A study on the thermoelasticity of three-phase-lag dipolar materials with voids
Abstract With a wide applicability in solid state mechanics, the theory of continuous dipolar materials with voids is a distinctive part of microstructure theory, a theory that emerged with the necessity of eliminating the discrepancies between the classical theory and its experimental applications....
Ausführliche Beschreibung
Autor*in: |
Codarcea-Munteanu, Lavinia [verfasserIn] Marin, Marin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Boundary value problems - Heidelberg : Springer, 2005, 2019(2019), 1 vom: 22. Aug. |
---|---|
Übergeordnetes Werk: |
volume:2019 ; year:2019 ; number:1 ; day:22 ; month:08 |
Links: |
---|
DOI / URN: |
10.1186/s13661-019-1250-9 |
---|
Katalog-ID: |
SPR032879571 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR032879571 | ||
003 | DE-627 | ||
005 | 20220111204300.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13661-019-1250-9 |2 doi | |
035 | |a (DE-627)SPR032879571 | ||
035 | |a (SPR)s13661-019-1250-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ASE |
084 | |a 31.44 |2 bkl | ||
084 | |a 31.45 |2 bkl | ||
100 | 1 | |a Codarcea-Munteanu, Lavinia |e verfasserin |4 aut | |
245 | 1 | 2 | |a A study on the thermoelasticity of three-phase-lag dipolar materials with voids |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract With a wide applicability in solid state mechanics, the theory of continuous dipolar materials with voids is a distinctive part of microstructure theory, a theory that emerged with the necessity of eliminating the discrepancies between the classical theory and its experimental applications. These inconsistencies are caused by the influence of the microstructure of materials on the general deformations of the bodies, such as ceramics, graphite or polymers. In the present work, we study the mixed boundary value problem with initial data for the thermoelasticity of three-phase-lag dipolar materials with voids, in order to obtain the corresponding constitutive laws, using the same method as in the classical elasticity. By going deeper into the study of these materials, we achieve a uniqueness result and a reciprocal relation, using less common methods, like the dissipative inequality regarding the result of uniqueness. Along with these aspects, we demonstrate a variational principle for anisotropic and non-homogeneous materials, derived from a well-known variational principle, but studied in the context of thermoelasticity of three-phase-lag dipolar materials with voids. | ||
650 | 4 | |a Thermoelasticity |7 (dpeaa)DE-He213 | |
650 | 4 | |a Dipolar |7 (dpeaa)DE-He213 | |
650 | 4 | |a Voids |7 (dpeaa)DE-He213 | |
650 | 4 | |a Three-phase-lag |7 (dpeaa)DE-He213 | |
700 | 1 | |a Marin, Marin |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Boundary value problems |d Heidelberg : Springer, 2005 |g 2019(2019), 1 vom: 22. Aug. |w (DE-627)48672557X |w (DE-600)2187777-4 |x 1687-2770 |7 nnns |
773 | 1 | 8 | |g volume:2019 |g year:2019 |g number:1 |g day:22 |g month:08 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13661-019-1250-9 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.44 |q ASE |
936 | b | k | |a 31.45 |q ASE |
951 | |a AR | ||
952 | |d 2019 |j 2019 |e 1 |b 22 |c 08 |
author_variant |
l c m lcm m m mm |
---|---|
matchkey_str |
article:16872770:2019----::suynhtemeatctotrehslgioa |
hierarchy_sort_str |
2019 |
bklnumber |
31.44 31.45 |
publishDate |
2019 |
allfields |
10.1186/s13661-019-1250-9 doi (DE-627)SPR032879571 (SPR)s13661-019-1250-9-e DE-627 ger DE-627 rakwb eng 510 ASE 31.44 bkl 31.45 bkl Codarcea-Munteanu, Lavinia verfasserin aut A study on the thermoelasticity of three-phase-lag dipolar materials with voids 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract With a wide applicability in solid state mechanics, the theory of continuous dipolar materials with voids is a distinctive part of microstructure theory, a theory that emerged with the necessity of eliminating the discrepancies between the classical theory and its experimental applications. These inconsistencies are caused by the influence of the microstructure of materials on the general deformations of the bodies, such as ceramics, graphite or polymers. In the present work, we study the mixed boundary value problem with initial data for the thermoelasticity of three-phase-lag dipolar materials with voids, in order to obtain the corresponding constitutive laws, using the same method as in the classical elasticity. By going deeper into the study of these materials, we achieve a uniqueness result and a reciprocal relation, using less common methods, like the dissipative inequality regarding the result of uniqueness. Along with these aspects, we demonstrate a variational principle for anisotropic and non-homogeneous materials, derived from a well-known variational principle, but studied in the context of thermoelasticity of three-phase-lag dipolar materials with voids. Thermoelasticity (dpeaa)DE-He213 Dipolar (dpeaa)DE-He213 Voids (dpeaa)DE-He213 Three-phase-lag (dpeaa)DE-He213 Marin, Marin verfasserin aut Enthalten in Boundary value problems Heidelberg : Springer, 2005 2019(2019), 1 vom: 22. Aug. (DE-627)48672557X (DE-600)2187777-4 1687-2770 nnns volume:2019 year:2019 number:1 day:22 month:08 https://dx.doi.org/10.1186/s13661-019-1250-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.44 ASE 31.45 ASE AR 2019 2019 1 22 08 |
