The almost sure local central limit theorem for products of partial sums under negative association
Abstract Let $\{X_{n}, n\geq1\}$ be a strictly stationary negatively associated sequence of positive random variables with $\mathrm{E}X_{1}=\mu>0$ and $\operatorname{Var}(X_{1})=\sigma^{2}<\infty$. Denote $S_{n}=\sum_{i=1}^{n}X_{i}, p_{k}=\mathrm{P}(a_{k}\leq ({\prod}_{j=1}^{k}S_{j}/(k!\mu^{k}...
Ausführliche Beschreibung
Autor*in: |
Jiang, Yuanying [verfasserIn] Wu, Qunying [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of inequalities and applications - Heidelberg : Springer, 2005, 2018(2018), 1 vom: 10. Okt. |
---|---|
Übergeordnetes Werk: |
volume:2018 ; year:2018 ; number:1 ; day:10 ; month:10 |
Links: |
---|
DOI / URN: |
10.1186/s13660-018-1875-8 |
---|
Katalog-ID: |
SPR032602049 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR032602049 | ||
003 | DE-627 | ||
005 | 20220111201233.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13660-018-1875-8 |2 doi | |
035 | |a (DE-627)SPR032602049 | ||
035 | |a (SPR)s13660-018-1875-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ASE |
084 | |a 31.49 |2 bkl | ||
100 | 1 | |a Jiang, Yuanying |e verfasserin |4 aut | |
245 | 1 | 4 | |a The almost sure local central limit theorem for products of partial sums under negative association |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Let $\{X_{n}, n\geq1\}$ be a strictly stationary negatively associated sequence of positive random variables with $\mathrm{E}X_{1}=\mu>0$ and $\operatorname{Var}(X_{1})=\sigma^{2}<\infty$. Denote $S_{n}=\sum_{i=1}^{n}X_{i}, p_{k}=\mathrm{P}(a_{k}\leq ({\prod}_{j=1}^{k}S_{j}/(k!\mu^{k}) )^{1/(\gamma\sigma_{1} \sqrt{k})}< b_{k})$ and $\gamma=\sigma/\mu$ the coefficient of variation. Under some suitable conditions, we derive the almost sure local central limit theorem limn→∞1logn∑k=1n1kpkI{ak≤(∏j=1kSjk!μk)1/(γσ1k)<bk}=1a.s.,%$\lim_{n\rightarrow\infty}\frac{1}{\log n}\sum_{k=1}^{n} \frac{1}{kp_{k}}\mathrm{I} \biggl\{ a_{k}\leq \biggl(\frac {\prod_{j=1}^{k}S_{j}}{k!\mu^{k}} \biggr)^{1/(\gamma\sigma_{1} \sqrt {k})}< b_{k} \biggr\} =1 \quad\mbox{a.s.,} %$ where $\sigma_{1}^{2}=1+\frac{1}{\sigma^{2}}\sum_{j=2}^{\infty}\operatorname{Cov}(X_{1},X_{j})>0$. | ||
650 | 4 | |a Negative association |7 (dpeaa)DE-He213 | |
650 | 4 | |a Products of partial sums |7 (dpeaa)DE-He213 | |
650 | 4 | |a Almost sure local central limit theorem |7 (dpeaa)DE-He213 | |
650 | 4 | |a Almost sure global central limit theorem |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wu, Qunying |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of inequalities and applications |d Heidelberg : Springer, 2005 |g 2018(2018), 1 vom: 10. Okt. |w (DE-627)320977056 |w (DE-600)2028512-7 |x 1029-242X |7 nnns |
773 | 1 | 8 | |g volume:2018 |g year:2018 |g number:1 |g day:10 |g month:10 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13660-018-1875-8 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.49 |q ASE |
951 | |a AR | ||
952 | |d 2018 |j 2018 |e 1 |b 10 |c 10 |
author_variant |
y j yj q w qw |
---|---|
matchkey_str |
article:1029242X:2018----::hamssrlcletalmthoefrrdcsfatasmu |
hierarchy_sort_str |
2018 |
bklnumber |
31.49 |
publishDate |
2018 |
allfields |
10.1186/s13660-018-1875-8 doi (DE-627)SPR032602049 (SPR)s13660-018-1875-8-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Jiang, Yuanying verfasserin aut The almost sure local central limit theorem for products of partial sums under negative association 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Let $\{X_{n}, n\geq1\}$ be a strictly stationary negatively associated sequence of positive random variables with $\mathrm{E}X_{1}=\mu>0$ and $\operatorname{Var}(X_{1})=\sigma^{2}<\infty$. Denote $S_{n}=\sum_{i=1}^{n}X_{i}, p_{k}=\mathrm{P}(a_{k}\leq ({\prod}_{j=1}^{k}S_{j}/(k!