Response of Greenhouse Crop Ecophysiology, Water Consumption and Yield to Ventilation Environment Regulation
Abstract Under the condition of greenhouse cultivation, the influence of environmental regulation on crop physiological and ecological indexes, water consumption process and yield cannot be neglected. Studying the changes of each index under different opening time and state of ventilation can furthe...
Ausführliche Beschreibung
Autor*in: |
Jiankun, Ge [verfasserIn] Yanfei, Liu [verfasserIn] Xuewen, Gong [verfasserIn] Zengjin, Liu [verfasserIn] Yanbin, Li [verfasserIn] Cundong, Xu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of the Institution of Engineers (India) - [New Delhi] : Springer India, 2012, 100(2019), 4 vom: 17. Okt., Seite 743-752 |
---|---|
Übergeordnetes Werk: |
volume:100 ; year:2019 ; number:4 ; day:17 ; month:10 ; pages:743-752 |
Links: |
---|
DOI / URN: |
10.1007/s40030-019-00401-y |
---|
Katalog-ID: |
SPR032666098 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR032666098 | ||
003 | DE-627 | ||
005 | 20220111204327.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40030-019-00401-y |2 doi | |
035 | |a (DE-627)SPR032666098 | ||
035 | |a (SPR)s40030-019-00401-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 690 |q ASE |
100 | 1 | |a Jiankun, Ge |e verfasserin |4 aut | |
245 | 1 | 0 | |a Response of Greenhouse Crop Ecophysiology, Water Consumption and Yield to Ventilation Environment Regulation |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Under the condition of greenhouse cultivation, the influence of environmental regulation on crop physiological and ecological indexes, water consumption process and yield cannot be neglected. Studying the changes of each index under different opening time and state of ventilation can further improve the theory of greenhouse environmental regulation and control and realize the rational utilization of water resources. Three ventilation modes were set up for drip irrigation tomato in sunlight greenhouse in North China. They were opening North window and top window (T1), opening North window, south window and top window (T2) and opening North window and south window (T3). The effects of different ventilation modes on greenhouse environment, physiological ecology, water consumption and yield of tomato were analyzed. The results showed that: (1) The fluctuation of water surface evaporation under different ventilation modes was consistent during the whole growth period, but the cumulative evaporation was T2 > T1 > T3. The ventilation mode of T2 treatment was beneficial to alleviate indoor high temperature hazards, which was 3–4% and 3–5% lower than the average temperature of T1 and T3, but the higher temperature of T1 treatment was beneficial to the early fruit formation. (3) T2 had the highest yield, 147.15 t/$ hm^{2} $, 11.71% higher than T1 and 13.52% higher than T3, and the water consumption was the least, 143.73 $ m^{3} $/$ hm^{2} $, which was higher than T1 and T3, respectively. Water use efficiency (WUE) and irrigation water use efficiency (IWUE) were 1023.81 (kg/$ m^{3} $) and 1719.26 (kg/$ m^{3} $), respectively. So the ventilation treatment in the early stage is to open the North window and the roof window, and the ventilation treatment in the middle and late stage is to open the North window, the south window and the roof window simultaneously. The purpose of this paper is to perfect the theory of greenhouse environmental regulation and control, and to provide reference for further rational layout of greenhouse vents. | ||
650 | 4 | |a Sunlight greenhouse |7 (dpeaa)DE-He213 | |
650 | 4 | |a Environmental regulation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Physiological ecology |7 (dpeaa)DE-He213 | |
650 | 4 | |a Water consumption regularity |7 (dpeaa)DE-He213 | |
650 | 4 | |a Water use efficiency |7 (dpeaa)DE-He213 | |
700 | 1 | |a Yanfei, Liu |e verfasserin |4 aut | |
700 | 1 | |a Xuewen, Gong |e verfasserin |4 aut | |
700 | 1 | |a Zengjin, Liu |e verfasserin |4 aut | |
700 | 1 | |a Yanbin, Li |e verfasserin |4 aut | |
700 | 1 | |a Cundong, Xu |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of the Institution of Engineers (India) |d [New Delhi] : Springer India, 2012 |g 100(2019), 4 vom: 17. Okt., Seite 743-752 |w (DE-627)722236743 |w (DE-600)2677555-4 |x 2250-2157 |7 nnns |
773 | 1 | 8 | |g volume:100 |g year:2019 |g number:4 |g day:17 |g month:10 |g pages:743-752 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40030-019-00401-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 100 |j 2019 |e 4 |b 17 |c 10 |h 743-752 |
author_variant |
g j gj l y ly g x gx l z lz l y ly x c xc |
---|---|
matchkey_str |