spelling |
10.1186/s13661-019-1250-9 doi (DE-627)SPR032879571 (SPR)s13661-019-1250-9-e DE-627 ger DE-627 rakwb eng 510 ASE 31.44 bkl 31.45 bkl Codarcea-Munteanu, Lavinia verfasserin aut A study on the thermoelasticity of three-phase-lag dipolar materials with voids 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract With a wide applicability in solid state mechanics, the theory of continuous dipolar materials with voids is a distinctive part of microstructure theory, a theory that emerged with the necessity of eliminating the discrepancies between the classical theory and its experimental applications. These inconsistencies are caused by the influence of the microstructure of materials on the general deformations of the bodies, such as ceramics, graphite or polymers. In the present work, we study the mixed boundary value problem with initial data for the thermoelasticity of three-phase-lag dipolar materials with voids, in order to obtain the corresponding constitutive laws, using the same method as in the classical elasticity. By going deeper into the study of these materials, we achieve a uniqueness result and a reciprocal relation, using less common methods, like the dissipative inequality regarding the result of uniqueness. Along with these aspects, we demonstrate a variational principle for anisotropic and non-homogeneous materials, derived from a well-known variational principle, but studied in the context of thermoelasticity of three-phase-lag dipolar materials with voids. Thermoelasticity (dpeaa)DE-He213 Dipolar (dpeaa)DE-He213 Voids (dpeaa)DE-He213 Three-phase-lag (dpeaa)DE-He213 Marin, Marin verfasserin aut Enthalten in Boundary value problems Heidelberg : Springer, 2005 2019(2019), 1 vom: 22. Aug. (DE-627)48672557X (DE-600)2187777-4 1687-2770 nnns volume:2019 year:2019 number:1 day:22 month:08 https://dx.doi.org/10.1186/s13661-019-1250-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.44 ASE 31.45 ASE AR 2019 2019 1 22 08 |
allfields_unstemmed |
10.1186/s13661-019-1250-9 doi (DE-627)SPR032879571 (SPR)s13661-019-1250-9-e DE-627 ger DE-627 rakwb eng 510 ASE 31.44 bkl 31.45 bkl Codarcea-Munteanu, Lavinia verfasserin aut A study on the thermoelasticity of three-phase-lag dipolar materials with voids 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract With a wide applicability in solid state mechanics, the theory of continuous dipolar materials with voids is a distinctive part of microstructure theory, a theory that emerged with the necessity of eliminating the discrepancies between the classical theory and its experimental applications. These inconsistencies are caused by the influence of the microstructure of materials on the general deformations of the bodies, such as ceramics, graphite or polymers. In the present work, we study the mixed boundary value problem with initial data for the thermoelasticity of three-phase-lag dipolar materials with voids, in order to obtain the corresponding constitutive laws, using the same method as in the classical elasticity. By going deeper into the study of these materials, we achieve a uniqueness result and a reciprocal relation, using less common methods, like the dissipative inequality regarding the result of uniqueness. Along with these aspects, we demonstrate a variational principle for anisotropic and non-homogeneous materials, derived from a well-known variational principle, but studied in the context of thermoelasticity of three-phase-lag dipolar materials with voids. Thermoelasticity (dpeaa)DE-He213 Dipolar (dpeaa)DE-He213 Voids (dpeaa)DE-He213 Three-phase-lag (dpeaa)DE-He213 Marin, Marin verfasserin aut Enthalten in Boundary value problems Heidelberg : Springer, 2005 2019(2019), 1 vom: 22. Aug. (DE-627)48672557X (DE-600)2187777-4 1687-2770 nnns volume:2019 year:2019 number:1 day:22 month:08 https://dx.doi.org/10.1186/s13661-019-1250-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.44 ASE 31.45 ASE AR 2019 2019 1 22 08 |
allfieldsGer |
