Quasi-maximum exponential likelihood estimator and portmanteau test of double $\operatorname{AR}(p)$ model based on $\operatorname{Laplace}(a,b)$
Abstract The paper studies the estimation and the portmanteau test for double $\operatorname{AR}(p)$ model with $\operatorname{Laplace}(a,b)$ distribution. The double $\operatorname{AR}(p)$ model is investigated to propose firstly the quasi-maximum exponential likelihood estimator, design a portmant...
Ausführliche Beschreibung
Autor*in: |
Xuan, Haiyan [verfasserIn] Song, Lixin [verfasserIn] Ji, Un Cig [verfasserIn] Sun, Yan [verfasserIn] Dai, Tianjiao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of inequalities and applications - Heidelberg : Springer, 2005, 2018(2018), 1 vom: 11. Sept. |
---|---|
Übergeordnetes Werk: |
volume:2018 ; year:2018 ; number:1 ; day:11 ; month:09 |
Links: |
---|
DOI / URN: |
10.1186/s13660-018-1769-9 |
---|
Katalog-ID: |
SPR032590245 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR032590245 | ||
003 | DE-627 | ||
005 | 20220111201228.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13660-018-1769-9 |2 doi | |
035 | |a (DE-627)SPR032590245 | ||
035 | |a (SPR)s13660-018-1769-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ASE |
084 | |a 31.49 |2 bkl | ||
100 | 1 | |a Xuan, Haiyan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quasi-maximum exponential likelihood estimator and portmanteau test of double $\operatorname{AR}(p)$ model based on $\operatorname{Laplace}(a,b)$ |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The paper studies the estimation and the portmanteau test for double $\operatorname{AR}(p)$ model with $\operatorname{Laplace}(a,b)$ distribution. The double $\operatorname{AR}(p)$ model is investigated to propose firstly the quasi-maximum exponential likelihood estimator, design a portmanteau test of double $\operatorname{AR}(p)$ on the basis of autocorrelation function, and then establish some asymptotic results. Finally, an empirical study shows that the estimation and the portmanteau test obtained in this paper are very feasible and more effective. | ||
650 | 4 | |a Double |7 (dpeaa)DE-He213 | |
650 | 4 | |a model |7 (dpeaa)DE-He213 | |
650 | 4 | |a Quasi-maximum exponential likelihood estimator |7 (dpeaa)DE-He213 | |
650 | 4 | |a Portmanteau test |7 (dpeaa)DE-He213 | |
650 | 4 | |a Autocorrelations |7 (dpeaa)DE-He213 | |
700 | 1 | |a Song, Lixin |e verfasserin |4 aut | |
700 | 1 | |a Ji, Un Cig |e verfasserin |4 aut | |
700 | 1 | |a Sun, Yan |e verfasserin |4 aut | |
700 | 1 | |a Dai, Tianjiao |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of inequalities and applications |d Heidelberg : Springer, 2005 |g 2018(2018), 1 vom: 11. Sept. |w (DE-627)320977056 |w (DE-600)2028512-7 |x 1029-242X |7 nnns |
773 | 1 | 8 | |g volume:2018 |g year:2018 |g number:1 |g day:11 |g month:09 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13660-018-1769-9 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.49 |q ASE |
951 | |a AR | ||
952 | |d 2018 |j 2018 |e 1 |b 11 |c 09 |
author_variant |
h x hx l s ls u c j uc ucj y s ys t d td |
---|---|
matchkey_str |
article:1029242X:2018----::usmxmmxoetalklhoetmtrnprmneuetfobeprtraermd |
hierarchy_sort_str |
2018 |
bklnumber |
31.49 |
publishDate |
2018 |
allfields |
10.1186/s13660-018-1769-9 doi (DE-627)SPR032590245 (SPR)s13660-018-1769-9-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Xuan, Haiyan verfasserin aut Quasi-maximum exponential likelihood estimator and portmanteau test of double $\operatorname{AR}(p)$ model based on $\operatorname{Laplace}(a,b)$ 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The paper studies the estimation and the portmanteau test for double $\operatorname{AR}(p)$ model with $\operatorname{Laplace}(a,b)$ distribution. The double $\operatorname{AR}(p)$ model is investigated to propose firstly the quasi-maximum exponential likelihood estimator, design a portmanteau test of double $\operatorname{AR}(p)$ on the basis of autocorrelation function, and then establish some asymptotic results. Finally, an empirical study shows that the estimation and the portmanteau test obtained in this paper are very feasible and more effective. Double (dpeaa)DE-He213 model (dpeaa)DE-He213 Quasi-maximum exponential likelihood estimator (dpeaa)DE-He213 Portmanteau test (dpeaa)DE-He213 Autocorrelations (dpeaa)DE-He213 Song, Lixin verfasserin aut Ji, Un Cig verfasserin aut Sun, Yan verfasserin aut Dai, Tianjiao verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2018(2018), 1 vom: 11. Sept. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2018 year:2018 number:1 day:11 month:09 https://dx.doi.org/10.1186/s13660-018-1769-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2018 2018 1 11 09 |
