Convergence in %$s_{2}%$-quasicontinuous posets
Abstract In this paper, we present one way to generalize %${\mathcal {S}}%$-convergence and %${\mathcal {GS}}%$-convergence of nets for arbitrary posets by use of the cut operator instead of joins. Some convergence theoretical characterizations of %$s_2%$-continuity and %$s_2%$-quasicontinuity of po...
Ausführliche Beschreibung
Autor*in: |
Ruan, Xiao-jun [verfasserIn] Xu, Xiao-quan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: SpringerPlus - London : Biomed Central, 2012, 5(2016), 1 vom: 29. Feb. |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2016 ; number:1 ; day:29 ; month:02 |
Links: |
---|
DOI / URN: |
10.1186/s40064-016-1873-6 |
---|
Katalog-ID: |
SPR03277723X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR03277723X | ||
003 | DE-627 | ||
005 | 20220111205119.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40064-016-1873-6 |2 doi | |
035 | |a (DE-627)SPR03277723X | ||
035 | |a (SPR)s40064-016-1873-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q ASE |
100 | 1 | |a Ruan, Xiao-jun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Convergence in %$s_{2}%$-quasicontinuous posets |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract In this paper, we present one way to generalize %${\mathcal {S}}%$-convergence and %${\mathcal {GS}}%$-convergence of nets for arbitrary posets by use of the cut operator instead of joins. Some convergence theoretical characterizations of %$s_2%$-continuity and %$s_2%$-quasicontinuity of posets are given. The main results are: (1) a poset P is %$s_2%$-continuous if and only if the %${\mathcal {S}}%$-convergence in P is topological; (2) P is %$s_2%$-quasicontinuous if and only if the %${\mathcal {GS}}%$-convergence in P is topological. | ||
650 | 4 | |a -Continuous poset |7 (dpeaa)DE-He213 | |
650 | 4 | |a -Quasicontinuous poset |7 (dpeaa)DE-He213 | |
650 | 4 | |a Weak Scott topology |7 (dpeaa)DE-He213 | |
650 | 4 | |a -Convergence |7 (dpeaa)DE-He213 | |
650 | 4 | |a -Convergence |7 (dpeaa)DE-He213 | |
700 | 1 | |a Xu, Xiao-quan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t SpringerPlus |d London : Biomed Central, 2012 |g 5(2016), 1 vom: 29. Feb. |w (DE-627)718615298 |w (DE-600)2661116-8 |x 2193-1801 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2016 |g number:1 |g day:29 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40064-016-1873-6 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2016 |e 1 |b 29 |c 02 |
author_variant |
x j r xjr x q x xqx |
---|---|
matchkey_str |
article:21931801:2016----::ovrecis2uscni |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1186/s40064-016-1873-6 doi (DE-627)SPR03277723X (SPR)s40064-016-1873-6-e DE-627 ger DE-627 rakwb eng 600 ASE Ruan, Xiao-jun verfasserin aut Convergence in %$s_{2}%$-quasicontinuous posets 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we present one way to generalize %${\mathcal {S}}%$-convergence and %${\mathcal {GS}}%$-convergence of nets for arbitrary posets by use of the cut operator instead of joins. Some convergence theoretical characterizations of %$s_2%$-continuity and %$s_2%$-quasicontinuity of posets are given. The main results are: (1) a poset P is %$s_2%$-continuous if and only if the %${\mathcal {S}}%$-convergence in P is topological; (2) P is %$s_2%$-quasicontinuous if and only if the %${\mathcal {GS}}%$-convergence in P is topological. -Continuous poset (dpeaa)DE-He213 -Quasicontinuous poset (dpeaa)DE-He213 Weak Scott topology (dpeaa)DE-He213 -Convergence (dpeaa)DE-He213 -Convergence (dpeaa)DE-He213 Xu, Xiao-quan verfasserin aut Enthalten in SpringerPlus London : Biomed Central, 2012 5(2016), 1 vom: 29. Feb. (DE-627)718615298 (DE-600)2661116-8 2193-1801 nnns volume:5 year:2016 number:1 day:29 month:02 https://dx.doi.org/10.1186/s40064-016-1873-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2016 1 29 02 |
spelling |