10.1186/s13661-019-1250-9 doi (DE-627)SPR032879571 (SPR)s13661-019-1250-9-e DE-627 ger DE-627 rakwb eng 510 ASE 31.44 bkl 31.45 bkl Codarcea-Munteanu, Lavinia verfasserin aut A study on the thermoelasticity of three-phase-lag dipolar materials with voids 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract With a wide applicability in solid state mechanics, the theory of continuous dipolar materials with voids is a distinctive part of microstructure theory, a theory that emerged with the necessity of eliminating the discrepancies between the classical theory and its experimental applications. These inconsistencies are caused by the influence of the microstructure of materials on the general deformations of the bodies, such as ceramics, graphite or polymers. In the present work, we study the mixed boundary value problem with initial data for the thermoelasticity of three-phase-lag dipolar materials with voids, in order to obtain the corresponding constitutive laws, using the same method as in the classical elasticity. By going deeper into the study of these materials, we achieve a uniqueness result and a reciprocal relation, using less common methods, like the dissipative inequality regarding the result of uniqueness. Along with these aspects, we demonstrate a variational principle for anisotropic and non-homogeneous materials, derived from a well-known variational principle, but studied in the context of thermoelasticity of three-phase-lag dipolar materials with voids. Thermoelasticity (dpeaa)DE-He213 Dipolar (dpeaa)DE-He213 Voids (dpeaa)DE-He213 Three-phase-lag (dpeaa)DE-He213 Marin, Marin verfasserin aut Enthalten in Boundary value problems Heidelberg : Springer, 2005 2019(2019), 1 vom: 22. Aug. (DE-627)48672557X (DE-600)2187777-4 1687-2770 nnns volume:2019 year:2019 number:1 day:22 month:08 https://dx.doi.org/10.1186/s13661-019-1250-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.44 ASE 31.45 ASE AR 2019 2019 1 22 08 |
allfieldsSound |
10.1186/s13661-019-1250-9 doi (DE-627)SPR032879571 (SPR)s13661-019-1250-9-e DE-627 ger DE-627 rakwb eng 510 ASE 31.44 bkl 31.45 bkl Codarcea-Munteanu, Lavinia verfasserin aut A study on the thermoelasticity of three-phase-lag dipolar materials with voids 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract With a wide applicability in solid state mechanics, the theory of continuous dipolar materials with voids is a distinctive part of microstructure theory, a theory that emerged with the necessity of eliminating the discrepancies between the classical theory and its experimental applications. These inconsistencies are caused by the influence of the microstructure of materials on the general deformations of the bodies, such as ceramics, graphite or polymers. In the present work, we study the mixed boundary value problem with initial data for the thermoelasticity of three-phase-lag dipolar materials with voids, in order to obtain the corresponding constitutive laws, using the same method as in the classical elasticity. By going deeper into the study of these materials, we achieve a uniqueness result and a reciprocal relation, using less common methods, like the dissipative inequality regarding the result of uniqueness. Along with these aspects, we demonstrate a variational principle for anisotropic and non-homogeneous materials, derived from a well-known variational principle, but studied in the context of thermoelasticity of three-phase-lag dipolar materials with voids. Thermoelasticity (dpeaa)DE-He213 Dipolar (dpeaa)DE-He213 Voids (dpeaa)DE-He213 Three-phase-lag (dpeaa)DE-He213 Marin, Marin verfasserin aut Enthalten in Boundary value problems Heidelberg : Springer, 2005 2019(2019), 1 vom: 22. Aug. (DE-627)48672557X (DE-600)2187777-4 1687-2770 nnns volume:2019 year:2019 number:1 day:22 month:08 https://dx.doi.org/10.1186/s13661-019-1250-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.44 ASE 31.45 ASE AR 2019 2019 1 22 08 |
language |
English |
source |
Enthalten in Boundary value problems 2019(2019), 1 vom: 22. Aug. volume:2019 year:2019 number:1 day:22 month:08 |
sourceStr |
Enthalten in Boundary value problems 2019(2019), 1 vom: 22. Aug. volume:2019 year:2019 number:1 day:22 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Thermoelasticity Dipolar Voids Three-phase-lag |
dewey-raw |
510 |
isfreeaccess_bool |
true |
container_title |
Boundary value problems |
authorswithroles_txt_mv |
Codarcea-Munteanu, Lavinia @@aut@@ Marin, Marin @@aut@@ |
publishDateDaySort_date |
2019-08-22T00:00:00Z |
hierarchy_top_id |
48672557X |
dewey-sort |
3510 |
id |
SPR032879571 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032879571</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111204300.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13661-019-1250-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032879571</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13661-019-1250-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.44</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Codarcea-Munteanu, Lavinia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A study on the thermoelasticity of three-phase-lag dipolar materials with voids</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract With a wide applicability in solid state mechanics, the theory of continuous dipolar materials with voids is a distinctive part of microstructure theory, a theory that emerged with the necessity of eliminating the discrepancies between the classical theory and its experimental applications. These inconsistencies are caused by the influence of the microstructure of materials on the general deformations of the bodies, such as ceramics, graphite or polymers. In the present work, we study the mixed boundary value problem with initial data for the thermoelasticity of three-phase-lag dipolar materials with voids, in order to obtain the corresponding constitutive laws, using the same method as in the classical elasticity. By going deeper into the study of these materials, we achieve a uniqueness result and a reciprocal relation, using less common methods, like the dissipative inequality regarding the result of uniqueness. Along with these aspects, we demonstrate a variational principle for anisotropic and non-homogeneous materials, derived from a well-known variational principle, but studied in the context of thermoelasticity of three-phase-lag dipolar materials with voids.