A note on generalized convex functions
Abstract In the article, we provide an example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex and its converse is not true in general, define the coordinate $(\eta _{1}, \eta _{2})$-convex function and establ...
Ausführliche Beschreibung
Autor*in: |
Zaheer Ullah, Syed [verfasserIn] Adil Khan, Muhammad [verfasserIn] Chu, Yu-Ming [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of inequalities and applications - Heidelberg : Springer, 2005, 2019(2019), 1 vom: 12. Nov. |
---|---|
Übergeordnetes Werk: |
volume:2019 ; year:2019 ; number:1 ; day:12 ; month:11 |
Links: |
---|
DOI / URN: |
10.1186/s13660-019-2242-0 |
---|
Katalog-ID: |
SPR032642660 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR032642660 | ||
003 | DE-627 | ||
005 | 20220111201248.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13660-019-2242-0 |2 doi | |
035 | |a (DE-627)SPR032642660 | ||
035 | |a (SPR)s13660-019-2242-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ASE |
084 | |a 31.49 |2 bkl | ||
100 | 1 | |a Zaheer Ullah, Syed |e verfasserin |4 aut | |
245 | 1 | 2 | |a A note on generalized convex functions |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract In the article, we provide an example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex and its converse is not true in general, define the coordinate $(\eta _{1}, \eta _{2})$-convex function and establish its Hermite–Hadamard type inequality. | ||
650 | 4 | |a Convex function |7 (dpeaa)DE-He213 | |
650 | 4 | |a Coordinate convex function |7 (dpeaa)DE-He213 | |
650 | 4 | |a -convex function |7 (dpeaa)DE-He213 | |
650 | 4 | |a Coordinate |7 (dpeaa)DE-He213 | |
650 | 4 | |a -convex function |7 (dpeaa)DE-He213 | |
700 | 1 | |a Adil Khan, Muhammad |e verfasserin |4 aut | |
700 | 1 | |a Chu, Yu-Ming |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of inequalities and applications |d Heidelberg : Springer, 2005 |g 2019(2019), 1 vom: 12. Nov. |w (DE-627)320977056 |w (DE-600)2028512-7 |x 1029-242X |7 nnns |
773 | 1 | 8 | |g volume:2019 |g year:2019 |g number:1 |g day:12 |g month:11 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13660-019-2242-0 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.49 |q ASE |
951 | |a AR | ||
952 | |d 2019 |j 2019 |e 1 |b 12 |c 11 |
author_variant |
u s z us usz k m a km kma y m c ymc |
---|---|
matchkey_str |
article:1029242X:2019----::ntognrlzdovx |
hierarchy_sort_str |
2019 |
bklnumber |
31.49 |
publishDate |
2019 |
allfields |
10.1186/s13660-019-2242-0 doi (DE-627)SPR032642660 (SPR)s13660-019-2242-0-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Zaheer Ullah, Syed verfasserin aut A note on generalized convex functions 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In the article, we provide an example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex and its converse is not true in general, define the coordinate $(\eta _{1}, \eta _{2})$-convex function and establish its Hermite–Hadamard type inequality. Convex function (dpeaa)DE-He213 Coordinate convex function (dpeaa)DE-He213 -convex function (dpeaa)DE-He213 Coordinate (dpeaa)DE-He213 -convex function (dpeaa)DE-He213 Adil Khan, Muhammad verfasserin aut Chu, Yu-Ming verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2019(2019), 1 vom: 12. Nov. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2019 year:2019 number:1 day:12 month:11 https://dx.doi.org/10.1186/s13660-019-2242-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2019 2019 1 12 11 |
spelling |
10.1186/s13660-019-2242-0 doi (DE-627)SPR032642660 (SPR)s13660-019-2242-0-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Zaheer Ullah, Syed verfasserin aut A note on generalized convex functions 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In the article, we provide an example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex and its converse is not true in general, define the coordinate $(\eta _{1}, \eta _{2})$-convex function and establish its Hermite–Hadamard type inequality. Convex function (dpeaa)DE-He213 Coordinate convex function (dpeaa)DE-He213 -convex function (dpeaa)DE-He213 Coordinate (dpeaa)DE-He213 -convex function (dpeaa)DE-He213 Adil Khan, Muhammad verfasserin aut Chu, Yu-Ming verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2019(2019), 1 vom: 12. Nov. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2019 year:2019 number:1 day:12 month:11 https://dx.doi.org/10.1186/s13660-019-2242-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2019 2019 1 12 11 |
allfields_unstemmed |
10.1186/s13660-019-2242-0 doi (DE-627)SPR032642660 (SPR)s13660-019-2242-0-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Zaheer Ullah, Syed verfasserin aut A note on generalized convex functions 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In the article, we provide an example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex and its converse is not true in general, define the coordinate $(\eta _{1}, \eta _{2})$-convex function and establish its Hermite–Hadamard type inequality. Convex function (dpeaa)DE-He213 Coordinate convex function (dpeaa)DE-He213 -convex function (dpeaa)DE-He213 Coordinate (dpeaa)DE-He213 -convex function (dpeaa)DE-He213 Adil Khan, Muhammad verfasserin aut Chu, Yu-Ming verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2019(2019), 1 vom: 12. Nov. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2019 year:2019 number:1 day:12 month:11 https://dx.doi.org/10.1186/s13660-019-2242-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2019 2019 1 12 11 |