10.1186/s40064-016-1873-6 doi (DE-627)SPR03277723X (SPR)s40064-016-1873-6-e DE-627 ger DE-627 rakwb eng 600 ASE Ruan, Xiao-jun verfasserin aut Convergence in %$s_{2}%$-quasicontinuous posets 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we present one way to generalize %${\mathcal {S}}%$-convergence and %${\mathcal {GS}}%$-convergence of nets for arbitrary posets by use of the cut operator instead of joins. Some convergence theoretical characterizations of %$s_2%$-continuity and %$s_2%$-quasicontinuity of posets are given. The main results are: (1) a poset P is %$s_2%$-continuous if and only if the %${\mathcal {S}}%$-convergence in P is topological; (2) P is %$s_2%$-quasicontinuous if and only if the %${\mathcal {GS}}%$-convergence in P is topological. -Continuous poset (dpeaa)DE-He213 -Quasicontinuous poset (dpeaa)DE-He213 Weak Scott topology (dpeaa)DE-He213 -Convergence (dpeaa)DE-He213 -Convergence (dpeaa)DE-He213 Xu, Xiao-quan verfasserin aut Enthalten in SpringerPlus London : Biomed Central, 2012 5(2016), 1 vom: 29. Feb. (DE-627)718615298 (DE-600)2661116-8 2193-1801 nnns volume:5 year:2016 number:1 day:29 month:02 https://dx.doi.org/10.1186/s40064-016-1873-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2016 1 29 02 |
allfields_unstemmed |
10.1186/s40064-016-1873-6 doi (DE-627)SPR03277723X (SPR)s40064-016-1873-6-e DE-627 ger DE-627 rakwb eng 600 ASE Ruan, Xiao-jun verfasserin aut Convergence in %$s_{2}%$-quasicontinuous posets 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we present one way to generalize %${\mathcal {S}}%$-convergence and %${\mathcal {GS}}%$-convergence of nets for arbitrary posets by use of the cut operator instead of joins. Some convergence theoretical characterizations of %$s_2%$-continuity and %$s_2%$-quasicontinuity of posets are given. The main results are: (1) a poset P is %$s_2%$-continuous if and only if the %${\mathcal {S}}%$-convergence in P is topological; (2) P is %$s_2%$-quasicontinuous if and only if the %${\mathcal {GS}}%$-convergence in P is topological. -Continuous poset (dpeaa)DE-He213 -Quasicontinuous poset (dpeaa)DE-He213 Weak Scott topology (dpeaa)DE-He213 -Convergence (dpeaa)DE-He213 -Convergence (dpeaa)DE-He213 Xu, Xiao-quan verfasserin aut Enthalten in SpringerPlus London : Biomed Central, 2012 5(2016), 1 vom: 29. Feb. (DE-627)718615298 (DE-600)2661116-8 2193-1801 nnns volume:5 year:2016 number:1 day:29 month:02 https://dx.doi.org/10.1186/s40064-016-1873-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2016 1 29 02 |
allfieldsGer |
10.1186/s40064-016-1873-6 doi (DE-627)SPR03277723X (SPR)s40064-016-1873-6-e DE-627 ger DE-627 rakwb eng 600 ASE Ruan, Xiao-jun verfasserin aut Convergence in %$s_{2}%$-quasicontinuous posets 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we present one way to generalize %${\mathcal {S}}%$-convergence and %${\mathcal {GS}}%$-convergence of nets for arbitrary posets by use of the cut operator instead of joins. Some convergence theoretical characterizations of %$s_2%$-continuity and %$s_2%$-quasicontinuity of posets are given. The main results are: (1) a poset P is %$s_2%$-continuous if and only if the %${\mathcal {S}}%$-convergence in P is topological; (2) P is %$s_2%$-quasicontinuous if and only if the %${\mathcal {GS}}%$-convergence in P is topological. -Continuous poset (dpeaa)DE-He213 -Quasicontinuous poset (dpeaa)DE-He213 Weak Scott topology (dpeaa)DE-He213 -Convergence (dpeaa)DE-He213 -Convergence (dpeaa)DE-He213 Xu, Xiao-quan verfasserin aut Enthalten in SpringerPlus London : Biomed Central, 2012 5(2016), 1 vom: 29. Feb. (DE-627)718615298 (DE-600)2661116-8 2193-1801 nnns volume:5 year:2016 number:1 day:29 month:02 https://dx.doi.org/10.1186/s40064-016-1873-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2016 1 29 02 |
allfieldsSound |
10.1186/s40064-016-1873-6 doi (DE-627)SPR03277723X (SPR)s40064-016-1873-6-e DE-627 ger DE-627 rakwb eng 600 ASE Ruan, Xiao-jun verfasserin aut Convergence in %$s_{2}%$-quasicontinuous posets 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we present one way to generalize %${\mathcal {S}}%$-convergence and %${\mathcal {GS}}%$-convergence of nets for arbitrary posets by use of the cut operator instead of joins. Some convergence theoretical characterizations of %$s_2%$-continuity and %$s_2%$-quasicontinuity of posets are given. The main results are: (1) a poset P is %$s_2%$-continuous if and only if the %${\mathcal {S}}%$-convergence in P is topological; (2) P is %$s_2%$-quasicontinuous if and only if the %${\mathcal {GS}}%$-convergence in P is topological. -Continuous poset (dpeaa)DE-He213 -Quasicontinuous poset (dpeaa)DE-He213 Weak Scott topology (dpeaa)DE-He213 -Convergence (dpeaa)DE-He213 -Convergence (dpeaa)DE-He213 Xu, Xiao-quan verfasserin aut Enthalten in SpringerPlus London : Biomed Central, 2012 5(2016), 1 vom: 29. Feb. (DE-627)718615298 (DE-600)2661116-8 2193-1801 nnns volume:5 year:2016 number:1 day:29 month:02 https://dx.doi.org/10.1186/s40064-016-1873-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2016 1 29 02 |
