Performance Analysis of Switching Table Based DTC for 5-Phase Induction Motor with 3-Level Inverter
Abstract When leg and level of an inverter are increased, the number of switching states increases cumulatively.When the switching table-based DTC with higher phase (leg) and level is implemented for multiphase induction motor, the switching table becomes more accurate for different types of loading...
Ausführliche Beschreibung
Autor*in: |
Mahanta, U. [verfasserIn] Panigrahi, B. P. [verfasserIn] Panda, A. K. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of the Institution of Engineers (India) - [New Delhi] : Springer India, 2012, 100(2019), 6 vom: 14. Juni, Seite 599-607 |
---|---|
Übergeordnetes Werk: |
volume:100 ; year:2019 ; number:6 ; day:14 ; month:06 ; pages:599-607 |
Links: |
---|
DOI / URN: |
10.1007/s40031-019-00415-x |
---|
Katalog-ID: |
SPR032670885 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR032670885 | ||
003 | DE-627 | ||
005 | 20220111204353.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40031-019-00415-x |2 doi | |
035 | |a (DE-627)SPR032670885 | ||
035 | |a (SPR)s40031-019-00415-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 690 |q ASE |
100 | 1 | |a Mahanta, U. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Performance Analysis of Switching Table Based DTC for 5-Phase Induction Motor with 3-Level Inverter |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract When leg and level of an inverter are increased, the number of switching states increases cumulatively.When the switching table-based DTC with higher phase (leg) and level is implemented for multiphase induction motor, the switching table becomes more accurate for different types of loading. Here, a 5-phase induction motor is simulated in MATLAB/Simulink from its dynamic mathematical equations. The switching table based direct torque control (ST-DTC) has been implemented to the simulated model through a 5-leg 3-level inverter. A performance study for ST-DTC has been carried out among 5-phase induction motor using 2-level (FPIM 2-L) inverter, 5-phase induction motor using 3-level (FPIM 3-L) inverter and 3-phase induction motor with 3-level (TPIM 3-L) inverter, and results are compared. In FPIM 3-L inverter, out of 243 switching states 20 active switching vectors are chosen for preparation of switching table, whereas in TPIM 3-L inverter, out of 27 switching states 12 switching vectors are chosen. In FPIM 2-L inverter, ten are chosen out of 32 switching states for DTC application. As the active states are increased, the numbers of sectors are also increased for FPIM 3-L inverter. With FPIM 3-L inverter, there is an improvement in settling time during step fall. The torque ripple in case of FPIM 3-L inverter is reduced by 4.18% with respect to FPIM 2-L and 2.7% with respect to TPIM 3-L inverter. However, the torque response during start is slightly sluggish in case of FPIM 3-L inverter as compared to TPIM 3-L inverter. | ||
650 | 4 | |a 5-Phase induction motor |7 (dpeaa)DE-He213 | |
650 | 4 | |a ST-DTC |7 (dpeaa)DE-He213 | |
650 | 4 | |a 3-Level inverter |7 (dpeaa)DE-He213 | |
650 | 4 | |a Multiphase |7 (dpeaa)DE-He213 | |
650 | 4 | |a Torque ripple reduction |7 (dpeaa)DE-He213 | |
650 | 4 | |a FPIM 3-L inverter |7 (dpeaa)DE-He213 | |
650 | 4 | |a FPIM 2-L inverter |7 (dpeaa)DE-He213 | |
650 | 4 | |a TPIM 3-L inverter |7 (dpeaa)DE-He213 | |
700 | 1 | |a Panigrahi, B. P. |e verfasserin |4 aut | |
700 | 1 | |a Panda, A. K. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of the Institution of Engineers (India) |d [New Delhi] : Springer India, 2012 |g 100(2019), 6 vom: 14. Juni, Seite 599-607 |w (DE-627)722236980 |w (DE-600)2677588-8 |x 2250-2114 |7 nnns |
773 | 1 | 8 | |g volume:100 |g year:2019 |g number:6 |g day:14 |g month:06 |g pages:599-607 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40031-019-00415-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 100 |j 2019 |e 6 |b 14 |c 06 |h 599-607 |
author_variant |
u m um b p p bp bpp a k p ak akp |
---|---|
matchkey_str |
