On radiation effects on hydromagnetic Newtonian liquid flow due to an exponential stretching sheet
Abstract The paper investigates the radiation effect on the magnetohydrodynamic Newtonian fluid flow over an exponentially stretching sheet. The effects of frictional heating and viscous dissipation on the heat transport are taken into account. The governing partial differential equations are transf...
Ausführliche Beschreibung
Autor*in: |
Kameswaran, PK [verfasserIn] Narayana, M [verfasserIn] Sibanda, P [verfasserIn] Makanda, G [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Boundary value problems - Heidelberg : Springer, 2005, 2012(2012), 1 vom: 02. Okt. |
---|---|
Übergeordnetes Werk: |
volume:2012 ; year:2012 ; number:1 ; day:02 ; month:10 |
Links: |
---|
DOI / URN: |
10.1186/1687-2770-2012-105 |
---|
Katalog-ID: |
SPR03270397X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR03270397X | ||
003 | DE-627 | ||
005 | 20220111204153.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1687-2770-2012-105 |2 doi | |
035 | |a (DE-627)SPR03270397X | ||
035 | |a (SPR)1687-2770-2012-105-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ASE |
084 | |a 31.44 |2 bkl | ||
084 | |a 31.45 |2 bkl | ||
100 | 1 | |a Kameswaran, PK |e verfasserin |4 aut | |
245 | 1 | 0 | |a On radiation effects on hydromagnetic Newtonian liquid flow due to an exponential stretching sheet |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The paper investigates the radiation effect on the magnetohydrodynamic Newtonian fluid flow over an exponentially stretching sheet. The effects of frictional heating and viscous dissipation on the heat transport are taken into account. The governing partial differential equations are transformed into ordinary differential equations using a suitable similarity transformation. Zero-order analytical solutions of the momentum equation and confluent hypergeometric solutions of heat and mass transport equations are obtained. The accuracy of analytical solutions is verified by numerical solutions obtained using a shooting technique that uses a Runge-Kutta-Felhberg integration scheme and a Newton-Raphson correction scheme. The effects of the radiation parameter, the magnetic parameter, Gebhart and Schmidt numbers on the momentum, heat and mass transports are discussed. The skin friction and heat and mass transfer coefficients for various physical parameters are discussed. | ||
650 | 4 | |a Heat Transfer |7 (dpeaa)DE-He213 | |
650 | 4 | |a Viscous Dissipation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Magnetic Parameter |7 (dpeaa)DE-He213 | |
650 | 4 | |a Boundary Layer Flow |7 (dpeaa)DE-He213 | |
650 | 4 | |a Skin Friction Coefficient |7 (dpeaa)DE-He213 | |
700 | 1 | |a Narayana, M |e verfasserin |4 aut | |
700 | 1 | |a Sibanda, P |e verfasserin |4 aut | |
700 | 1 | |a Makanda, G |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Boundary value problems |d Heidelberg : Springer, 2005 |g 2012(2012), 1 vom: 02. Okt. |w (DE-627)48672557X |w (DE-600)2187777-4 |x 1687-2770 |7 nnns |
773 | 1 | 8 | |g volume:2012 |g year:2012 |g number:1 |g day:02 |g month:10 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1687-2770-2012-105 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.44 |q ASE |
936 | b | k | |a 31.45 |q ASE |
951 | |a AR | ||
952 | |d 2012 |j 2012 |e 1 |b 02 |c 10 |
author_variant |
p k pk m n mn p s ps g m gm |
---|---|
matchkey_str |
article:16872770:2012----::naitoefcsnyrmgeinwoiniudlwutaep |
hierarchy_sort_str |
2012 |
bklnumber |
31.44 31.45 |
publishDate |
2012 |
allfields |
10.1186/1687-2770-2012-105 doi (DE-627)SPR03270397X (SPR)1687-2770-2012-105-e DE-627 ger DE-627 rakwb eng 510 ASE 31.44 bkl 31.45 bkl Kameswaran, PK verfasserin aut On radiation effects on hydromagnetic Newtonian liquid flow due to an exponential stretching sheet 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The paper investigates the radiation effect on the magnetohydrodynamic Newtonian fluid flow over an exponentially stretching sheet. The effects of frictional heating and viscous dissipation on the heat transport are taken into account. The governing partial differential equations are transformed into ordinary differential equations using a suitable similarity transformation. Zero-order analytical solutions of the momentum equation and confluent hypergeometric solutions of heat and mass transport equations are obtained. The accuracy of analytical solutions is verified by numerical solutions obtained using a shooting technique that uses a Runge-Kutta-Felhberg integration scheme and a Newton-Raphson correction scheme. The effects of the radiation parameter, the magnetic parameter, Gebhart and Schmidt numbers on the momentum, heat and mass transports are discussed. The skin friction and heat and mass transfer coefficients for various physical parameters are discussed. Heat Transfer (dpeaa)DE-He213 Viscous Dissipation (dpeaa)DE-He213 Magnetic Parameter (dpeaa)DE-He213 Boundary Layer Flow (dpeaa)DE-He213 Skin Friction Coefficient (dpeaa)DE-He213 Narayana, M verfasserin aut Sibanda, P verfasserin aut Makanda, G verfasserin aut Enthalten in Boundary value problems Heidelberg : Springer, 2005 2012(2012), 1 vom: 02. Okt. (DE-627)48672557X (DE-600)2187777-4 1687-2770 nnns volume:2012 year:2012 number:1 day:02 month:10 https://dx.doi.org/10.1186/1687-2770-2012-105 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.44 ASE 31.45 ASE AR 2012 2012 1 02 10 |