article:22502157:2019----::epnefrehuerpcpyilgwtrosmtoadiltvni |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s40030-019-00401-y doi (DE-627)SPR032666098 (SPR)s40030-019-00401-y-e DE-627 ger DE-627 rakwb eng 620 690 ASE Jiankun, Ge verfasserin aut Response of Greenhouse Crop Ecophysiology, Water Consumption and Yield to Ventilation Environment Regulation 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Under the condition of greenhouse cultivation, the influence of environmental regulation on crop physiological and ecological indexes, water consumption process and yield cannot be neglected. Studying the changes of each index under different opening time and state of ventilation can further improve the theory of greenhouse environmental regulation and control and realize the rational utilization of water resources. Three ventilation modes were set up for drip irrigation tomato in sunlight greenhouse in North China. They were opening North window and top window (T1), opening North window, south window and top window (T2) and opening North window and south window (T3). The effects of different ventilation modes on greenhouse environment, physiological ecology, water consumption and yield of tomato were analyzed. The results showed that: (1) The fluctuation of water surface evaporation under different ventilation modes was consistent during the whole growth period, but the cumulative evaporation was T2 > T1 > T3. The ventilation mode of T2 treatment was beneficial to alleviate indoor high temperature hazards, which was 3–4% and 3–5% lower than the average temperature of T1 and T3, but the higher temperature of T1 treatment was beneficial to the early fruit formation. (3) T2 had the highest yield, 147.15 t/$ hm^{2} $, 11.71% higher than T1 and 13.52% higher than T3, and the water consumption was the least, 143.73 $ m^{3} $/$ hm^{2} $, which was higher than T1 and T3, respectively. Water use efficiency (WUE) and irrigation water use efficiency (IWUE) were 1023.81 (kg/$ m^{3} $) and 1719.26 (kg/$ m^{3} $), respectively. So the ventilation treatment in the early stage is to open the North window and the roof window, and the ventilation treatment in the middle and late stage is to open the North window, the south window and the roof window simultaneously. The purpose of this paper is to perfect the theory of greenhouse environmental regulation and control, and to provide reference for further rational layout of greenhouse vents. Sunlight greenhouse (dpeaa)DE-He213 Environmental regulation (dpeaa)DE-He213 Physiological ecology (dpeaa)DE-He213 Water consumption regularity (dpeaa)DE-He213 Water use efficiency (dpeaa)DE-He213 Yanfei, Liu verfasserin aut Xuewen, Gong verfasserin aut Zengjin, Liu verfasserin aut Yanbin, Li verfasserin aut Cundong, Xu verfasserin aut Enthalten in Journal of the Institution of Engineers (India) [New Delhi] : Springer India, 2012 100(2019), 4 vom: 17. Okt., Seite 743-752 (DE-627)722236743 (DE-600)2677555-4 2250-2157 nnns volume:100 year:2019 number:4 day:17 month:10 pages:743-752 https://dx.doi.org/10.1007/s40030-019-00401-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 100 2019 4 17 10 743-752 |
spelling |
10.1007/s40030-019-00401-y doi (DE-627)SPR032666098 (SPR)s40030-019-00401-y-e DE-627 ger DE-627 rakwb eng 620 690 ASE Jiankun, Ge verfasserin aut Response of Greenhouse Crop Ecophysiology, Water Consumption and Yield to Ventilation Environment Regulation 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Under the condition of greenhouse cultivation, the influence of environmental regulation on crop physiological and ecological indexes, water consumption process and yield cannot be neglected. Studying the changes of each index under different opening time and state of ventilation can further improve the theory of greenhouse environmental regulation and control and realize the rational utilization of water resources. Three ventilation modes were set up for drip irrigation tomato in sunlight greenhouse in North China. They were opening North window and top window (T1), opening North window, south window and top window (T2) and opening North window and south window (T3). The effects of different ventilation modes on greenhouse environment, physiological ecology, water consumption and yield of tomato were analyzed. The results showed that: (1) The fluctuation of water surface evaporation under different ventilation modes was consistent during the whole growth period, but the cumulative evaporation was T2 > T1 > T3. The ventilation mode of T2 treatment was beneficial to alleviate indoor high temperature hazards, which was 3–4% and 3–5% lower than the average temperature of T1 and T3, but the higher temperature of T1 treatment was beneficial to the early fruit formation. (3) T2 had the highest yield, 147.15 t/$ hm^{2} $, 11.71% higher than T1 and 13.52% higher than T3, and the water consumption was the least, 143.73 $ m^{3} $/$ hm^{2} $, which was higher than T1 and T3, respectively. Water use efficiency (WUE) and irrigation water use efficiency (IWUE) were 1023.81 (kg/$ m^{3} $) and 1719.26 (kg/$ m^{3} $), respectively. So the ventilation treatment in the early stage is to open the North window and the roof window, and the ventilation treatment in the middle and late stage is to open the North window, the south window and the roof window simultaneously. The purpose of this paper is to perfect the theory of greenhouse environmental regulation and control, and to provide reference for further rational layout of greenhouse vents. Sunlight greenhouse (dpeaa)DE-He213 Environmental regulation (dpeaa)DE-He213 Physiological ecology (dpeaa)DE-He213 Water consumption regularity (dpeaa)DE-He213 Water use efficiency (dpeaa)DE-He213 Yanfei, Liu verfasserin aut Xuewen, Gong verfasserin aut Zengjin, Liu verfasserin aut Yanbin, Li verfasserin aut Cundong, Xu verfasserin aut Enthalten in Journal of the Institution of Engineers (India) [New Delhi] : Springer India, 2012 100(2019), 4 vom: 17. Okt., Seite 743-752 (DE-627)722236743 (DE-600)2677555-4 2250-2157 nnns volume:100 year:2019 number:4 day:17 month:10 pages:743-752 https://dx.doi.org/10.1007/s40030-019-00401-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 100 2019 4 17 10 743-752 |
allfields_unstemmed |
10.1007/s40030-019-00401-y doi (DE-627)SPR032666098 (SPR)s40030-019-00401-y-e DE-627 ger DE-627 rakwb eng 620 690 ASE Jiankun, Ge verfasserin aut Response of Greenhouse Crop Ecophysiology, Water Consumption and Yield to Ventilation Environment Regulation 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Under the condition of greenhouse cultivation, the influence of environmental regulation on crop physiological and ecological indexes, water consumption process and yield cannot be neglected. Studying the changes of each index under different opening time and state of ventilation can further improve the theory of greenhouse environmental regulation and control and realize the rational utilization of water resources. Three ventilation modes were set up for drip irrigation tomato in sunlight greenhouse in North China. They were opening North window and top window (T1), opening North window, south window and top window (T2) and opening North window and south window (T3). The effects of different ventilation modes on greenhouse environment, physiological ecology, water consumption and yield of tomato were analyzed. The results showed that: (1) The fluctuation of water surface evaporation under different ventilation modes was consistent during the whole growth period, but the cumulative evaporation was T2 > T1 > T3. The ventilation mode of T2 treatment was beneficial to alleviate indoor high temperature hazards, which was 3–4% and 3–5% lower than the average temperature of T1 and T3, but the higher temperature of T1 treatment was beneficial to the early fruit formation. (3) T2 had the highest yield, 147.15 t/$ hm^{2} $, 11.71% higher than T1 and 13.52% higher than T3, and the water consumption was the least, 143.73 $ m^{3} $/$ hm^{2} $, which was higher than T1 and T3, respectively. Water use efficiency (WUE) and irrigation water use efficiency (IWUE) were 1023.81 (kg/$ m^{3} $) and 1719.26 (kg/$ m^{3} $), respectively. So the ventilation treatment in the early stage is to open the North window and the roof window, and the ventilation treatment in the middle and late stage is to open the North window, the south window and the roof window simultaneously. The purpose of this paper is to perfect the theory of greenhouse environmental regulation and control, and to provide reference for further rational layout of greenhouse vents. Sunlight greenhouse (dpeaa)DE-He213 Environmental regulation (dpeaa)DE-He213 Physiological ecology (dpeaa)DE-He213 Water consumption regularity (dpeaa)DE-He213 Water use efficiency (dpeaa)DE-He213 Yanfei, Liu verfasserin aut Xuewen, Gong verfasserin aut Zengjin, Liu verfasserin aut Yanbin, Li verfasserin aut Cundong, Xu verfasserin aut Enthalten in Journal of the Institution of Engineers (India) [New Delhi] : Springer India, 2012 100(2019), 4 vom: 17. Okt., Seite 743-752 (DE-627)722236743 (DE-600)2677555-4 2250-2157 nnns volume:100 year:2019 number:4 day:17 month:10 pages:743-752 https://dx.doi.org/10.1007/s40030-019-00401-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 100 2019 4 17 10 743-752 |
allfieldsGer |