article:22502114:2019----::efracaayiosicigalbsdtfrpaenutom |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s40031-019-00415-x doi (DE-627)SPR032670885 (SPR)s40031-019-00415-x-e DE-627 ger DE-627 rakwb eng 620 690 ASE Mahanta, U. verfasserin aut Performance Analysis of Switching Table Based DTC for 5-Phase Induction Motor with 3-Level Inverter 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract When leg and level of an inverter are increased, the number of switching states increases cumulatively.When the switching table-based DTC with higher phase (leg) and level is implemented for multiphase induction motor, the switching table becomes more accurate for different types of loading. Here, a 5-phase induction motor is simulated in MATLAB/Simulink from its dynamic mathematical equations. The switching table based direct torque control (ST-DTC) has been implemented to the simulated model through a 5-leg 3-level inverter. A performance study for ST-DTC has been carried out among 5-phase induction motor using 2-level (FPIM 2-L) inverter, 5-phase induction motor using 3-level (FPIM 3-L) inverter and 3-phase induction motor with 3-level (TPIM 3-L) inverter, and results are compared. In FPIM 3-L inverter, out of 243 switching states 20 active switching vectors are chosen for preparation of switching table, whereas in TPIM 3-L inverter, out of 27 switching states 12 switching vectors are chosen. In FPIM 2-L inverter, ten are chosen out of 32 switching states for DTC application. As the active states are increased, the numbers of sectors are also increased for FPIM 3-L inverter. With FPIM 3-L inverter, there is an improvement in settling time during step fall. The torque ripple in case of FPIM 3-L inverter is reduced by 4.18% with respect to FPIM 2-L and 2.7% with respect to TPIM 3-L inverter. However, the torque response during start is slightly sluggish in case of FPIM 3-L inverter as compared to TPIM 3-L inverter. 5-Phase induction motor (dpeaa)DE-He213 ST-DTC (dpeaa)DE-He213 3-Level inverter (dpeaa)DE-He213 Multiphase (dpeaa)DE-He213 Torque ripple reduction (dpeaa)DE-He213 FPIM 3-L inverter (dpeaa)DE-He213 FPIM 2-L inverter (dpeaa)DE-He213 TPIM 3-L inverter (dpeaa)DE-He213 Panigrahi, B. P. verfasserin aut Panda, A. K. verfasserin aut Enthalten in Journal of the Institution of Engineers (India) [New Delhi] : Springer India, 2012 100(2019), 6 vom: 14. Juni, Seite 599-607 (DE-627)722236980 (DE-600)2677588-8 2250-2114 nnns volume:100 year:2019 number:6 day:14 month:06 pages:599-607 https://dx.doi.org/10.1007/s40031-019-00415-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 100 2019 6 14 06 599-607 |
spelling |
10.1007/s40031-019-00415-x doi (DE-627)SPR032670885 (SPR)s40031-019-00415-x-e DE-627 ger DE-627 rakwb eng 620 690 ASE Mahanta, U. verfasserin aut Performance Analysis of Switching Table Based DTC for 5-Phase Induction Motor with 3-Level Inverter 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract When leg and level of an inverter are increased, the number of switching states increases cumulatively.When the switching table-based DTC with higher phase (leg) and level is implemented for multiphase induction motor, the switching table becomes more accurate for different types of loading. Here, a 5-phase induction motor is simulated in MATLAB/Simulink from its dynamic mathematical equations. The switching table based direct torque control (ST-DTC) has been implemented to the simulated model through a 5-leg 3-level inverter. A performance study for ST-DTC has been carried out among 5-phase induction motor using 2-level (FPIM 2-L) inverter, 5-phase induction motor using 3-level (FPIM 3-L) inverter and 3-phase induction motor with 3-level (TPIM 3-L) inverter, and results are compared. In FPIM 3-L inverter, out of 243 switching states 20 active switching vectors are chosen for preparation of switching table, whereas in TPIM 3-L inverter, out of 27 switching states 12 switching vectors are chosen. In FPIM 2-L inverter, ten are chosen out of 32 switching states for DTC application. As the active states are increased, the numbers of sectors are also increased for FPIM 3-L inverter. With FPIM 3-L inverter, there is an improvement in settling time during step fall. The torque ripple in case of FPIM 3-L inverter is reduced by 4.18% with respect to FPIM 2-L and 2.7% with respect to TPIM 3-L inverter. However, the torque response during start is slightly sluggish in case of FPIM 3-L inverter as compared to TPIM 3-L inverter. 