\mu^{k}) )^{1/(\gamma\sigma_{1} \sqrt{k})}< b_{k})$ and $\gamma=\sigma/\mu$ the coefficient of variation. Under some suitable conditions, we derive the almost sure local central limit theorem limn→∞1logn∑k=1n1kpkI{ak≤(∏j=1kSjk!μk)1/(γσ1k)<bk}=1a.s.,%$\lim_{n\rightarrow\infty}\frac{1}{\log n}\sum_{k=1}^{n} \frac{1}{kp_{k}}\mathrm{I} \biggl\{ a_{k}\leq \biggl(\frac {\prod_{j=1}^{k}S_{j}}{k!\mu^{k}} \biggr)^{1/(\gamma\sigma_{1} \sqrt {k})}< b_{k} \biggr\} =1 \quad\mbox{a.s.,} %$ where $\sigma_{1}^{2}=1+\frac{1}{\sigma^{2}}\sum_{j=2}^{\infty}\operatorname{Cov}(X_{1},X_{j})>0$. Negative association (dpeaa)DE-He213 Products of partial sums (dpeaa)DE-He213 Almost sure local central limit theorem (dpeaa)DE-He213 Almost sure global central limit theorem (dpeaa)DE-He213 Wu, Qunying verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2018(2018), 1 vom: 10. Okt. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2018 year:2018 number:1 day:10 month:10 https://dx.doi.org/10.1186/s13660-018-1875-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2018 2018 1 10 10 |
spelling |
10.1186/s13660-018-1875-8 doi (DE-627)SPR032602049 (SPR)s13660-018-1875-8-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Jiang, Yuanying verfasserin aut The almost sure local central limit theorem for products of partial sums under negative association 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Let $\{X_{n}, n\geq1\}$ be a strictly stationary negatively associated sequence of positive random variables with $\mathrm{E}X_{1}=\mu>0$ and $\operatorname{Var}(X_{1})=\sigma^{2}<\infty$. Denote $S_{n}=\sum_{i=1}^{n}X_{i}, p_{k}=\mathrm{P}(a_{k}\leq ({\prod}_{j=1}^{k}S_{j}/(k!\mu^{k}) )^{1/(\gamma\sigma_{1} \sqrt{k})}< b_{k})$ and $\gamma=\sigma/\mu$ the coefficient of variation. Under some suitable conditions, we derive the almost sure local central limit theorem limn→∞1logn∑k=1n1kpkI{ak≤(∏j=1kSjk!μk)1/(γσ1k)<bk}=1a.s.,%$\lim_{n\rightarrow\infty}\frac{1}{\log n}\sum_{k=1}^{n} \frac{1}{kp_{k}}\mathrm{I} \biggl\{ a_{k}\leq \biggl(\frac {\prod_{j=1}^{k}S_{j}}{k!\mu^{k}} \biggr)^{1/(\gamma\sigma_{1} \sqrt {k})}< b_{k} \biggr\} =1 \quad\mbox{a.s.,} %$ where $\sigma_{1}^{2}=1+\frac{1}{\sigma^{2}}\sum_{j=2}^{\infty}\operatorname{Cov}(X_{1},X_{j})>0$. Negative association (dpeaa)DE-He213 Products of partial sums (dpeaa)DE-He213 Almost sure local central limit theorem (dpeaa)DE-He213 Almost sure global central limit theorem (dpeaa)DE-He213 Wu, Qunying verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2018(2018), 1 vom: 10. Okt. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2018 year:2018 number:1 day:10 month:10 https://dx.doi.org/10.1186/s13660-018-1875-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2018 2018 1 10 10 |
allfields_unstemmed |
10.1186/s13660-018-1875-8 doi (DE-627)SPR032602049 (SPR)s13660-018-1875-8-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Jiang, Yuanying verfasserin aut The almost sure local central limit theorem for products of partial sums under negative association 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Let $\{X_{n}, n\geq1\}$ be a strictly stationary negatively associated sequence of positive random variables with $\mathrm{E}X_{1}=\mu>0$ and $\operatorname{Var}(X_{1})=\sigma^{2}<\infty$. Denote $S_{n}=\sum_{i=1}^{n}X_{i}, p_{k}=\mathrm{P}(a_{k}\leq ({\prod}_{j=1}^{k}S_{j}/(k!\mu^{k}) )^{1/(\gamma\sigma_{1} \sqrt{k})}< b_{k})$ and $\gamma=\sigma/\mu$ the coefficient of variation. Under some suitable conditions, we derive the almost sure local central limit theorem limn→∞1logn∑k=1n1kpkI{ak≤(∏j=1kSjk!μk)1/(γσ1k)<bk}=1a.s.,%$\lim_{n\rightarrow\infty}\frac{1}{\log n}\sum_{k=1}^{n} \frac{1}{kp_{k}}\mathrm{I} \biggl\{ a_{k}\leq \biggl(\frac {\prod_{j=1}^{k}S_{j}}{k!\mu^{k}} \biggr)^{1/(\gamma\sigma_{1} \sqrt {k})}< b_{k} \biggr\} =1 \quad\mbox{a.s.,} %$ where $\sigma_{1}^{2}=1+\frac{1}{\sigma^{2}}\sum_{j=2}^{\infty}\operatorname{Cov}(X_{1},X_{j})>0$. Negative association (dpeaa)DE-He213 Products of partial sums (dpeaa)DE-He213 Almost sure local central limit theorem (dpeaa)DE-He213 Almost sure global central limit theorem (dpeaa)DE-He213 Wu, Qunying verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2018(2018), 1 vom: 10. Okt. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2018 year:2018 number:1 day:10 month:10 https://dx.doi.org/10.1186/s13660-018-1875-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2018 2018 1 10 10 |