10.1007/s40030-019-00401-y doi (DE-627)SPR032666098 (SPR)s40030-019-00401-y-e DE-627 ger DE-627 rakwb eng 620 690 ASE Jiankun, Ge verfasserin aut Response of Greenhouse Crop Ecophysiology, Water Consumption and Yield to Ventilation Environment Regulation 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Under the condition of greenhouse cultivation, the influence of environmental regulation on crop physiological and ecological indexes, water consumption process and yield cannot be neglected. Studying the changes of each index under different opening time and state of ventilation can further improve the theory of greenhouse environmental regulation and control and realize the rational utilization of water resources. Three ventilation modes were set up for drip irrigation tomato in sunlight greenhouse in North China. They were opening North window and top window (T1), opening North window, south window and top window (T2) and opening North window and south window (T3). The effects of different ventilation modes on greenhouse environment, physiological ecology, water consumption and yield of tomato were analyzed. The results showed that: (1) The fluctuation of water surface evaporation under different ventilation modes was consistent during the whole growth period, but the cumulative evaporation was T2 > T1 > T3. The ventilation mode of T2 treatment was beneficial to alleviate indoor high temperature hazards, which was 3–4% and 3–5% lower than the average temperature of T1 and T3, but the higher temperature of T1 treatment was beneficial to the early fruit formation. (3) T2 had the highest yield, 147.15 t/$ hm^{2} $, 11.71% higher than T1 and 13.52% higher than T3, and the water consumption was the least, 143.73 $ m^{3} $/$ hm^{2} $, which was higher than T1 and T3, respectively. Water use efficiency (WUE) and irrigation water use efficiency (IWUE) were 1023.81 (kg/$ m^{3} $) and 1719.26 (kg/$ m^{3} $), respectively. So the ventilation treatment in the early stage is to open the North window and the roof window, and the ventilation treatment in the middle and late stage is to open the North window, the south window and the roof window simultaneously. The purpose of this paper is to perfect the theory of greenhouse environmental regulation and control, and to provide reference for further rational layout of greenhouse vents. Sunlight greenhouse (dpeaa)DE-He213 Environmental regulation (dpeaa)DE-He213 Physiological ecology (dpeaa)DE-He213 Water consumption regularity (dpeaa)DE-He213 Water use efficiency (dpeaa)DE-He213 Yanfei, Liu verfasserin aut Xuewen, Gong verfasserin aut Zengjin, Liu verfasserin aut Yanbin, Li verfasserin aut Cundong, Xu verfasserin aut Enthalten in Journal of the Institution of Engineers (India) [New Delhi] : Springer India, 2012 100(2019), 4 vom: 17. Okt., Seite 743-752 (DE-627)722236743 (DE-600)2677555-4 2250-2157 nnns volume:100 year:2019 number:4 day:17 month:10 pages:743-752 https://dx.doi.org/10.1007/s40030-019-00401-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 100 2019 4 17 10 743-752 |
allfieldsSound |
10.1007/s40030-019-00401-y doi (DE-627)SPR032666098 (SPR)s40030-019-00401-y-e DE-627 ger DE-627 rakwb eng 620 690 ASE Jiankun, Ge verfasserin aut Response of Greenhouse Crop Ecophysiology, Water Consumption and Yield to Ventilation Environment Regulation 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Under the condition of greenhouse cultivation, the influence of environmental regulation on crop physiological and ecological indexes, water consumption process and yield cannot be neglected. Studying the changes of each index under different opening time and state of ventilation can further improve the theory of greenhouse environmental regulation and control and realize the rational utilization of water resources. Three ventilation modes were set up for drip irrigation tomato in sunlight greenhouse in North China. They were opening North window and top window (T1), opening North window, south window and top window (T2) and opening North window and south window (T3). The effects of different ventilation modes on greenhouse environment, physiological ecology, water consumption and yield of tomato were analyzed. The results showed that: (1) The fluctuation of water surface evaporation under different ventilation modes was consistent during the whole growth period, but the cumulative evaporation was T2 > T1 > T3. The ventilation mode of T2 treatment was beneficial to alleviate indoor high temperature hazards, which was 3–4% and 3–5% lower than the average temperature of T1 and T3, but the higher temperature of T1 treatment was beneficial to the early fruit formation. (3) T2 had the highest yield, 147.15 t/$ hm^{2} $, 11.71% higher than T1 and 13.52% higher than T3, and the water consumption was the least, 143.73 $ m^{3} $/$ hm^{2} $, which was higher than T1 and T3, respectively. Water use efficiency (WUE) and irrigation water use efficiency (IWUE) were 1023.81 (kg/$ m^{3} $) and 1719.26 (kg/$ m^{3} $), respectively. So the ventilation treatment in the early stage is to open the North window and the roof window, and the ventilation treatment in the middle and late stage is to open the North window, the south window and the roof window simultaneously. The purpose of this paper is to perfect the theory of greenhouse environmental regulation and control, and to provide reference for further rational layout of greenhouse vents. Sunlight greenhouse (dpeaa)DE-He213 Environmental regulation (dpeaa)DE-He213 Physiological ecology (dpeaa)DE-He213 Water consumption regularity (dpeaa)DE-He213 Water use efficiency (dpeaa)DE-He213 Yanfei, Liu verfasserin aut Xuewen, Gong verfasserin aut Zengjin, Liu verfasserin aut Yanbin, Li verfasserin aut Cundong, Xu verfasserin aut Enthalten in Journal of the Institution of Engineers (India) [New Delhi] : Springer India, 2012 100(2019), 4 vom: 17. Okt., Seite 743-752 (DE-627)722236743 (DE-600)2677555-4 2250-2157 nnns volume:100 year:2019 number:4 day:17 month:10 pages:743-752 https://dx.doi.org/10.1007/s40030-019-00401-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 100 2019 4 17 10 743-752 |