spelling |
10.1186/1687-2770-2012-105 doi (DE-627)SPR03270397X (SPR)1687-2770-2012-105-e DE-627 ger DE-627 rakwb eng 510 ASE 31.44 bkl 31.45 bkl Kameswaran, PK verfasserin aut On radiation effects on hydromagnetic Newtonian liquid flow due to an exponential stretching sheet 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The paper investigates the radiation effect on the magnetohydrodynamic Newtonian fluid flow over an exponentially stretching sheet. The effects of frictional heating and viscous dissipation on the heat transport are taken into account. The governing partial differential equations are transformed into ordinary differential equations using a suitable similarity transformation. Zero-order analytical solutions of the momentum equation and confluent hypergeometric solutions of heat and mass transport equations are obtained. The accuracy of analytical solutions is verified by numerical solutions obtained using a shooting technique that uses a Runge-Kutta-Felhberg integration scheme and a Newton-Raphson correction scheme. The effects of the radiation parameter, the magnetic parameter, Gebhart and Schmidt numbers on the momentum, heat and mass transports are discussed. The skin friction and heat and mass transfer coefficients for various physical parameters are discussed. Heat Transfer (dpeaa)DE-He213 Viscous Dissipation (dpeaa)DE-He213 Magnetic Parameter (dpeaa)DE-He213 Boundary Layer Flow (dpeaa)DE-He213 Skin Friction Coefficient (dpeaa)DE-He213 Narayana, M verfasserin aut Sibanda, P verfasserin aut Makanda, G verfasserin aut Enthalten in Boundary value problems Heidelberg : Springer, 2005 2012(2012), 1 vom: 02. Okt. (DE-627)48672557X (DE-600)2187777-4 1687-2770 nnns volume:2012 year:2012 number:1 day:02 month:10 https://dx.doi.org/10.1186/1687-2770-2012-105 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.44 ASE 31.45 ASE AR 2012 2012 1 02 10 |
allfields_unstemmed |
10.1186/1687-2770-2012-105 doi (DE-627)SPR03270397X (SPR)1687-2770-2012-105-e DE-627 ger DE-627 rakwb eng 510 ASE 31.44 bkl 31.45 bkl Kameswaran, PK verfasserin aut On radiation effects on hydromagnetic Newtonian liquid flow due to an exponential stretching sheet 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The paper investigates the radiation effect on the magnetohydrodynamic Newtonian fluid flow over an exponentially stretching sheet. The effects of frictional heating and viscous dissipation on the heat transport are taken into account. The governing partial differential equations are transformed into ordinary differential equations using a suitable similarity transformation. Zero-order analytical solutions of the momentum equation and confluent hypergeometric solutions of heat and mass transport equations are obtained. The accuracy of analytical solutions is verified by numerical solutions obtained using a shooting technique that uses a Runge-Kutta-Felhberg integration scheme and a Newton-Raphson correction scheme. The effects of the radiation parameter, the magnetic parameter, Gebhart and Schmidt numbers on the momentum, heat and mass transports are discussed. The skin friction and heat and mass transfer coefficients for various physical parameters are discussed. Heat Transfer (dpeaa)DE-He213 Viscous Dissipation (dpeaa)DE-He213 Magnetic Parameter (dpeaa)DE-He213 Boundary Layer Flow (dpeaa)DE-He213 Skin Friction Coefficient (dpeaa)DE-He213 Narayana, M verfasserin aut Sibanda, P verfasserin aut Makanda, G verfasserin aut Enthalten in Boundary value problems Heidelberg : Springer, 2005 2012(2012), 1 vom: 02. Okt. (DE-627)48672557X (DE-600)2187777-4 1687-2770 nnns volume:2012 year:2012 number:1 day:02 month:10 https://dx.doi.org/10.1186/1687-2770-2012-105 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.44 ASE 31.45 ASE AR 2012 2012 1 02 10 |
allfieldsGer |
10.1186/1687-2770-2012-105 doi (DE-627)SPR03270397X (SPR)1687-2770-2012-105-e DE-627 ger DE-627 rakwb eng 510 ASE 31.44 bkl 31.45 bkl Kameswaran, PK verfasserin aut On radiation effects on hydromagnetic Newtonian liquid flow due to an exponential stretching sheet 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The paper investigates the radiation effect on the magnetohydrodynamic Newtonian fluid flow over an exponentially stretching sheet. The effects of frictional heating and viscous dissipation on the heat transport are taken into account. The governing partial differential equations are transformed into ordinary differential equations using a suitable similarity transformation. Zero-order analytical solutions of the momentum equation and confluent hypergeometric solutions of heat and mass transport equations are obtained. The accuracy of analytical solutions is verified by numerical solutions obtained using a shooting technique that uses a Runge-Kutta-Felhberg integration scheme and a Newton-Raphson correction scheme. The