5-Phase induction motor (dpeaa)DE-He213 ST-DTC (dpeaa)DE-He213 3-Level inverter (dpeaa)DE-He213 Multiphase (dpeaa)DE-He213 Torque ripple reduction (dpeaa)DE-He213 FPIM 3-L inverter (dpeaa)DE-He213 FPIM 2-L inverter (dpeaa)DE-He213 TPIM 3-L inverter (dpeaa)DE-He213 Panigrahi, B. P. verfasserin aut Panda, A. K. verfasserin aut Enthalten in Journal of the Institution of Engineers (India) [New Delhi] : Springer India, 2012 100(2019), 6 vom: 14. Juni, Seite 599-607 (DE-627)722236980 (DE-600)2677588-8 2250-2114 nnns volume:100 year:2019 number:6 day:14 month:06 pages:599-607 https://dx.doi.org/10.1007/s40031-019-00415-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 100 2019 6 14 06 599-607 |
allfields_unstemmed |
10.1007/s40031-019-00415-x doi (DE-627)SPR032670885 (SPR)s40031-019-00415-x-e DE-627 ger DE-627 rakwb eng 620 690 ASE Mahanta, U. verfasserin aut Performance Analysis of Switching Table Based DTC for 5-Phase Induction Motor with 3-Level Inverter 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract When leg and level of an inverter are increased, the number of switching states increases cumulatively.When the switching table-based DTC with higher phase (leg) and level is implemented for multiphase induction motor, the switching table becomes more accurate for different types of loading. Here, a 5-phase induction motor is simulated in MATLAB/Simulink from its dynamic mathematical equations. The switching table based direct torque control (ST-DTC) has been implemented to the simulated model through a 5-leg 3-level inverter. A performance study for ST-DTC has been carried out among 5-phase induction motor using 2-level (FPIM 2-L) inverter, 5-phase induction motor using 3-level (FPIM 3-L) inverter and 3-phase induction motor with 3-level (TPIM 3-L) inverter, and results are compared. In FPIM 3-L inverter, out of 243 switching states 20 active switching vectors are chosen for preparation of switching table, whereas in TPIM 3-L inverter, out of 27 switching states 12 switching vectors are chosen. In FPIM 2-L inverter, ten are chosen out of 32 switching states for DTC application. As the active states are increased, the numbers of sectors are also increased for FPIM 3-L inverter. With FPIM 3-L inverter, there is an improvement in settling time during step fall. The torque ripple in case of FPIM 3-L inverter is reduced by 4.18% with respect to FPIM 2-L and 2.7% with respect to TPIM 3-L inverter. However, the torque response during start is slightly sluggish in case of FPIM 3-L inverter as compared to TPIM 3-L inverter. 5-Phase induction motor (dpeaa)DE-He213 ST-DTC (dpeaa)DE-He213 3-Level inverter (dpeaa)DE-He213 Multiphase (dpeaa)DE-He213 Torque ripple reduction (dpeaa)DE-He213 FPIM 3-L inverter (dpeaa)DE-He213 FPIM 2-L inverter (dpeaa)DE-He213 TPIM 3-L inverter (dpeaa)DE-He213 Panigrahi, B. P. verfasserin aut Panda, A. K. verfasserin aut Enthalten in Journal of the Institution of Engineers (India) [New Delhi] : Springer India, 2012 100(2019), 6 vom: 14. Juni, Seite 599-607 (DE-627)722236980 (DE-600)2677588-8 2250-2114 nnns volume:100 year:2019 number:6 day:14 month:06 pages:599-607 https://dx.doi.org/10.1007/s40031-019-00415-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 100 2019 6 14 06 599-607 |
allfieldsGer |
10.1007/s40031-019-00415-x doi (DE-627)SPR032670885 (SPR)s40031-019-00415-x-e DE-627 ger DE-627 rakwb eng 620 690 ASE Mahanta, U. verfasserin aut Performance Analysis of Switching Table Based DTC for 5-Phase Induction Motor with 3-Level Inverter 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract When leg and level of an inverter are increased, the number of switching states increases cumulatively.When the switching table-based DTC with higher phase (leg) and level is implemented for multiphase induction motor, the switching table becomes more accurate for different types of loading. Here, a 5-phase induction motor is simulated in MATLAB/Simulink from its dynamic mathematical