language |
English |
source |
Enthalten in Journal of the Institution of Engineers (India) 100(2019), 4 vom: 17. Okt., Seite 743-752 volume:100 year:2019 number:4 day:17 month:10 pages:743-752 |
sourceStr |
Enthalten in Journal of the Institution of Engineers (India) 100(2019), 4 vom: 17. Okt., Seite 743-752 volume:100 year:2019 number:4 day:17 month:10 pages:743-752 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Sunlight greenhouse Environmental regulation Physiological ecology Water consumption regularity Water use efficiency |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Journal of the Institution of Engineers (India) |
authorswithroles_txt_mv |
Jiankun, Ge @@aut@@ Yanfei, Liu @@aut@@ Xuewen, Gong @@aut@@ Zengjin, Liu @@aut@@ Yanbin, Li @@aut@@ Cundong, Xu @@aut@@ |
publishDateDaySort_date |
2019-10-17T00:00:00Z |
hierarchy_top_id |
722236743 |
dewey-sort |
3620 |
id |
SPR032666098 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032666098</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111204327.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40030-019-00401-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032666098</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40030-019-00401-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">690</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiankun, Ge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Response of Greenhouse Crop Ecophysiology, Water Consumption and Yield to Ventilation Environment Regulation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Under the condition of greenhouse cultivation, the influence of environmental regulation on crop physiological and ecological indexes, water consumption process and yield cannot be neglected. Studying the changes of each index under different opening time and state of ventilation can further improve the theory of greenhouse environmental regulation and control and realize the rational utilization of water resources. Three ventilation modes were set up for drip irrigation tomato in sunlight greenhouse in North China. They were opening North window and top window (T1), opening North window, south window and top window (T2) and opening North window and south window (T3). The effects of different ventilation modes on greenhouse environment, physiological ecology, water consumption and yield of tomato were analyzed. The results showed that: (1) The fluctuation of water surface evaporation under different ventilation modes was consistent during the whole growth period, but the cumulative evaporation was T2 > T1 > T3. The ventilation mode of T2 treatment was beneficial to alleviate indoor high temperature hazards, which was 3–4% and 3–5% lower than the average temperature of T1 and T3, but the higher temperature of T1 treatment was beneficial to the early fruit formation. (3) T2 had the highest yield, 147.15 t/$ hm^{2} $, 11.71% higher than T1 and 13.52% higher than T3, and the water consumption was the least, 143.73 $ m^{3} $/$ hm^{2} $, which was higher than T1 and T3, respectively. Water use efficiency (WUE) and irrigation water use efficiency (IWUE) were 1023.81 (kg/$ m^{3} $) and 1719.26 (kg/$ m^{3} $), respectively. So the ventilation treatment in the early stage is to open the North window and the roof window, and the ventilation treatment in the middle and late stage is to open the North window, the south window and the roof window simultaneously. The purpose of this paper is to perfect the theory of greenhouse environmental regulation and control, and to provide reference for further rational layout of greenhouse vents.