spelling |
10.1186/s13660-018-1769-9 doi (DE-627)SPR032590245 (SPR)s13660-018-1769-9-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Xuan, Haiyan verfasserin aut Quasi-maximum exponential likelihood estimator and portmanteau test of double $\operatorname{AR}(p)$ model based on $\operatorname{Laplace}(a,b)$ 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The paper studies the estimation and the portmanteau test for double $\operatorname{AR}(p)$ model with $\operatorname{Laplace}(a,b)$ distribution. The double $\operatorname{AR}(p)$ model is investigated to propose firstly the quasi-maximum exponential likelihood estimator, design a portmanteau test of double $\operatorname{AR}(p)$ on the basis of autocorrelation function, and then establish some asymptotic results. Finally, an empirical study shows that the estimation and the portmanteau test obtained in this paper are very feasible and more effective. Double (dpeaa)DE-He213 model (dpeaa)DE-He213 Quasi-maximum exponential likelihood estimator (dpeaa)DE-He213 Portmanteau test (dpeaa)DE-He213 Autocorrelations (dpeaa)DE-He213 Song, Lixin verfasserin aut Ji, Un Cig verfasserin aut Sun, Yan verfasserin aut Dai, Tianjiao verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2018(2018), 1 vom: 11. Sept. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2018 year:2018 number:1 day:11 month:09 https://dx.doi.org/10.1186/s13660-018-1769-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2018 2018 1 11 09 |
allfields_unstemmed |
10.1186/s13660-018-1769-9 doi (DE-627)SPR032590245 (SPR)s13660-018-1769-9-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Xuan, Haiyan verfasserin aut Quasi-maximum exponential likelihood estimator and portmanteau test of double $\operatorname{AR}(p)$ model based on $\operatorname{Laplace}(a,b)$ 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The paper studies the estimation and the portmanteau test for double $\operatorname{AR}(p)$ model with $\operatorname{Laplace}(a,b)$ distribution. The double $\operatorname{AR}(p)$ model is investigated to propose firstly the quasi-maximum exponential likelihood estimator, design a portmanteau test of double $\operatorname{AR}(p)$ on the basis of autocorrelation function, and then establish some asymptotic results. Finally, an empirical study shows that the estimation and the portmanteau test obtained in this paper are very feasible and more effective. Double (dpeaa)DE-He213 model (dpeaa)DE-He213 Quasi-maximum exponential likelihood estimator (dpeaa)DE-He213 Portmanteau test (dpeaa)DE-He213 Autocorrelations (dpeaa)DE-He213 Song, Lixin verfasserin aut Ji, Un Cig verfasserin aut Sun, Yan verfasserin aut Dai, Tianjiao verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2018(2018), 1 vom: 11. Sept. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2018 year:2018 number:1 day:11 month:09 https://dx.doi.org/10.1186/s13660-018-1769-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2018 2018 1 11 09 |
allfieldsGer |
10.1186/s13660-018-1769-9 doi (DE-627)SPR032590245 (SPR)s13660-018-1769-9-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Xuan, Haiyan verfasserin aut Quasi-maximum exponential likelihood estimator and portmanteau test of double $\operatorname{AR}(p)$ model based on $\operatorname{Laplace}(a,b)$ 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The paper studies the estimation and the portmanteau test for double $\operatorname{AR}(p)$ model with $\operatorname{Laplace}(a,b)$ distribution. The double $\operatorname{AR}(p)$ model is investigated to propose firstly the quasi-maximum exponential likelihood estimator, design a portmanteau test of double $\operatorname{AR}(p)$ on the basis of autocorrelation function, and then establish some asymptotic results. Finally, an empirical study shows that the estimation and the portmanteau test obtained in this paper are very feasible and more effective. Double (dpeaa)DE-He213 model (dpeaa)DE-He213 Quasi-maximum exponential likelihood estimator (dpeaa)DE-He213 Portmanteau test (dpeaa)DE-He213 Autocorrelations (dpeaa)DE-He213 Song, Lixin verfasserin aut Ji, Un Cig verfasserin aut Sun, Yan verfasserin aut Dai, Tianjiao verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2018(2018), 1 vom: 11. Sept. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2018 year:2018 number:1 day:11 month:09 https://dx.doi.org/10.1186/s13660-018-1769-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2018 2018 1 11 09 |
allfieldsSound |
10.1186/s13660-018-1769-9 doi (DE-627)SPR032590245 (SPR)s13660-018-1769-9-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Xuan, Haiyan verfasserin aut Quasi-maximum exponential likelihood estimator and portmanteau test of double $\operatorname{AR}(p)$ model based on $\operatorname{Laplace}(a,b)$ 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The paper studies the estimation and the portmanteau test for double $\operatorname{AR}(p)$ model with $\operatorname{Laplace}(a,b)$ distribution. The double $\operatorname{AR}(p)$ model is investigated to propose firstly the quasi-maximum exponential likelihood estimator, design a portmanteau test of double $\operatorname{AR}(p)$ on the basis of autocorrelation function, and then establish some asymptotic results. Finally, an empirical study shows that the estimation and the portmanteau test obtained in this paper are very feasible and more effective. Double (dpeaa)DE-He213 model (dpeaa)DE-He213 Quasi-maximum exponential likelihood estimator (dpeaa)DE-He213 Portmanteau test (dpeaa)DE-He213 Autocorrelations (dpeaa)DE-He213 Song, Lixin verfasserin aut Ji, Un Cig verfasserin aut Sun, Yan verfasserin aut Dai, Tianjiao verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2018(2018), 1 vom: 11. Sept. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2018 year:2018 number:1 day:11 month:09 https://dx.doi.org/10.1186/s13660-018-1769-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2018 2018 1 11 09 |
language |
English |
source |
Enthalten in Journal of inequalities and applications 2018(2018), 1 vom: 11. Sept. volume:2018 year:2018 number:1 day:11 month:09 |
sourceStr |
Enthalten in Journal of inequalities and applications 2018(2018), 1 vom: 11. Sept. volume:2018 year:2018 number:1 day:11 month:09 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Double model Quasi-maximum exponential likelihood estimator Portmanteau test Autocorrelations |
dewey-raw |
510 |
isfreeaccess_bool |
true |
container_title |
Journal of inequalities and applications |
authorswithroles_txt_mv |
Xuan, Haiyan @@aut@@ Song, Lixin @@aut@@ Ji, Un Cig @@aut@@ Sun, Yan @@aut@@ Dai, Tianjiao @@aut@@ |
publishDateDaySort_date |
2018-09-11T00:00:00Z |
hierarchy_top_id |
320977056 |
dewey-sort |
3510 |
id |
SPR032590245 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032590245</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111201228.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13660-018-1769-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032590245</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13660-018-1769-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xuan, Haiyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasi-maximum exponential likelihood estimator and portmanteau test of double $\operatorname{AR}(p)$ model based on $\operatorname{Laplace}(a,b)$</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The paper studies the estimation and the portmanteau test for double $\operatorname{AR}(p)$ model with $\operatorname{Laplace}(a,b)$ distribution. The double $\operatorname{AR}(p)$ model is investigated to propose firstly the quasi-maximum exponential likelihood estimator, design a portmanteau test of double $\operatorname{AR}(p)$ on the basis of autocorrelation function, and then establish some asymptotic results. Finally, an empirical study shows that the estimation and the portmanteau test obtained in this paper are very feasible and more effective.