allfieldsGer |
10.1186/s13660-018-1875-8 doi (DE-627)SPR032602049 (SPR)s13660-018-1875-8-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Jiang, Yuanying verfasserin aut The almost sure local central limit theorem for products of partial sums under negative association 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Let $\{X_{n}, n\geq1\}$ be a strictly stationary negatively associated sequence of positive random variables with $\mathrm{E}X_{1}=\mu>0$ and $\operatorname{Var}(X_{1})=\sigma^{2}<\infty$. Denote $S_{n}=\sum_{i=1}^{n}X_{i}, p_{k}=\mathrm{P}(a_{k}\leq ({\prod}_{j=1}^{k}S_{j}/(k!\mu^{k}) )^{1/(\gamma\sigma_{1} \sqrt{k})}< b_{k})$ and $\gamma=\sigma/\mu$ the coefficient of variation. Under some suitable conditions, we derive the almost sure local central limit theorem limn→∞1logn∑k=1n1kpkI{ak≤(∏j=1kSjk!μk)1/(γσ1k)<bk}=1a.s.,%$\lim_{n\rightarrow\infty}\frac{1}{\log n}\sum_{k=1}^{n} \frac{1}{kp_{k}}\mathrm{I} \biggl\{ a_{k}\leq \biggl(\frac {\prod_{j=1}^{k}S_{j}}{k!\mu^{k}} \biggr)^{1/(\gamma\sigma_{1} \sqrt {k})}< b_{k} \biggr\} =1 \quad\mbox{a.s.,} %$ where $\sigma_{1}^{2}=1+\frac{1}{\sigma^{2}}\sum_{j=2}^{\infty}\operatorname{Cov}(X_{1},X_{j})>0$. Negative association (dpeaa)DE-He213 Products of partial sums (dpeaa)DE-He213 Almost sure local central limit theorem (dpeaa)DE-He213 Almost sure global central limit theorem (dpeaa)DE-He213 Wu, Qunying verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2018(2018), 1 vom: 10. Okt. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2018 year:2018 number:1 day:10 month:10 https://dx.doi.org/10.1186/s13660-018-1875-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2018 2018 1 10 10 |
allfieldsSound |
10.1186/s13660-018-1875-8 doi (DE-627)SPR032602049 (SPR)s13660-018-1875-8-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Jiang, Yuanying verfasserin aut The almost sure local central limit theorem for products of partial sums under negative association 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Let $\{X_{n}, n\geq1\}$ be a strictly stationary negatively associated sequence of positive random variables with $\mathrm{E}X_{1}=\mu>0$ and $\operatorname{Var}(X_{1})=\sigma^{2}<\infty$. Denote $S_{n}=\sum_{i=1}^{n}X_{i}, p_{k}=\mathrm{P}(a_{k}\leq ({\prod}_{j=1}^{k}S_{j}/(k!\mu^{k}) )^{1/(\gamma\sigma_{1} \sqrt{k})}< b_{k})$ and $\gamma=\sigma/\mu$ the coefficient of variation. Under some suitable conditions, we derive the almost sure local central limit theorem limn→∞1logn∑k=1n1kpkI{ak≤(∏j=1kSjk!μk)1/(γσ1k)<bk}=1a.s.,%$\lim_{n\rightarrow\infty}\frac{1}{\log n}\sum_{k=1}^{n} \frac{1}{kp_{k}}\mathrm{I} \biggl\{ a_{k}\leq \biggl(\frac {\prod_{j=1}^{k}S_{j}}{k!\mu^{k}} \biggr)^{1/(\gamma\sigma_{1} \sqrt {k})}< b_{k} \biggr\} =1 \quad\mbox{a.s.,} %$ where $\sigma_{1}^{2}=1+\frac{1}{\sigma^{2}}\sum_{j=2}^{\infty}\operatorname{Cov}(X_{1},X_{j})>0$. Negative association (dpeaa)DE-He213 Products of partial sums (dpeaa)DE-He213 Almost sure local central limit theorem (dpeaa)DE-He213 Almost sure global central limit theorem (dpeaa)DE-He213 Wu, Qunying verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2018(2018), 1 vom: 10. Okt. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2018 year:2018 number:1 day:10 month:10 https://dx.doi.org/10.1186/s13660-018-1875-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2018 2018 1 10 10 |