effects of the radiation parameter, the magnetic parameter, Gebhart and Schmidt numbers on the momentum, heat and mass transports are discussed. The skin friction and heat and mass transfer coefficients for various physical parameters are discussed. Heat Transfer (dpeaa)DE-He213 Viscous Dissipation (dpeaa)DE-He213 Magnetic Parameter (dpeaa)DE-He213 Boundary Layer Flow (dpeaa)DE-He213 Skin Friction Coefficient (dpeaa)DE-He213 Narayana, M verfasserin aut Sibanda, P verfasserin aut Makanda, G verfasserin aut Enthalten in Boundary value problems Heidelberg : Springer, 2005 2012(2012), 1 vom: 02. Okt. (DE-627)48672557X (DE-600)2187777-4 1687-2770 nnns volume:2012 year:2012 number:1 day:02 month:10 https://dx.doi.org/10.1186/1687-2770-2012-105 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.44 ASE 31.45 ASE AR 2012 2012 1 02 10 |
allfieldsSound |
10.1186/1687-2770-2012-105 doi (DE-627)SPR03270397X (SPR)1687-2770-2012-105-e DE-627 ger DE-627 rakwb eng 510 ASE 31.44 bkl 31.45 bkl Kameswaran, PK verfasserin aut On radiation effects on hydromagnetic Newtonian liquid flow due to an exponential stretching sheet 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The paper investigates the radiation effect on the magnetohydrodynamic Newtonian fluid flow over an exponentially stretching sheet. The effects of frictional heating and viscous dissipation on the heat transport are taken into account. The governing partial differential equations are transformed into ordinary differential equations using a suitable similarity transformation. Zero-order analytical solutions of the momentum equation and confluent hypergeometric solutions of heat and mass transport equations are obtained. The accuracy of analytical solutions is verified by numerical solutions obtained using a shooting technique that uses a Runge-Kutta-Felhberg integration scheme and a Newton-Raphson correction scheme. The effects of the radiation parameter, the magnetic parameter, Gebhart and Schmidt numbers on the momentum, heat and mass transports are discussed. The skin friction and heat and mass transfer coefficients for various physical parameters are discussed. Heat Transfer (dpeaa)DE-He213 Viscous Dissipation (dpeaa)DE-He213 Magnetic Parameter (dpeaa)DE-He213 Boundary Layer Flow (dpeaa)DE-He213 Skin Friction Coefficient (dpeaa)DE-He213 Narayana, M verfasserin aut Sibanda, P verfasserin aut Makanda, G verfasserin aut Enthalten in Boundary value problems Heidelberg : Springer, 2005 2012(2012), 1 vom: 02. Okt. (DE-627)48672557X (DE-600)2187777-4 1687-2770 nnns volume:2012 year:2012 number:1 day:02 month:10 https://dx.doi.org/10.1186/1687-2770-2012-105 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.44 ASE 31.45 ASE AR 2012 2012 1 02 10 |
language |
English |
source |
Enthalten in Boundary value problems 2012(2012), 1 vom: 02. Okt. volume:2012 year:2012 number:1 day:02 month:10 |
sourceStr |
Enthalten in Boundary value problems 2012(2012), 1 vom: 02. Okt. volume:2012 year:2012 number:1 day:02 month:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Heat Transfer Viscous Dissipation Magnetic Parameter Boundary Layer Flow Skin Friction Coefficient |
dewey-raw |
510 |
isfreeaccess_bool |
true |
container_title |
Boundary value problems |
authorswithroles_txt_mv |
Kameswaran, PK @@aut@@ Narayana, M @@aut@@ Sibanda, P @@aut@@ Makanda, G @@aut@@ |
publishDateDaySort_date |
2012-10-02T00:00:00Z |
hierarchy_top_id |
48672557X |
dewey-sort |
3510 |
id |
SPR03270397X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR03270397X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111204153.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1687-2770-2012-105</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR03270397X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1687-2770-2012-105-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.44</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kameswaran, PK</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On radiation effects on hydromagnetic Newtonian liquid flow due to an exponential stretching sheet</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The paper investigates the radiation effect on the magnetohydrodynamic Newtonian fluid flow over an exponentially stretching sheet. The effects of frictional heating and viscous dissipation on the heat transport are taken into account. The governing partial differential equations are transformed into ordinary differential equations using a suitable similarity transformation. Zero-order analytical solutions of the momentum equation and confluent hypergeometric solutions of heat and mass transport equations are obtained. The accuracy of analytical solutions is verified by numerical solutions obtained using a shooting technique that uses a Runge-Kutta-Felhberg integration scheme and a Newton-Raphson correction scheme. The effects of the radiation parameter, the magnetic parameter, Gebhart and Schmidt numbers on the momentum, heat and mass transports are discussed. The skin friction and heat and mass transfer coefficients for various physical parameters are discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat Transfer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscous Dissipation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic Parameter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary Layer Flow</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Skin Friction Coefficient</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Narayana, M</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sibanda, P</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Makanda, G</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Boundary value problems</subfield><subfield code="d">Heidelberg : Springer, 2005</subfield><subfield code="g">2012(2012), 1 vom: 02. Okt.