equations. The switching table based direct torque control (ST-DTC) has been implemented to the simulated model through a 5-leg 3-level inverter. A performance study for ST-DTC has been carried out among 5-phase induction motor using 2-level (FPIM 2-L) inverter, 5-phase induction motor using 3-level (FPIM 3-L) inverter and 3-phase induction motor with 3-level (TPIM 3-L) inverter, and results are compared. In FPIM 3-L inverter, out of 243 switching states 20 active switching vectors are chosen for preparation of switching table, whereas in TPIM 3-L inverter, out of 27 switching states 12 switching vectors are chosen. In FPIM 2-L inverter, ten are chosen out of 32 switching states for DTC application. As the active states are increased, the numbers of sectors are also increased for FPIM 3-L inverter. With FPIM 3-L inverter, there is an improvement in settling time during step fall. The torque ripple in case of FPIM 3-L inverter is reduced by 4.18% with respect to FPIM 2-L and 2.7% with respect to TPIM 3-L inverter. However, the torque response during start is slightly sluggish in case of FPIM 3-L inverter as compared to TPIM 3-L inverter. 5-Phase induction motor (dpeaa)DE-He213 ST-DTC (dpeaa)DE-He213 3-Level inverter (dpeaa)DE-He213 Multiphase (dpeaa)DE-He213 Torque ripple reduction (dpeaa)DE-He213 FPIM 3-L inverter (dpeaa)DE-He213 FPIM 2-L inverter (dpeaa)DE-He213 TPIM 3-L inverter (dpeaa)DE-He213 Panigrahi, B. P. verfasserin aut Panda, A. K. verfasserin aut Enthalten in Journal of the Institution of Engineers (India) [New Delhi] : Springer India, 2012 100(2019), 6 vom: 14. Juni, Seite 599-607 (DE-627)722236980 (DE-600)2677588-8 2250-2114 nnns volume:100 year:2019 number:6 day:14 month:06 pages:599-607 https://dx.doi.org/10.1007/s40031-019-00415-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 100 2019 6 14 06 599-607 |
allfieldsSound |
10.1007/s40031-019-00415-x doi (DE-627)SPR032670885 (SPR)s40031-019-00415-x-e DE-627 ger DE-627 rakwb eng 620 690 ASE Mahanta, U. verfasserin aut Performance Analysis of Switching Table Based DTC for 5-Phase Induction Motor with 3-Level Inverter 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract When leg and level of an inverter are increased, the number of switching states increases cumulatively.When the switching table-based DTC with higher phase (leg) and level is implemented for multiphase induction motor, the switching table becomes more accurate for different types of loading. Here, a 5-phase induction motor is simulated in MATLAB/Simulink from its dynamic mathematical equations. The switching table based direct torque control (ST-DTC) has been implemented to the simulated model through a 5-leg 3-level inverter. A performance study for ST-DTC has been carried out among 5-phase induction motor using 2-level (FPIM 2-L) inverter, 5-phase induction motor using 3-level (FPIM 3-L) inverter and 3-phase induction motor with 3-level (TPIM 3-L) inverter, and results are compared. In FPIM 3-L inverter, out of 243 switching states 20 active switching vectors are chosen for preparation of switching table, whereas in TPIM 3-L inverter, out of 27 switching states 12 switching vectors are chosen. In FPIM 2-L inverter, ten are chosen out of 32 switching states for DTC application. As the active states are increased, the numbers of sectors are also increased for FPIM 3-L inverter. With FPIM 3-L inverter, there is an improvement in settling time during step fall. The torque ripple in case of FPIM 3-L inverter is reduced by 4.18% with respect to FPIM 2-L and 2.7% with respect to TPIM 3-L inverter. However, the torque response during start is slightly sluggish in case of FPIM 3-L inverter as compared to TPIM 3-L inverter. 5-Phase induction motor (dpeaa)DE-He213 ST-DTC (dpeaa)DE-He213 3-Level inverter (dpeaa)DE-He213 Multiphase (dpeaa)DE-He213 Torque ripple reduction (dpeaa)DE-He213 FPIM 3-L inverter (dpeaa)DE-He213 FPIM 2-L inverter (dpeaa)DE-He213 TPIM 3-L inverter (dpeaa)DE-He213 Panigrahi, B. P. verfasserin aut Panda, A. K. verfasserin aut Enthalten in Journal of the Institution of Engineers (India) [New Delhi] : Springer India, 2012 100(2019), 6 vom: 14. Juni, Seite 599-607 (DE-627)722236980 (DE-600)2677588-8 2250-2114 nnns volume:100 year:2019 number:6 day:14 month:06 pages:599-607 https://dx.doi.org/10.1007/s40031-019-00415-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 100 2019 6 14 06 599-607 |