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sunlight greenhouse</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental regulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physiological ecology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water consumption regularity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water use efficiency</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yanfei, Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xuewen, Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zengjin, Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yanbin, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cundong, Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the Institution of Engineers (India)</subfield><subfield code="d">[New Delhi] : Springer India, 2012</subfield><subfield code="g">100(2019), 4 vom: 17. Okt., Seite 743-752</subfield><subfield code="w">(DE-627)722236743</subfield><subfield code="w">(DE-600)2677555-4</subfield><subfield code="x">2250-2157</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:100</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:4</subfield><subfield code="g">day:17</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:743-752</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40030-019-00401-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">100</subfield><subfield code="j">2019</subfield><subfield code="e">4</subfield><subfield code="b">17</subfield><subfield code="c">10</subfield><subfield code="h">743-752</subfield></datafield></record></collection>
|
author |
Jiankun, Ge |
spellingShingle |
Jiankun, Ge ddc 620 misc Sunlight greenhouse misc Environmental regulation misc Physiological ecology misc Water consumption regularity misc Water use efficiency Response of Greenhouse Crop Ecophysiology, Water Consumption and Yield to Ventilation Environment Regulation |
authorStr |
Jiankun, Ge |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)722236743 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2250-2157 |
topic_title |
620 690 ASE Response of Greenhouse Crop Ecophysiology, Water Consumption and Yield to Ventilation Environment Regulation Sunlight greenhouse (dpeaa)DE-He213 Environmental regulation (dpeaa)DE-He213 Physiological ecology (dpeaa)DE-He213 Water consumption regularity (dpeaa)DE-He213 Water use efficiency (dpeaa)DE-He213 |
topic |
ddc 620 misc Sunlight greenhouse misc Environmental regulation misc Physiological ecology misc Water consumption regularity misc Water use efficiency |
topic_unstemmed |
ddc 620 misc Sunlight greenhouse misc Environmental regulation misc Physiological ecology misc Water consumption regularity misc Water use efficiency |
topic_browse |
ddc 620 misc Sunlight greenhouse misc Environmental regulation misc Physiological ecology misc Water consumption regularity misc Water use efficiency |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of the Institution of Engineers (India) |
hierarchy_parent_id |
722236743 |
dewey-tens |
620 - Engineering 690 - Building & construction |
hierarchy_top_title |
Journal of the Institution of Engineers (India) |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)722236743 (DE-600)2677555-4 |
title |
Response of Greenhouse Crop Ecophysiology, Water Consumption and Yield to Ventilation Environment Regulation |
ctrlnum |
(DE-627)SPR032666098 (SPR)s40030-019-00401-y-e |
title_full |
Response of Greenhouse Crop Ecophysiology, Water Consumption and Yield to Ventilation Environment Regulation |
author_sort |
Jiankun, Ge |
journal |
Journal of the Institution of Engineers (India) |
journalStr |
Journal of the Institution of Engineers (India) |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
743 |
author_browse |
Jiankun, Ge Yanfei, Liu Xuewen, Gong Zengjin, Liu Yanbin, Li Cundong, Xu |
container_volume |
100 |
class |
620 690 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Jiankun, Ge |
doi_str_mv |
10.1007/s40030-019-00401-y |
dewey-full |
620 690 |
author2-role |
verfasserin |
title_sort |
response of greenhouse crop ecophysiology, water consumption and yield to ventilation environment regulation |
title_auth |
Response of Greenhouse Crop Ecophysiology, Water Consumption and Yield to Ventilation Environment Regulation |
abstract |
Abstract Under the condition of greenhouse cultivation, the influence of environmental regulation on crop physiological and ecological indexes, water consumption process and yield cannot be neglected. Studying the changes of each index under different opening time and state of ventilation can further improve the theory of greenhouse environmental regulation and control and realize the rational utilization of water resources. Three ventilation modes were set up for drip irrigation tomato in sunlight greenhouse in North China. They were opening North window and top window (T1), opening North window, south window and top window (T2) and opening North window and south window (T3). The effects of different ventilation modes on greenhouse environment, physiological ecology, water consumption and yield of tomato were analyzed. The results showed that: (1) The fluctuation of water surface evaporation under different ventilation modes was consistent during the whole growth period, but the cumulative evaporation was T2 > T1 > T3. The ventilation mode of T2 treatment was beneficial to alleviate indoor high temperature hazards, which was 3–4% and 3–5% lower than the average temperature of T1 and T3, but the higher temperature of T1 treatment was beneficial to the early fruit