allfieldsGer |
10.1186/s13660-019-2242-0 doi (DE-627)SPR032642660 (SPR)s13660-019-2242-0-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Zaheer Ullah, Syed verfasserin aut A note on generalized convex functions 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In the article, we provide an example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex and its converse is not true in general, define the coordinate $(\eta _{1}, \eta _{2})$-convex function and establish its Hermite–Hadamard type inequality. Convex function (dpeaa)DE-He213 Coordinate convex function (dpeaa)DE-He213 -convex function (dpeaa)DE-He213 Coordinate (dpeaa)DE-He213 -convex function (dpeaa)DE-He213 Adil Khan, Muhammad verfasserin aut Chu, Yu-Ming verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2019(2019), 1 vom: 12. Nov. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2019 year:2019 number:1 day:12 month:11 https://dx.doi.org/10.1186/s13660-019-2242-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2019 2019 1 12 11 |
allfieldsSound |
10.1186/s13660-019-2242-0 doi (DE-627)SPR032642660 (SPR)s13660-019-2242-0-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Zaheer Ullah, Syed verfasserin aut A note on generalized convex functions 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In the article, we provide an example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex and its converse is not true in general, define the coordinate $(\eta _{1}, \eta _{2})$-convex function and establish its Hermite–Hadamard type inequality. Convex function (dpeaa)DE-He213 Coordinate convex function (dpeaa)DE-He213 -convex function (dpeaa)DE-He213 Coordinate (dpeaa)DE-He213 -convex function (dpeaa)DE-He213 Adil Khan, Muhammad verfasserin aut Chu, Yu-Ming verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2019(2019), 1 vom: 12. Nov. (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2019 year:2019 number:1 day:12 month:11 https://dx.doi.org/10.1186/s13660-019-2242-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2019 2019 1 12 11 |
language |
English |
source |
Enthalten in Journal of inequalities and applications 2019(2019), 1 vom: 12. Nov. volume:2019 year:2019 number:1 day:12 month:11 |
sourceStr |
Enthalten in Journal of inequalities and applications 2019(2019), 1 vom: 12. Nov. volume:2019 year:2019 number:1 day:12 month:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Convex function Coordinate convex function -convex function Coordinate |
dewey-raw |
510 |
isfreeaccess_bool |
true |
container_title |
Journal of inequalities and applications |
authorswithroles_txt_mv |
Zaheer Ullah, Syed @@aut@@ Adil Khan, Muhammad @@aut@@ Chu, Yu-Ming @@aut@@ |
publishDateDaySort_date |
2019-11-12T00:00:00Z |
hierarchy_top_id |
320977056 |
dewey-sort |
3510 |
id |
SPR032642660 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032642660</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111201248.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13660-019-2242-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032642660</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13660-019-2242-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zaheer Ullah, Syed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A note on generalized convex functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the article, we provide an example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex and its converse is not true in general, define the coordinate $(\eta _{1}, \eta _{2})$-convex function and establish its Hermite–Hadamard type inequality.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coordinate convex function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-convex function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coordinate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-convex function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adil Khan, Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chu, Yu-Ming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of inequalities and applications</subfield><subfield code="d">Heidelberg : Springer, 2005</subfield><subfield code="g">2019(2019), 1 vom: 12. Nov.</subfield><subfield code="w">(DE-627)320977056</subfield><subfield code="w">(DE-600)2028512-7</subfield><subfield code="x">1029-242X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2019</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:12</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13660-019-2242-0</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2019</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">12</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