language |
English |
source |
Enthalten in SpringerPlus 5(2016), 1 vom: 29. Feb. volume:5 year:2016 number:1 day:29 month:02 |
sourceStr |
Enthalten in SpringerPlus 5(2016), 1 vom: 29. Feb. volume:5 year:2016 number:1 day:29 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
-Continuous poset -Quasicontinuous poset Weak Scott topology -Convergence |
dewey-raw |
600 |
isfreeaccess_bool |
true |
container_title |
SpringerPlus |
authorswithroles_txt_mv |
Ruan, Xiao-jun @@aut@@ Xu, Xiao-quan @@aut@@ |
publishDateDaySort_date |
2016-02-29T00:00:00Z |
hierarchy_top_id |
718615298 |
dewey-sort |
3600 |
id |
SPR03277723X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR03277723X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111205119.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40064-016-1873-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR03277723X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40064-016-1873-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ruan, Xiao-jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convergence in %$s_{2}%$-quasicontinuous posets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we present one way to generalize %${\mathcal {S}}%$-convergence and %${\mathcal {GS}}%$-convergence of nets for arbitrary posets by use of the cut operator instead of joins. Some convergence theoretical characterizations of %$s_2%$-continuity and %$s_2%$-quasicontinuity of posets are given. The main results are: (1) a poset P is %$s_2%$-continuous if and only if the %${\mathcal {S}}%$-convergence in P is topological; (2) P is %$s_2%$-quasicontinuous if and only if the %${\mathcal {GS}}%$-convergence in P is topological.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Continuous poset</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Quasicontinuous poset</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weak Scott topology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Convergence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Convergence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Xiao-quan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">SpringerPlus</subfield><subfield code="d">London : Biomed Central, 2012</subfield><subfield code="g">5(2016), 1 vom: 29. Feb.</subfield><subfield code="w">(DE-627)718615298</subfield><subfield code="w">(DE-600)2661116-8</subfield><subfield code="x">2193-1801</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40064-016-1873-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Ruan, Xiao-jun |
spellingShingle |
Ruan, Xiao-jun ddc 600 misc -Continuous poset misc -Quasicontinuous poset misc Weak Scott topology misc -Convergence Convergence in %$s_{2}%$-quasicontinuous posets |
authorStr |
Ruan, Xiao-jun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718615298 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2193-1801 |
topic_title |
600 ASE Convergence in %$s_{2}%$-quasicontinuous posets -Continuous poset (dpeaa)DE-He213 -Quasicontinuous poset (dpeaa)DE-He213 Weak Scott topology (dpeaa)DE-He213 -Convergence (dpeaa)DE-He213 |
topic |
ddc 600 misc -Continuous poset misc -Quasicontinuous poset misc Weak Scott topology misc -Convergence |
topic_unstemmed |
ddc 600 misc -Continuous poset misc -Quasicontinuous poset misc Weak Scott topology misc -Convergence |
topic_browse |
ddc 600 misc -Continuous poset misc -Quasicontinuous poset misc Weak Scott topology misc -Convergence |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
SpringerPlus |
hierarchy_parent_id |
718615298 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
SpringerPlus |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718615298 (DE-600)2661116-8 |
title |
Convergence in %$s_{2}%$-quasicontinuous posets |
ctrlnum |
(DE-627)SPR03277723X (SPR)s40064-016-1873-6-e |
title_full |
Convergence in %$s_{2}%$-quasicontinuous posets |
author_sort |
Ruan, Xiao-jun |
journal |
SpringerPlus |
journalStr |
SpringerPlus |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Ruan, Xiao-jun Xu, Xiao-quan |
