
Journal of inequalities and applications |
authorswithroles_txt_mv |
Zhang, Benxin @@aut@@ Zhu, Zhibin @@aut@@ |
publishDateDaySort_date |
2017-10-25T00:00:00Z |
hierarchy_top_id |
320977056 |
dewey-sort |
3510 |
id |
SPR032566255 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032566255</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111201219.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13660-017-1548-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032566255</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13660-017-1548-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Benxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A primal-dual algorithm framework for convex saddle-point optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this study, we introduce a primal-dual prediction-correction algorithm framework for convex optimization problems with known saddle-point structure. Our unified frame adds the proximal term with a positive definite weighting matrix. Moreover, different proximal parameters in the frame can derive some existing well-known algorithms and yield a class of new primal-dual schemes. We prove the convergence of the proposed frame from the perspective of proximal point algorithm-like contraction methods and variational inequalities approach. The convergence rate $O(1/t)$ in the ergodic and nonergodic senses is also given, where t denotes the iteration number.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">primal-dual method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">proximal point algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convex optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">variational inequalities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Zhibin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of inequalities and applications</subfield><subfield code="d">Heidelberg : Springer, 2005</subfield><subfield code="g">2017(2017), 1 vom: 25. Okt.</subfield><subfield code="w">(DE-627)320977056</subfield><subfield code="w">(DE-600)2028512-7</subfield><subfield code="x">1029-242X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2017</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:25</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13660-017-1548-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2017</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">25</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
author |
Zhang, Benxin |
spellingShingle |
Zhang, Benxin ddc 510 bkl 31.49 misc primal-dual method misc proximal point algorithm misc convex optimization misc variational inequalities A primal-dual algorithm framework for convex saddle-point optimization |
authorStr |
Zhang, Benxin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320977056 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1029-242X |
topic_title |
510 ASE 31.49 bkl A primal-dual algorithm framework for convex saddle-point optimization primal-dual method (dpeaa)DE-He213 proximal point algorithm (dpeaa)DE-He213 convex optimization (dpeaa)DE-He213 variational inequalities (dpeaa)DE-He213 |
topic |
ddc 510 bkl 31.49 misc primal-dual method misc proximal point algorithm misc convex optimization misc variational inequalities |
topic_unstemmed |
ddc 510 bkl 31.49 misc primal-dual method misc proximal point algorithm misc convex optimization misc variational inequalities |
topic_browse |
ddc 510 bkl 31.49 misc primal-dual method misc proximal point algorithm misc convex optimization misc variational inequalities |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of inequalities and applications |
hierarchy_parent_id |
320977056 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of inequalities and applications |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320977056 (DE-600)2028512-7 |
title |
A primal-dual algorithm framework for convex saddle-point optimization |
ctrlnum |
(DE-627)SPR032566255 (SPR)s13660-017-1548-z-e |
title_full |
A primal-dual algorithm framework for convex saddle-point optimization |
author_sort |
Zhang, Benxin |
journal |
Journal of inequalities and applications |
journalStr |
Journal of inequalities and applications |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Zhang, Benxin Zhu, Zhibin |
container_volume |
2017 |
class |
510 ASE 31.49 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Benxin |
doi_str_mv |
10.1186/s13660-017-1548-z |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
primal-dual algorithm framework for convex saddle-point optimization |
title_auth |
A primal-dual algorithm framework for convex saddle-point optimization |
abstract |
Abstract In this study, we introduce a primal-dual prediction-correction algorithm framework for convex optimization problems with known saddle-point structure. Our unified frame adds the proximal term with a positive definite weighting matrix. Moreover, different proximal parameters in the frame can derive some existing well-known algorithms and yield a class of new primal-dual schemes. We prove the convergence of the proposed frame from the perspective of proximal point algorithm-like contraction methods and variational inequalities approach. The convergence rate $O(1/t)$ in the ergodic and nonergodic senses is also given, where t denotes the iteration number. |
abstractGer |
Abstract In this study, we introduce a primal-dual prediction-correction algorithm framework for convex optimization problems with known saddle-point structure. Our unified frame adds the proximal term with a positive definite weighting matrix. Moreover, different proximal parameters in the frame can derive some existing well-known algorithms and yield a class of new primal-dual schemes. We prove the convergence of the proposed frame from the perspective of proximal point algorithm-like contraction methods and variational inequalities approach. The convergence rate $O(1/t)$ in the ergodic and nonergodic senses is also given, where t denotes the iteration number. |
abstract_unstemmed |
Abstract In this study, we introduce a primal-dual prediction-correction algorithm framework for convex optimization problems with known saddle-point structure. Our unified frame adds the proximal term with a positive definite weighting matrix. Moreover, different proximal parameters in the frame can derive some existing well-known algorithms and yield a class of new primal-dual schemes. We prove the convergence of the proposed frame from the perspective of proximal point algorithm-like contraction methods and variational inequalities approach. The convergence rate $O(1/t)$ in the ergodic and nonergodic senses is also given, where t denotes the iteration number. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A primal-dual algorithm framework for convex saddle-point optimization |
url |
https://dx.doi.org/10.1186/s13660-017-1548-z |
remote_bool |
true |
author2 |
Zhu, Zhibin |
author2Str |
Zhu, Zhibin |
ppnlink |
320977056 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13660-017-1548-z |
up_date |
2024-07-03T13:35:50.919Z |
_version_ |
1803565138886787072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032566255</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111201219.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13660-017-1548-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032566255</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13660-017-1548-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Benxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A primal-dual algorithm framework for convex saddle-point optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this study, we introduce a primal-dual prediction-correction algorithm framework for convex optimization problems with known saddle-point structure. Our unified frame adds the proximal term with a positive definite weighting matrix. Moreover, different proximal parameters in the frame can derive some existing well-known algorithms and yield a class of new primal-dual schemes. We prove the convergence of the proposed frame from the perspective of proximal point algorithm-like contraction methods and variational inequalities approach. The convergence rate $O(1/t)$ in the ergodic and nonergodic senses is also given, where t denotes the iteration number.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">primal-dual method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">proximal point algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convex optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">variational inequalities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Zhibin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of inequalities and applications</subfield><subfield code="d">Heidelberg : Springer, 2005</subfield><subfield code="g">2017(2017), 1 vom: 25. Okt.</subfield><subfield code="w">(DE-627)320977056</subfield><subfield code="w">(DE-600)2028512-7</subfield><subfield code="x">1029-242X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2017</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:25</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13660-017-1548-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2017</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">25</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
score |
7.4008284 |