language |
English |
source |
Enthalten in Journal of the Institution of Engineers (India) 100(2019), 6 vom: 14. Juni, Seite 599-607 volume:100 year:2019 number:6 day:14 month:06 pages:599-607 |
sourceStr |
Enthalten in Journal of the Institution of Engineers (India) 100(2019), 6 vom: 14. Juni, Seite 599-607 volume:100 year:2019 number:6 day:14 month:06 pages:599-607 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
5-Phase induction motor ST-DTC 3-Level inverter Multiphase Torque ripple reduction FPIM 3-L inverter FPIM 2-L inverter TPIM 3-L inverter |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Journal of the Institution of Engineers (India) |
authorswithroles_txt_mv |
Mahanta, U. @@aut@@ Panigrahi, B. P. @@aut@@ Panda, A. K. @@aut@@ |
publishDateDaySort_date |
2019-06-14T00:00:00Z |
hierarchy_top_id |
722236980 |
dewey-sort |
3620 |
id |
SPR032670885 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032670885</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111204353.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40031-019-00415-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032670885</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40031-019-00415-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">690</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mahanta, U.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance Analysis of Switching Table Based DTC for 5-Phase Induction Motor with 3-Level Inverter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract When leg and level of an inverter are increased, the number of switching states increases cumulatively.When the switching table-based DTC with higher phase (leg) and level is implemented for multiphase induction motor, the switching table becomes more accurate for different types of loading. Here, a 5-phase induction motor is simulated in MATLAB/Simulink from its dynamic mathematical equations. The switching table based direct torque control (ST-DTC) has been implemented to the simulated model through a 5-leg 3-level inverter. A performance study for ST-DTC has been carried out among 5-phase induction motor using 2-level (FPIM 2-L) inverter, 5-phase induction motor using 3-level (FPIM 3-L) inverter and 3-phase induction motor with 3-level (TPIM 3-L) inverter, and results are compared. In FPIM 3-L inverter, out of 243 switching states 20 active switching vectors are chosen for preparation of switching table, whereas in TPIM 3-L inverter, out of 27 switching states 12 switching vectors are chosen. In FPIM 2-L inverter, ten are chosen out of 32 switching states for DTC application. As the active states are increased, the numbers of sectors are also increased for FPIM 3-L inverter. With FPIM 3-L inverter, there is an improvement in settling time during step fall. The torque ripple in case of FPIM 3-L inverter is reduced by 4.18% with respect to FPIM 2-L and 2.7% with respect to TPIM 3-L inverter. However, the torque response during start is slightly sluggish in case of FPIM 3-L inverter as compared to TPIM 3-L inverter.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">5-Phase induction motor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ST-DTC</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3-Level inverter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiphase</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Torque ripple reduction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FPIM 3-L inverter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FPIM 2-L inverter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TPIM 3-L inverter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Panigrahi, B. P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Panda, A. K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the Institution of Engineers (India)</subfield><subfield code="d">[New Delhi] : Springer India, 2012</subfield><subfield code="g">100(2019), 