language |
English |
source |
Enthalten in Journal of inequalities and applications 2018(2018), 1 vom: 10. Okt. volume:2018 year:2018 number:1 day:10 month:10 |
sourceStr |
Enthalten in Journal of inequalities and applications 2018(2018), 1 vom: 10. Okt. volume:2018 year:2018 number:1 day:10 month:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Negative association Products of partial sums Almost sure local central limit theorem Almost sure global central limit theorem |
dewey-raw |
510 |
isfreeaccess_bool |
true |
container_title |
Journal of inequalities and applications |
authorswithroles_txt_mv |
Jiang, Yuanying @@aut@@ Wu, Qunying @@aut@@ |
publishDateDaySort_date |
2018-10-10T00:00:00Z |
hierarchy_top_id |
320977056 |
dewey-sort |
3510 |
id |
SPR032602049 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032602049</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111201233.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13660-018-1875-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032602049</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13660-018-1875-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiang, Yuanying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The almost sure local central limit theorem for products of partial sums under negative association</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let $\{X_{n}, n\geq1\}$ be a strictly stationary negatively associated sequence of positive random variables with $\mathrm{E}X_{1}=\mu>0$ and $\operatorname{Var}(X_{1})=\sigma^{2}<\infty$. Denote $S_{n}=\sum_{i=1}^{n}X_{i}, p_{k}=\mathrm{P}(a_{k}\leq ({\prod}_{j=1}^{k}S_{j}/(k!\mu^{k}) )^{1/(\gamma\sigma_{1} \sqrt{k})}< b_{k})$ and $\gamma=\sigma/\mu$ the coefficient of variation. Under some suitable conditions, we derive the almost sure local central limit theorem limn→∞1logn∑k=1n1kpkI{ak≤(∏j=1kSjk!μk)1/(γσ1k)<bk}=1a.s.,%$\lim_{n\rightarrow\infty}\frac{1}{\log n}\sum_{k=1}^{n} \frac{1}{kp_{k}}\mathrm{I} \biggl\{ a_{k}\leq \biggl(\frac {\prod_{j=1}^{k}S_{j}}{k!\mu^{k}} \biggr)^{1/(\gamma\sigma_{1} \sqrt {k})}< b_{k} \biggr\} =1 \quad\mbox{a.s.,} %$ where $\sigma_{1}^{2}=1+\frac{1}{\sigma^{2}}\sum_{j=2}^{\infty}\operatorname{Cov}(X_{1},X_{j})>0$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Negative association</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Products of partial sums</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Almost sure local central limit theorem</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Almost sure global central limit theorem</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Qunying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of inequalities and applications</subfield><subfield code="d">Heidelberg : Springer, 2005</subfield><subfield code="g">2018(2018), 1 vom: 10. Okt.</subfield><subfield code="w">(DE-627)320977056</subfield><subfield code="w">(DE-600)2028512-7</subfield><subfield code="x">1029-242X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2018</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:10</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13660-018-1875-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2018</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">10</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
author |
Jiang, Yuanying |
spellingShingle |
Jiang, Yuanying ddc 510 bkl 31.49 misc Negative association misc Products of partial sums misc Almost sure local central limit theorem misc Almost sure global central limit theorem The almost sure local central limit theorem for products of partial sums under negative association |
authorStr |
Jiang, Yuanying |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320977056 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1029-242X |
topic_title |