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Double</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasi-maximum exponential likelihood estimator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Portmanteau test</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Autocorrelations</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Lixin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Un Cig</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Tianjiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of inequalities and applications</subfield><subfield code="d">Heidelberg : Springer, 2005</subfield><subfield code="g">2018(2018), 1 vom: 11. Sept.</subfield><subfield code="w">(DE-627)320977056</subfield><subfield code="w">(DE-600)2028512-7</subfield><subfield code="x">1029-242X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2018</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:11</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13660-018-1769-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2018</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">11</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
author |
Xuan, Haiyan |
spellingShingle |
Xuan, Haiyan ddc 510 bkl 31.49 misc Double misc model misc Quasi-maximum exponential likelihood estimator misc Portmanteau test misc Autocorrelations Quasi-maximum exponential likelihood estimator and portmanteau test of double $\operatorname{AR}(p)$ model based on $\operatorname{Laplace}(a,b)$ |
authorStr |
Xuan, Haiyan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320977056 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1029-242X |
topic_title |
510 ASE 31.49 bkl Quasi-maximum exponential likelihood estimator and portmanteau test of double $\operatorname{AR}(p)$ model based on $\operatorname{Laplace}(a,b)$ Double (dpeaa)DE-He213 model (dpeaa)DE-He213 Quasi-maximum exponential likelihood estimator (dpeaa)DE-He213 Portmanteau test (dpeaa)DE-He213 Autocorrelations (dpeaa)DE-He213 |
topic |
ddc 510 bkl 31.49 misc Double misc model misc Quasi-maximum exponential likelihood estimator misc Portmanteau test misc Autocorrelations |
topic_unstemmed |
ddc 510 bkl 31.49 misc Double misc model misc Quasi-maximum exponential likelihood estimator misc Portmanteau test misc Autocorrelations |
topic_browse |
ddc 510 bkl 31.49 misc Double misc model misc Quasi-maximum exponential likelihood estimator misc Portmanteau test misc Autocorrelations |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of inequalities and applications |
hierarchy_parent_id |
320977056 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of inequalities and applications |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320977056 (DE-600)2028512-7 |
title |
Quasi-maximum exponential likelihood estimator and portmanteau test of double $\operatorname{AR}(p)$ model based on $\operatorname{Laplace}(a,b)$ |
ctrlnum |
(DE-627)SPR032590245 (SPR)s13660-018-1769-9-e |
title_full |
Quasi-maximum exponential likelihood estimator and portmanteau test of double $\operatorname{AR}(p)$ model based on $\operatorname{Laplace}(a,b)$ |
author_sort |
Xuan, Haiyan |
journal |
Journal of inequalities and applications |
journalStr |
Journal of inequalities and applications |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Xuan, Haiyan Song, Lixin Ji, Un Cig Sun, Yan Dai, Tianjiao |
container_volume |
2018 |
class |
510 ASE 31.49 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Xuan, Haiyan |
doi_str_mv |
10.1186/s13660-018-1769-9 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
quasi-maximum exponential likelihood estimator and portmanteau test of double $\operatorname{ar}(p)$ model based on $\operatorname{laplace}(a,b)$ |
title_auth |
Quasi-maximum exponential likelihood estimator and portmanteau test of double $\operatorname{AR}(p)$ model based on $\operatorname{Laplace}(a,b)$ |
abstract |
Abstract The paper studies the estimation and the portmanteau test for double $\operatorname{AR}(p)$ model with $\operatorname{Laplace}(a,b)$ distribution. The double $\operatorname{AR}(p)$ model is investigated to propose firstly the quasi-maximum exponential likelihood estimator, design a portmanteau test of double $\operatorname{AR}(p)$ on the basis of autocorrelation function, and then establish some asymptotic results. Finally, an empirical study shows that the estimation and the portmanteau test obtained in this paper are very feasible and more effective. |