</subfield><subfield code="w">(DE-627)48672557X</subfield><subfield code="w">(DE-600)2187777-4</subfield><subfield code="x">1687-2770</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2012</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">day:02</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1687-2770-2012-105</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.44</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.45</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2012</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="b">02</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
author |
Kameswaran, PK |
spellingShingle |
Kameswaran, PK ddc 510 bkl 31.44 bkl 31.45 misc Heat Transfer misc Viscous Dissipation misc Magnetic Parameter misc Boundary Layer Flow misc Skin Friction Coefficient On radiation effects on hydromagnetic Newtonian liquid flow due to an exponential stretching sheet |
authorStr |
Kameswaran, PK |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)48672557X |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1687-2770 |
topic_title |
510 ASE 31.44 bkl 31.45 bkl On radiation effects on hydromagnetic Newtonian liquid flow due to an exponential stretching sheet Heat Transfer (dpeaa)DE-He213 Viscous Dissipation (dpeaa)DE-He213 Magnetic Parameter (dpeaa)DE-He213 Boundary Layer Flow (dpeaa)DE-He213 Skin Friction Coefficient (dpeaa)DE-He213 |
topic |
ddc 510 bkl 31.44 bkl 31.45 misc Heat Transfer misc Viscous Dissipation misc Magnetic Parameter misc Boundary Layer Flow misc Skin Friction Coefficient |
topic_unstemmed |
ddc 510 bkl 31.44 bkl 31.45 misc Heat Transfer misc Viscous Dissipation misc Magnetic Parameter misc Boundary Layer Flow misc Skin Friction Coefficient |
topic_browse |
ddc 510 bkl 31.44 bkl 31.45 misc Heat Transfer misc Viscous Dissipation misc Magnetic Parameter misc Boundary Layer Flow misc Skin Friction Coefficient |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Boundary value problems |
hierarchy_parent_id |
48672557X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Boundary value problems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)48672557X (DE-600)2187777-4 |
title |
On radiation effects on hydromagnetic Newtonian liquid flow due to an exponential stretching sheet |
ctrlnum |
(DE-627)SPR03270397X (SPR)1687-2770-2012-105-e |
title_full |
On radiation effects on hydromagnetic Newtonian liquid flow due to an exponential stretching sheet |
author_sort |
Kameswaran, PK |
journal |
Boundary value problems |
journalStr |
Boundary value problems |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
author_browse |
Kameswaran, PK Narayana, M Sibanda, P Makanda, G |
container_volume |
2012 |
class |
510 ASE 31.44 bkl 31.45 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kameswaran, PK |
doi_str_mv |
10.1186/1687-2770-2012-105 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
on radiation effects on hydromagnetic newtonian liquid flow due to an exponential stretching sheet |
title_auth |
On radiation effects on hydromagnetic Newtonian liquid flow due to an exponential stretching sheet |
abstract |
Abstract The paper investigates the radiation effect on the magnetohydrodynamic Newtonian fluid flow over an exponentially stretching sheet. The effects of frictional heating and viscous dissipation on the heat transport are taken into account. The governing partial differential equations are transformed into ordinary differential equations using a suitable similarity transformation. Zero-order analytical solutions of the momentum equation and confluent hypergeometric solutions of heat and mass transport equations are obtained. The accuracy of analytical solutions is verified by numerical solutions obtained using a shooting technique that uses a Runge-Kutta-Felhberg integration scheme and a Newton-Raphson correction scheme. The effects of the radiation parameter, the magnetic parameter, Gebhart and Schmidt numbers on the momentum, heat and mass transports are discussed. The skin friction and heat and mass transfer coefficients for various physical parameters are discussed. |
abstractGer |