6 vom: 14. Juni, Seite 599-607</subfield><subfield code="w">(DE-627)722236980</subfield><subfield code="w">(DE-600)2677588-8</subfield><subfield code="x">2250-2114</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:100</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:6</subfield><subfield code="g">day:14</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:599-607</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40031-019-00415-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">100</subfield><subfield code="j">2019</subfield><subfield code="e">6</subfield><subfield code="b">14</subfield><subfield code="c">06</subfield><subfield code="h">599-607</subfield></datafield></record></collection>
|
author |
Mahanta, U. |
spellingShingle |
Mahanta, U. ddc 620 misc 5-Phase induction motor misc ST-DTC misc 3-Level inverter misc Multiphase misc Torque ripple reduction misc FPIM 3-L inverter misc FPIM 2-L inverter misc TPIM 3-L inverter Performance Analysis of Switching Table Based DTC for 5-Phase Induction Motor with 3-Level Inverter |
authorStr |
Mahanta, U. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)722236980 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2250-2114 |
topic_title |
620 690 ASE Performance Analysis of Switching Table Based DTC for 5-Phase Induction Motor with 3-Level Inverter 5-Phase induction motor (dpeaa)DE-He213 ST-DTC (dpeaa)DE-He213 3-Level inverter (dpeaa)DE-He213 Multiphase (dpeaa)DE-He213 Torque ripple reduction (dpeaa)DE-He213 FPIM 3-L inverter (dpeaa)DE-He213 FPIM 2-L inverter (dpeaa)DE-He213 TPIM 3-L inverter (dpeaa)DE-He213 |
topic |
ddc 620 misc 5-Phase induction motor misc ST-DTC misc 3-Level inverter misc Multiphase misc Torque ripple reduction misc FPIM 3-L inverter misc FPIM 2-L inverter misc TPIM 3-L inverter |
topic_unstemmed |
ddc 620 misc 5-Phase induction motor misc ST-DTC misc 3-Level inverter misc Multiphase misc Torque ripple reduction misc FPIM 3-L inverter misc FPIM 2-L inverter misc TPIM 3-L inverter |
topic_browse |
ddc 620 misc 5-Phase induction motor misc ST-DTC misc 3-Level inverter misc Multiphase misc Torque ripple reduction misc FPIM 3-L inverter misc FPIM 2-L inverter misc TPIM 3-L inverter |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of the Institution of Engineers (India) |
hierarchy_parent_id |
722236980 |
dewey-tens |
620 - Engineering 690 - Building & construction |
hierarchy_top_title |
Journal of the Institution of Engineers (India) |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)722236980 (DE-600)2677588-8 |
title |
Performance Analysis of Switching Table Based DTC for 5-Phase Induction Motor with 3-Level Inverter |
ctrlnum |
(DE-627)SPR032670885 (SPR)s40031-019-00415-x-e |
title_full |
Performance Analysis of Switching Table Based DTC for 5-Phase Induction Motor with 3-Level Inverter |
author_sort |
Mahanta, U. |
journal |
Journal of the Institution of Engineers (India) |
journalStr |
Journal of the Institution of Engineers (India) |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
599 |
author_browse |
Mahanta, U. Panigrahi, B. P. Panda, A. K. |
container_volume |
100 |
class |
620 690 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Mahanta, U. |
doi_str_mv |
10.1007/s40031-019-00415-x |
dewey-full |
620 690 |
author2-role |
verfasserin |
title_sort |
performance analysis of switching table based dtc for 5-phase induction motor with 3-level inverter |
title_auth |
Performance Analysis of Switching Table Based DTC for 5-Phase Induction Motor with 3-Level Inverter |
abstract |