container_volume |
5 |
class |
600 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Ruan, Xiao-jun |
doi_str_mv |
10.1186/s40064-016-1873-6 |
dewey-full |
600 |
author2-role |
verfasserin |
title_sort |
convergence in %$s_{2}%$-quasicontinuous posets |
title_auth |
Convergence in %$s_{2}%$-quasicontinuous posets |
abstract |
Abstract In this paper, we present one way to generalize %${\mathcal {S}}%$-convergence and %${\mathcal {GS}}%$-convergence of nets for arbitrary posets by use of the cut operator instead of joins. Some convergence theoretical characterizations of %$s_2%$-continuity and %$s_2%$-quasicontinuity of posets are given. The main results are: (1) a poset P is %$s_2%$-continuous if and only if the %${\mathcal {S}}%$-convergence in P is topological; (2) P is %$s_2%$-quasicontinuous if and only if the %${\mathcal {GS}}%$-convergence in P is topological. |
abstractGer |
Abstract In this paper, we present one way to generalize %${\mathcal {S}}%$-convergence and %${\mathcal {GS}}%$-convergence of nets for arbitrary posets by use of the cut operator instead of joins. Some convergence theoretical characterizations of %$s_2%$-continuity and %$s_2%$-quasicontinuity of posets are given. The main results are: (1) a poset P is %$s_2%$-continuous if and only if the %${\mathcal {S}}%$-convergence in P is topological; (2) P is %$s_2%$-quasicontinuous if and only if the %${\mathcal {GS}}%$-convergence in P is topological. |
abstract_unstemmed |
Abstract In this paper, we present one way to generalize %${\mathcal {S}}%$-convergence and %${\mathcal {GS}}%$-convergence of nets for arbitrary posets by use of the cut operator instead of joins. Some convergence theoretical characterizations of %$s_2%$-continuity and %$s_2%$-quasicontinuity of posets are given. The main results are: (1) a poset P is %$s_2%$-continuous if and only if the %${\mathcal {S}}%$-convergence in P is topological; (2) P is %$s_2%$-quasicontinuous if and only if the %${\mathcal {GS}}%$-convergence in P is topological. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Convergence in %$s_{2}%$-quasicontinuous posets |
url |
https://dx.doi.org/10.1186/s40064-016-1873-6 |
remote_bool |
true |
author2 |
Xu, Xiao-quan |
author2Str |
Xu, Xiao-quan |
ppnlink |
718615298 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40064-016-1873-6 |
up_date |
2024-07-03T14:43:59.407Z |
_version_ |
1803569425983471616 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR03277723X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111205119.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40064-016-1873-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR03277723X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40064-016-1873-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ruan, Xiao-jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convergence in %$s_{2}%$-quasicontinuous posets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we present one way to generalize %${\mathcal {S}}%$-convergence and %${\mathcal {GS}}%$-convergence of nets for arbitrary posets by use of the cut operator instead of joins. Some convergence theoretical characterizations of %$s_2%$-continuity and %$s_2%$-quasicontinuity of posets are given. The main results are: (1) a poset P is %$s_2%$-continuous if and only if the %${\mathcal {S}}%$-convergence in P is topological; (2) P is %$s_2%$-quasicontinuous if and only if the %${\mathcal {GS}}%$-convergence in P is topological.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Continuous poset</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Quasicontinuous poset</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weak Scott topology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Convergence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Convergence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Xiao-quan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">SpringerPlus</subfield><subfield code="d">London : Biomed Central, 2012</subfield><subfield code="g">5(2016), 1 vom: 29. Feb.</subfield><subfield code="w">(DE-627)718615298</subfield><subfield code="w">(DE-600)2661116-8</subfield><subfield code="x">2193-1801</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40064-016-1873-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.400032 |