formation. (3) T2 had the highest yield, 147.15 t/$ hm^{2} $, 11.71% higher than T1 and 13.52% higher than T3, and the water consumption was the least, 143.73 $ m^{3} $/$ hm^{2} $, which was higher than T1 and T3, respectively. Water use efficiency (WUE) and irrigation water use efficiency (IWUE) were 1023.81 (kg/$ m^{3} $) and 1719.26 (kg/$ m^{3} $), respectively. So the ventilation treatment in the early stage is to open the North window and the roof window, and the ventilation treatment in the middle and late stage is to open the North window, the south window and the roof window simultaneously. The purpose of this paper is to perfect the theory of greenhouse environmental regulation and control, and to provide reference for further rational layout of greenhouse vents. |
abstractGer |
Abstract Under the condition of greenhouse cultivation, the influence of environmental regulation on crop physiological and ecological indexes, water consumption process and yield cannot be neglected. Studying the changes of each index under different opening time and state of ventilation can further improve the theory of greenhouse environmental regulation and control and realize the rational utilization of water resources. Three ventilation modes were set up for drip irrigation tomato in sunlight greenhouse in North China. They were opening North window and top window (T1), opening North window, south window and top window (T2) and opening North window and south window (T3). The effects of different ventilation modes on greenhouse environment, physiological ecology, water consumption and yield of tomato were analyzed. The results showed that: (1) The fluctuation of water surface evaporation under different ventilation modes was consistent during the whole growth period, but the cumulative evaporation was T2 > T1 > T3. The ventilation mode of T2 treatment was beneficial to alleviate indoor high temperature hazards, which was 3–4% and 3–5% lower than the average temperature of T1 and T3, but the higher temperature of T1 treatment was beneficial to the early fruit formation. (3) T2 had the highest yield, 147.15 t/$ hm^{2} $, 11.71% higher than T1 and 13.52% higher than T3, and the water consumption was the least, 143.73 $ m^{3} $/$ hm^{2} $, which was higher than T1 and T3, respectively. Water use efficiency (WUE) and irrigation water use efficiency (IWUE) were 1023.81 (kg/$ m^{3} $) and 1719.26 (kg/$ m^{3} $), respectively. So the ventilation treatment in the early stage is to open the North window and the roof window, and the ventilation treatment in the middle and late stage is to open the North window, the south window and the roof window simultaneously. The purpose of this paper is to perfect the theory of greenhouse environmental regulation and control, and to provide reference for further rational layout of greenhouse vents. |
abstract_unstemmed |
Abstract Under the condition of greenhouse cultivation, the influence of environmental regulation on crop physiological and ecological indexes, water consumption process and yield cannot be neglected. Studying the changes of each index under different opening time and state of ventilation can further improve the theory of greenhouse environmental regulation and control and realize the rational utilization of water resources. Three ventilation modes were set up for drip irrigation tomato in sunlight greenhouse in North China. They were opening North window and top window (T1), opening North window, south window and top window (T2) and opening North window and south window (T3). The effects of different ventilation modes on greenhouse environment, physiological ecology, water consumption and yield of tomato were analyzed. The results showed that: (1) The fluctuation of water surface evaporation under different ventilation modes was consistent during the whole growth period, but the cumulative evaporation was T2 > T1 > T3. The ventilation mode of T2 treatment was beneficial to alleviate indoor high temperature hazards, which was 3–4% and 3–5% lower than the average temperature of T1 and T3, but the higher temperature of T1 treatment was beneficial to the early fruit formation. (3) T2 had the highest yield, 147.15 t/$ hm^{2} $, 11.71% higher than T1 and 13.52% higher than T3, and the water consumption was the least, 143.73 $ m^{3} $/$ hm^{2} $, which was higher than T1 and T3, respectively. Water use efficiency (WUE) and irrigation water use efficiency (IWUE) were 1023.81 (kg/$ m^{3} $) and 1719.26 (kg/$ m^{3} $), respectively. So the ventilation treatment in the early stage is to open the North window and the roof window, and the ventilation treatment in the middle and late stage is to open the North window, the south window and the roof window simultaneously. The purpose of this paper is to perfect the theory of greenhouse environmental regulation and control, and to provide reference for further rational layout of greenhouse vents. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Response of Greenhouse Crop Ecophysiology, Water Consumption and Yield to Ventilation Environment Regulation |