Abstract When leg and level of an inverter are increased, the number of switching states increases cumulatively.When the switching table-based DTC with higher phase (leg) and level is implemented for multiphase induction motor, the switching table becomes more accurate for different types of loading. Here, a 5-phase induction motor is simulated in MATLAB/Simulink from its dynamic mathematical equations. The switching table based direct torque control (ST-DTC) has been implemented to the simulated model through a 5-leg 3-level inverter. A performance study for ST-DTC has been carried out among 5-phase induction motor using 2-level (FPIM 2-L) inverter, 5-phase induction motor using 3-level (FPIM 3-L) inverter and 3-phase induction motor with 3-level (TPIM 3-L) inverter, and results are compared. In FPIM 3-L inverter, out of 243 switching states 20 active switching vectors are chosen for preparation of switching table, whereas in TPIM 3-L inverter, out of 27 switching states 12 switching vectors are chosen. In FPIM 2-L inverter, ten are chosen out of 32 switching states for DTC application. As the active states are increased, the numbers of sectors are also increased for FPIM 3-L inverter. With FPIM 3-L inverter, there is an improvement in settling time during step fall. The torque ripple in case of FPIM 3-L inverter is reduced by 4.18% with respect to FPIM 2-L and 2.7% with respect to TPIM 3-L inverter. However, the torque response during start is slightly sluggish in case of FPIM 3-L inverter as compared to TPIM 3-L inverter. |
abstractGer |
Abstract When leg and level of an inverter are increased, the number of switching states increases cumulatively.When the switching table-based DTC with higher phase (leg) and level is implemented for multiphase induction motor, the switching table becomes more accurate for different types of loading. Here, a 5-phase induction motor is simulated in MATLAB/Simulink from its dynamic mathematical equations. The switching table based direct torque control (ST-DTC) has been implemented to the simulated model through a 5-leg 3-level inverter. A performance study for ST-DTC has been carried out among 5-phase induction motor using 2-level (FPIM 2-L) inverter, 5-phase induction motor using 3-level (FPIM 3-L) inverter and 3-phase induction motor with 3-level (TPIM 3-L) inverter, and results are compared. In FPIM 3-L inverter, out of 243 switching states 20 active switching vectors are chosen for preparation of switching table, whereas in TPIM 3-L inverter, out of 27 switching states 12 switching vectors are chosen. In FPIM 2-L inverter, ten are chosen out of 32 switching states for DTC application. As the active states are increased, the numbers of sectors are also increased for FPIM 3-L inverter. With FPIM 3-L inverter, there is an improvement in settling time during step fall. The torque ripple in case of FPIM 3-L inverter is reduced by 4.18% with respect to FPIM 2-L and 2.7% with respect to TPIM 3-L inverter. However, the torque response during start is slightly sluggish in case of FPIM 3-L inverter as compared to TPIM 3-L inverter. |
abstract_unstemmed |
Abstract When leg and level of an inverter are increased, the number of switching states increases cumulatively.When the switching table-based DTC with higher phase (leg) and level is implemented for multiphase induction motor, the switching table becomes more accurate for different types of loading. Here, a 5-phase induction motor is simulated in MATLAB/Simulink from its dynamic mathematical equations. The switching table based direct torque control (ST-DTC) has been implemented to the simulated model through a 5-leg 3-level inverter. A performance study for ST-DTC has been carried out among 5-phase induction motor using 2-level (FPIM 2-L) inverter, 5-phase induction motor using 3-level (FPIM 3-L) inverter and 3-phase induction motor with 3-level (TPIM 3-L) inverter, and results are compared. In FPIM 3-L inverter, out of 243 switching states 20 active switching vectors are chosen for preparation of switching table, whereas in TPIM 3-L inverter, out of 27 switching states 12 switching vectors are chosen. In FPIM 2-L inverter, ten are chosen out of 32 switching states for DTC application. As the active states are increased, the numbers of sectors are also increased for FPIM 3-L inverter. With FPIM 3-L inverter, there is an improvement in settling time during step fall. The torque ripple in case of FPIM 3-L inverter is reduced by 4.18% with respect to FPIM 2-L and 2.7% with respect to TPIM 3-L inverter. However, the torque response during start is slightly sluggish in case of FPIM 3-L inverter as compared to TPIM 3-L inverter. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Performance Analysis of Switching Table Based DTC for 5-Phase Induction Motor with 3-Level Inverter |