abstractGer |
Abstract The paper studies the estimation and the portmanteau test for double $\operatorname{AR}(p)$ model with $\operatorname{Laplace}(a,b)$ distribution. The double $\operatorname{AR}(p)$ model is investigated to propose firstly the quasi-maximum exponential likelihood estimator, design a portmanteau test of double $\operatorname{AR}(p)$ on the basis of autocorrelation function, and then establish some asymptotic results. Finally, an empirical study shows that the estimation and the portmanteau test obtained in this paper are very feasible and more effective. |
abstract_unstemmed |
Abstract The paper studies the estimation and the portmanteau test for double $\operatorname{AR}(p)$ model with $\operatorname{Laplace}(a,b)$ distribution. The double $\operatorname{AR}(p)$ model is investigated to propose firstly the quasi-maximum exponential likelihood estimator, design a portmanteau test of double $\operatorname{AR}(p)$ on the basis of autocorrelation function, and then establish some asymptotic results. Finally, an empirical study shows that the estimation and the portmanteau test obtained in this paper are very feasible and more effective. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Quasi-maximum exponential likelihood estimator and portmanteau test of double $\operatorname{AR}(p)$ model based on $\operatorname{Laplace}(a,b)$ |
url |
https://dx.doi.org/10.1186/s13660-018-1769-9 |
remote_bool |
true |
author2 |
Song, Lixin Ji, Un Cig Sun, Yan Dai, Tianjiao |
author2Str |
Song, Lixin Ji, Un Cig Sun, Yan Dai, Tianjiao |
ppnlink |
320977056 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13660-018-1769-9 |
up_date |
2024-07-03T13:42:25.242Z |
_version_ |
1803565552367566848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032590245</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111201228.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13660-018-1769-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032590245</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13660-018-1769-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xuan, Haiyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasi-maximum exponential likelihood estimator and portmanteau test of double $\operatorname{AR}(p)$ model based on $\operatorname{Laplace}(a,b)$</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The paper studies the estimation and the portmanteau test for double $\operatorname{AR}(p)$ model with $\operatorname{Laplace}(a,b)$ distribution. The double $\operatorname{AR}(p)$ model is investigated to propose firstly the quasi-maximum exponential likelihood estimator, design a portmanteau test of double $\operatorname{AR}(p)$ on the basis of autocorrelation function, and then establish some asymptotic results. Finally, an empirical study shows that the estimation and the portmanteau test obtained in this paper are very feasible and more effective.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Double</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasi-maximum exponential likelihood estimator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Portmanteau test</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Autocorrelations</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Lixin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ji, Un Cig</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Tianjiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of inequalities and applications</subfield><subfield code="d">Heidelberg : Springer, 2005</subfield><subfield code="g">2018(2018), 1 vom: 11. Sept.</subfield><subfield code="w">(DE-627)320977056</subfield><subfield code="w">(DE-600)2028512-7</subfield><subfield code="x">1029-242X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2018</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:11</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13660-018-1769-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2018</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">11</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
score |
7.401079 |