author |
Zaheer Ullah, Syed |
spellingShingle |
Zaheer Ullah, Syed ddc 510 bkl 31.49 misc Convex function misc Coordinate convex function misc -convex function misc Coordinate A note on generalized convex functions |
authorStr |
Zaheer Ullah, Syed |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320977056 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1029-242X |
topic_title |
510 ASE 31.49 bkl A note on generalized convex functions Convex function (dpeaa)DE-He213 Coordinate convex function (dpeaa)DE-He213 -convex function (dpeaa)DE-He213 Coordinate (dpeaa)DE-He213 |
topic |
ddc 510 bkl 31.49 misc Convex function misc Coordinate convex function misc -convex function misc Coordinate |
topic_unstemmed |
ddc 510 bkl 31.49 misc Convex function misc Coordinate convex function misc -convex function misc Coordinate |
topic_browse |
ddc 510 bkl 31.49 misc Convex function misc Coordinate convex function misc -convex function misc Coordinate |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of inequalities and applications |
hierarchy_parent_id |
320977056 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of inequalities and applications |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320977056 (DE-600)2028512-7 |
title |
A note on generalized convex functions |
ctrlnum |
(DE-627)SPR032642660 (SPR)s13660-019-2242-0-e |
title_full |
A note on generalized convex functions |
author_sort |
Zaheer Ullah, Syed |
journal |
Journal of inequalities and applications |
journalStr |
Journal of inequalities and applications |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Zaheer Ullah, Syed Adil Khan, Muhammad Chu, Yu-Ming |
container_volume |
2019 |
class |
510 ASE 31.49 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zaheer Ullah, Syed |
doi_str_mv |
10.1186/s13660-019-2242-0 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
note on generalized convex functions |
title_auth |
A note on generalized convex functions |
abstract |
Abstract In the article, we provide an example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex and its converse is not true in general, define the coordinate $(\eta _{1}, \eta _{2})$-convex function and establish its Hermite–Hadamard type inequality. |
abstractGer |
Abstract In the article, we provide an example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex and its converse is not true in general, define the coordinate $(\eta _{1}, \eta _{2})$-convex function and establish its Hermite–Hadamard type inequality. |
abstract_unstemmed |
Abstract In the article, we provide an example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex and its converse is not true in general, define the coordinate $(\eta _{1}, \eta _{2})$-convex function and establish its Hermite–Hadamard type inequality. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A note on generalized convex functions |
url |
https://dx.doi.org/10.1186/s13660-019-2242-0 |
remote_bool |
true |
author2 |
Adil Khan, Muhammad Chu, Yu-Ming |
author2Str |
Adil Khan, Muhammad Chu, Yu-Ming |
ppnlink |
320977056 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13660-019-2242-0 |
up_date |
2024-07-03T14:00:31.668Z |
_version_ |
1803566691566747648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032642660</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111201248.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13660-019-2242-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032642660</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13660-019-2242-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zaheer Ullah, Syed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A note on generalized convex functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the article, we provide an example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex and its converse is not true in general, define the coordinate $(\eta _{1}, \eta _{2})$-convex function and establish its Hermite–Hadamard type inequality.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coordinate convex function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-convex function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coordinate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-convex function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adil Khan, Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chu, Yu-Ming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of inequalities and applications</subfield><subfield code="d">Heidelberg : Springer, 2005</subfield><subfield code="g">2019(2019), 1 vom: 12. Nov.</subfield><subfield code="w">(DE-627)320977056</subfield><subfield code="w">(DE-600)2028512-7</subfield><subfield code="x">1029-242X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2019</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:12</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13660-019-2242-0</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2019</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">12</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
score |
7.400483 |