url |
https://dx.doi.org/10.1007/s40030-019-00401-y |
remote_bool |
true |
author2 |
Yanfei, Liu Xuewen, Gong Zengjin, Liu Yanbin, Li Cundong, Xu |
author2Str |
Yanfei, Liu Xuewen, Gong Zengjin, Liu Yanbin, Li Cundong, Xu |
ppnlink |
722236743 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40030-019-00401-y |
up_date |
2024-07-03T14:04:35.377Z |
_version_ |
1803566947204333568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032666098</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111204327.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40030-019-00401-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032666098</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40030-019-00401-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">690</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiankun, Ge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Response of Greenhouse Crop Ecophysiology, Water Consumption and Yield to Ventilation Environment Regulation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Under the condition of greenhouse cultivation, the influence of environmental regulation on crop physiological and ecological indexes, water consumption process and yield cannot be neglected. Studying the changes of each index under different opening time and state of ventilation can further improve the theory of greenhouse environmental regulation and control and realize the rational utilization of water resources. Three ventilation modes were set up for drip irrigation tomato in sunlight greenhouse in North China. They were opening North window and top window (T1), opening North window, south window and top window (T2) and opening North window and south window (T3). The effects of different ventilation modes on greenhouse environment, physiological ecology, water consumption and yield of tomato were analyzed. The results showed that: (1) The fluctuation of water surface evaporation under different ventilation modes was consistent during the whole growth period, but the cumulative evaporation was T2 > T1 > T3. The ventilation mode of T2 treatment was beneficial to alleviate indoor high temperature hazards, which was 3–4% and 3–5% lower than the average temperature of T1 and T3, but the higher temperature of T1 treatment was beneficial to the early fruit formation. (3) T2 had the highest yield, 147.15 t/$ hm^{2} $, 11.71% higher than T1 and 13.52% higher than T3, and the water consumption was the least, 143.73 $ m^{3} $/$ hm^{2} $, which was higher than T1 and T3, respectively. Water use efficiency (WUE) and irrigation water use efficiency (IWUE) were 1023.81 (kg/$ m^{3} $) and 1719.26 (kg/$ m^{3} $), respectively. So the ventilation treatment in the early stage is to open the North window and the roof window, and the ventilation treatment in the middle and late stage is to open the North window, the south window and the roof window simultaneously. The purpose of this paper is to perfect the theory of greenhouse environmental regulation and control, and to provide reference for further rational layout of greenhouse vents.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sunlight greenhouse</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental regulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physiological ecology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water consumption regularity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water use efficiency</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yanfei, Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xuewen, Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zengjin, Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yanbin, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cundong, Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the Institution of Engineers (India)</subfield><subfield code="d">[New Delhi] : Springer India, 2012</subfield><subfield code="g">100(2019), 4 vom: 17. Okt., Seite 743-752</subfield><subfield code="w">(DE-627)722236743</subfield><subfield code="w">(DE-600)2677555-4</subfield><subfield code="x">2250-2157</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:100</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:4</subfield><subfield code="g">day:17</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:743-752</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40030-019-00401-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">100</subfield><subfield code="j">2019</subfield><subfield code="e">4</subfield><subfield code="b">17</subfield><subfield code="c">10</subfield><subfield code="h">743-752</subfield></datafield></record></collection>
|
score |
7.4010725 |