url |
https://dx.doi.org/10.1007/s40031-019-00415-x |
remote_bool |
true |
author2 |
Panigrahi, B. P. Panda, A. K. |
author2Str |
Panigrahi, B. P. Panda, A. K. |
ppnlink |
722236980 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40031-019-00415-x |
up_date |
2024-07-03T14:06:17.253Z |
_version_ |
1803567053940981760 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032670885</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111204353.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40031-019-00415-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032670885</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40031-019-00415-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">690</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mahanta, U.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance Analysis of Switching Table Based DTC for 5-Phase Induction Motor with 3-Level Inverter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract When leg and level of an inverter are increased, the number of switching states increases cumulatively.When the switching table-based DTC with higher phase (leg) and level is implemented for multiphase induction motor, the switching table becomes more accurate for different types of loading. Here, a 5-phase induction motor is simulated in MATLAB/Simulink from its dynamic mathematical equations. The switching table based direct torque control (ST-DTC) has been implemented to the simulated model through a 5-leg 3-level inverter. A performance study for ST-DTC has been carried out among 5-phase induction motor using 2-level (FPIM 2-L) inverter, 5-phase induction motor using 3-level (FPIM 3-L) inverter and 3-phase induction motor with 3-level (TPIM 3-L) inverter, and results are compared. In FPIM 3-L inverter, out of 243 switching states 20 active switching vectors are chosen for preparation of switching table, whereas in TPIM 3-L inverter, out of 27 switching states 12 switching vectors are chosen. In FPIM 2-L inverter, ten are chosen out of 32 switching states for DTC application. As the active states are increased, the numbers of sectors are also increased for FPIM 3-L inverter. With FPIM 3-L inverter, there is an improvement in settling time during step fall. The torque ripple in case of FPIM 3-L inverter is reduced by 4.18% with respect to FPIM 2-L and 2.7% with respect to TPIM 3-L inverter. However, the torque response during start is slightly sluggish in case of FPIM 3-L inverter as compared to TPIM 3-L inverter.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">5-Phase induction motor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ST-DTC</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3-Level inverter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiphase</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Torque ripple reduction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FPIM 3-L inverter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FPIM 2-L inverter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TPIM 3-L inverter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Panigrahi, B. P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Panda, A. K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the Institution of Engineers (India)</subfield><subfield code="d">[New Delhi] : Springer India, 2012</subfield><subfield code="g">100(2019), 6 vom: 14. Juni, Seite 599-607</subfield><subfield code="w">(DE-627)722236980</subfield><subfield code="w">(DE-600)2677588-8</subfield><subfield code="x">2250-2114</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:100</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:6</subfield><subfield code="g">day:14</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:599-607</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40031-019-00415-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">100</subfield><subfield code="j">2019</subfield><subfield code="e">6</subfield><subfield code="b">14</subfield><subfield code="c">06</subfield><subfield code="h">599-607</subfield></datafield></record></collection>
|
score |
7.4015627 |