510 ASE 31.49 bkl The almost sure local central limit theorem for products of partial sums under negative association Negative association (dpeaa)DE-He213 Products of partial sums (dpeaa)DE-He213 Almost sure local central limit theorem (dpeaa)DE-He213 Almost sure global central limit theorem (dpeaa)DE-He213 |
topic |
ddc 510 bkl 31.49 misc Negative association misc Products of partial sums misc Almost sure local central limit theorem misc Almost sure global central limit theorem |
topic_unstemmed |
ddc 510 bkl 31.49 misc Negative association misc Products of partial sums misc Almost sure local central limit theorem misc Almost sure global central limit theorem |
topic_browse |
ddc 510 bkl 31.49 misc Negative association misc Products of partial sums misc Almost sure local central limit theorem misc Almost sure global central limit theorem |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of inequalities and applications |
hierarchy_parent_id |
320977056 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of inequalities and applications |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320977056 (DE-600)2028512-7 |
title |
The almost sure local central limit theorem for products of partial sums under negative association |
ctrlnum |
(DE-627)SPR032602049 (SPR)s13660-018-1875-8-e |
title_full |
The almost sure local central limit theorem for products of partial sums under negative association |
author_sort |
Jiang, Yuanying |
journal |
Journal of inequalities and applications |
journalStr |
Journal of inequalities and applications |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Jiang, Yuanying Wu, Qunying |
container_volume |
2018 |
class |
510 ASE 31.49 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Jiang, Yuanying |
doi_str_mv |
10.1186/s13660-018-1875-8 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
almost sure local central limit theorem for products of partial sums under negative association |
title_auth |
The almost sure local central limit theorem for products of partial sums under negative association |
abstract |
Abstract Let $\{X_{n}, n\geq1\}$ be a strictly stationary negatively associated sequence of positive random variables with $\mathrm{E}X_{1}=\mu>0$ and $\operatorname{Var}(X_{1})=\sigma^{2}<\infty$. Denote $S_{n}=\sum_{i=1}^{n}X_{i}, p_{k}=\mathrm{P}(a_{k}\leq ({\prod}_{j=1}^{k}S_{j}/(k!\mu^{k}) )^{1/(\gamma\sigma_{1} \sqrt{k})}< b_{k})$ and $\gamma=\sigma/\mu$ the coefficient of variation. Under some suitable conditions, we derive the almost sure local central limit theorem limn→∞1logn∑k=1n1kpkI{ak≤(∏j=1kSjk!μk)1/(γσ1k)<bk}=1a.s.,%$\lim_{n\rightarrow\infty}\frac{1}{\log n}\sum_{k=1}^{n} \frac{1}{kp_{k}}\mathrm{I} \biggl\{ a_{k}\leq \biggl(\frac {\prod_{j=1}^{k}S_{j}}{k!\mu^{k}} \biggr)^{1/(\gamma\sigma_{1} \sqrt {k})}< b_{k} \biggr\} =1 \quad\mbox{a.s.,} %$ where $\sigma_{1}^{2}=1+\frac{1}{\sigma^{2}}\sum_{j=2}^{\infty}\operatorname{Cov}(X_{1},X_{j})>0$. |
abstractGer |
Abstract Let $\{X_{n}, n\geq1\}$ be a strictly stationary negatively associated sequence of positive random variables with $\mathrm{E}X_{1}=\mu>0$ and $\operatorname{Var}(X_{1})=\sigma^{2}<\infty$. Denote $S_{n}=\sum_{i=1}^{n}X_{i}, p_{k}=\mathrm{P}(a_{k}\leq ({\prod}_{j=1}^{k}S_{j}/(k!\mu^{k}) )^{1/(\gamma\sigma_{1} \sqrt{k})}< b_{k})$ and $\gamma=\sigma/\mu$ the coefficient of variation. Under some suitable conditions, we derive the almost sure local central limit theorem limn→∞1logn∑k=1n1kpkI{ak≤(∏j=1kSjk!μk)1/(γσ1k)<bk}=1a.s.,%$\lim_{n\rightarrow\infty}\frac{1}{\log n}\sum_{k=1}^{n} \frac{1}{kp_{k}}\mathrm{I} \biggl\{ a_{k}\leq \biggl(\frac {\prod_{j=1}^{k}S_{j}}{k!\mu^{k}} \biggr)^{1/(\gamma\sigma_{1} \sqrt {k})}< b_{k} \biggr\} =1 \quad\mbox{a.s.,} %$ where $\sigma_{1}^{2}=1+\frac{1}{\sigma^{2}}\sum_{j=2}^{\infty}\operatorname{Cov}(X_{1},X_{j})>0$. |
abstract_unstemmed |