Abstract The paper investigates the radiation effect on the magnetohydrodynamic Newtonian fluid flow over an exponentially stretching sheet. The effects of frictional heating and viscous dissipation on the heat transport are taken into account. The governing partial differential equations are transformed into ordinary differential equations using a suitable similarity transformation. Zero-order analytical solutions of the momentum equation and confluent hypergeometric solutions of heat and mass transport equations are obtained. The accuracy of analytical solutions is verified by numerical solutions obtained using a shooting technique that uses a Runge-Kutta-Felhberg integration scheme and a Newton-Raphson correction scheme. The effects of the radiation parameter, the magnetic parameter, Gebhart and Schmidt numbers on the momentum, heat and mass transports are discussed. The skin friction and heat and mass transfer coefficients for various physical parameters are discussed. |
abstract_unstemmed |
Abstract The paper investigates the radiation effect on the magnetohydrodynamic Newtonian fluid flow over an exponentially stretching sheet. The effects of frictional heating and viscous dissipation on the heat transport are taken into account. The governing partial differential equations are transformed into ordinary differential equations using a suitable similarity transformation. Zero-order analytical solutions of the momentum equation and confluent hypergeometric solutions of heat and mass transport equations are obtained. The accuracy of analytical solutions is verified by numerical solutions obtained using a shooting technique that uses a Runge-Kutta-Felhberg integration scheme and a Newton-Raphson correction scheme. The effects of the radiation parameter, the magnetic parameter, Gebhart and Schmidt numbers on the momentum, heat and mass transports are discussed. The skin friction and heat and mass transfer coefficients for various physical parameters are discussed. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
On radiation effects on hydromagnetic Newtonian liquid flow due to an exponential stretching sheet |
url |
https://dx.doi.org/10.1186/1687-2770-2012-105 |
remote_bool |
true |
author2 |
Narayana, M Sibanda, P Makanda, G |
author2Str |
Narayana, M Sibanda, P Makanda, G |
ppnlink |
48672557X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1687-2770-2012-105 |
up_date |
2024-07-03T14:17:35.435Z |
_version_ |
1803567765064253440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR03270397X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111204153.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1687-2770-2012-105</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR03270397X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1687-2770-2012-105-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.44</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kameswaran, PK</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On radiation effects on hydromagnetic Newtonian liquid flow due to an exponential stretching sheet</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The paper investigates the radiation effect on the magnetohydrodynamic Newtonian fluid flow over an exponentially stretching sheet. The effects of frictional heating and viscous dissipation on the heat transport are taken into account. The governing partial differential equations are transformed into ordinary differential equations using a suitable similarity transformation. Zero-order analytical solutions of the momentum equation and confluent hypergeometric solutions of heat and mass transport equations are obtained. The accuracy of analytical solutions is verified by numerical solutions obtained using a shooting technique that uses a Runge-Kutta-Felhberg integration scheme and a Newton-Raphson correction scheme. The effects of the radiation parameter, the magnetic parameter, Gebhart and Schmidt numbers on the momentum, heat and mass transports are discussed. The skin friction and heat and mass transfer coefficients for various physical parameters are discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat Transfer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscous Dissipation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic Parameter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary Layer Flow</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Skin Friction Coefficient</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Narayana, M</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sibanda, P</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Makanda, G</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Boundary value problems</subfield><subfield code="d">Heidelberg : Springer, 2005</subfield><subfield code="g">2012(2012), 1 vom: 02. Okt.</subfield><subfield code="w">(DE-627)48672557X</subfield><subfield code="w">(DE-600)2187777-4</subfield><subfield code="x">1687-2770</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2012</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">day:02</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1687-2770-2012-105</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.44</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.45</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2012</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="b">02</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
score |
7.401058 |