Abstract Let $\{X_{n}, n\geq1\}$ be a strictly stationary negatively associated sequence of positive random variables with $\mathrm{E}X_{1}=\mu>0$ and $\operatorname{Var}(X_{1})=\sigma^{2}<\infty$. Denote $S_{n}=\sum_{i=1}^{n}X_{i}, p_{k}=\mathrm{P}(a_{k}\leq ({\prod}_{j=1}^{k}S_{j}/(k!\mu^{k}) )^{1/(\gamma\sigma_{1} \sqrt{k})}< b_{k})$ and $\gamma=\sigma/\mu$ the coefficient of variation. Under some suitable conditions, we derive the almost sure local central limit theorem limn→∞1logn∑k=1n1kpkI{ak≤(∏j=1kSjk!μk)1/(γσ1k)<bk}=1a.s.,%$\lim_{n\rightarrow\infty}\frac{1}{\log n}\sum_{k=1}^{n} \frac{1}{kp_{k}}\mathrm{I} \biggl\{ a_{k}\leq \biggl(\frac {\prod_{j=1}^{k}S_{j}}{k!\mu^{k}} \biggr)^{1/(\gamma\sigma_{1} \sqrt {k})}< b_{k} \biggr\} =1 \quad\mbox{a.s.,} %$ where $\sigma_{1}^{2}=1+\frac{1}{\sigma^{2}}\sum_{j=2}^{\infty}\operatorname{Cov}(X_{1},X_{j})>0$. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
The almost sure local central limit theorem for products of partial sums under negative association |
url |
https://dx.doi.org/10.1186/s13660-018-1875-8 |
remote_bool |
true |
author2 |
Wu, Qunying |
author2Str |
Wu, Qunying |
ppnlink |
320977056 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13660-018-1875-8 |
up_date |
2024-07-03T13:46:28.614Z |
_version_ |
1803565807564750849 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032602049</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111201233.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13660-018-1875-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032602049</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13660-018-1875-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiang, Yuanying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The almost sure local central limit theorem for products of partial sums under negative association</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let $\{X_{n}, n\geq1\}$ be a strictly stationary negatively associated sequence of positive random variables with $\mathrm{E}X_{1}=\mu>0$ and $\operatorname{Var}(X_{1})=\sigma^{2}<\infty$. Denote $S_{n}=\sum_{i=1}^{n}X_{i}, p_{k}=\mathrm{P}(a_{k}\leq ({\prod}_{j=1}^{k}S_{j}/(k!\mu^{k}) )^{1/(\gamma\sigma_{1} \sqrt{k})}< b_{k})$ and $\gamma=\sigma/\mu$ the coefficient of variation. Under some suitable conditions, we derive the almost sure local central limit theorem limn→∞1logn∑k=1n1kpkI{ak≤(∏j=1kSjk!μk)1/(γσ1k)<bk}=1a.s.,%$\lim_{n\rightarrow\infty}\frac{1}{\log n}\sum_{k=1}^{n} \frac{1}{kp_{k}}\mathrm{I} \biggl\{ a_{k}\leq \biggl(\frac {\prod_{j=1}^{k}S_{j}}{k!\mu^{k}} \biggr)^{1/(\gamma\sigma_{1} \sqrt {k})}< b_{k} \biggr\} =1 \quad\mbox{a.s.,} %$ where $\sigma_{1}^{2}=1+\frac{1}{\sigma^{2}}\sum_{j=2}^{\infty}\operatorname{Cov}(X_{1},X_{j})>0$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Negative association</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Products of partial sums</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Almost sure local central limit theorem</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Almost sure global central limit theorem</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Qunying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of inequalities and applications</subfield><subfield code="d">Heidelberg : Springer, 2005</subfield><subfield code="g">2018(2018), 1 vom: 10. Okt.</subfield><subfield code="w">(DE-627)320977056</subfield><subfield code="w">(DE-600)2028512-7</subfield><subfield code="x">1029-242X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2018</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:10</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13660-018-1875-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2018</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">10</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
score |
7.401758 |