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermoelasticity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dipolar</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Voids</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-phase-lag</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marin, Marin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Boundary value problems</subfield><subfield code="d">Heidelberg : Springer, 2005</subfield><subfield code="g">2019(2019), 1 vom: 22. Aug.</subfield><subfield code="w">(DE-627)48672557X</subfield><subfield code="w">(DE-600)2187777-4</subfield><subfield code="x">1687-2770</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2019</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13661-019-1250-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.44</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.45</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2019</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
Codarcea-Munteanu, Lavinia |
spellingShingle |
Codarcea-Munteanu, Lavinia ddc 510 bkl 31.44 bkl 31.45 misc Thermoelasticity misc Dipolar misc Voids misc Three-phase-lag A study on the thermoelasticity of three-phase-lag dipolar materials with voids |
authorStr |
Codarcea-Munteanu, Lavinia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)48672557X |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1687-2770 |
topic_title |
510 ASE 31.44 bkl 31.45 bkl A study on the thermoelasticity of three-phase-lag dipolar materials with voids Thermoelasticity (dpeaa)DE-He213 Dipolar (dpeaa)DE-He213 Voids (dpeaa)DE-He213 Three-phase-lag (dpeaa)DE-He213 |
topic |
ddc 510 bkl 31.44 bkl 31.45 misc Thermoelasticity misc Dipolar misc Voids misc Three-phase-lag |
topic_unstemmed |
ddc 510 bkl 31.44 bkl 31.45 misc Thermoelasticity misc Dipolar misc Voids misc Three-phase-lag |
topic_browse |
ddc 510 bkl 31.44 bkl 31.45 misc Thermoelasticity misc Dipolar misc Voids misc Three-phase-lag |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Boundary value problems |
hierarchy_parent_id |
48672557X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Boundary value problems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)48672557X (DE-600)2187777-4 |
title |
A study on the thermoelasticity of three-phase-lag dipolar materials with voids |
ctrlnum |
(DE-627)SPR032879571 (SPR)s13661-019-1250-9-e |
title_full |
A study on the thermoelasticity of three-phase-lag dipolar materials with voids |
author_sort |
Codarcea-Munteanu, Lavinia |
journal |
Boundary value problems |
journalStr |
Boundary value problems |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Codarcea-Munteanu, Lavinia Marin, Marin |
container_volume |
2019 |
class |
510 ASE 31.44 bkl 31.45 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Codarcea-Munteanu, Lavinia |
doi_str_mv |
10.1186/s13661-019-1250-9 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
study on the thermoelasticity of three-phase-lag dipolar materials with voids |
title_auth |
A study on the thermoelasticity of three-phase-lag dipolar materials with voids |
abstract |
Abstract With a wide applicability in solid state mechanics, the theory of continuous dipolar materials with voids is a distinctive part of microstructure theory, a theory that emerged with the necessity of eliminating the discrepancies between the classical theory and its experimental applications. These inconsistencies are caused by the influence of the microstructure of materials on the general deformations of the bodies, such as ceramics, graphite or polymers. In the present work, we study the mixed boundary value problem with initial data for the thermoelasticity of three-phase-lag dipolar materials with voids, in order to obtain the corresponding constitutive laws, using the same method as in the classical elasticity. By going deeper into the study of these materials, we achieve a uniqueness result and a reciprocal relation, using less common methods, like the dissipative inequality regarding the result of uniqueness. Along with these aspects, we demonstrate a variational principle for anisotropic and non-homogeneous materials, derived from a well-known variational principle, but studied in the context of thermoelasticity of three-phase-lag dipolar materials with voids. |
abstractGer |
Abstract With a wide applicability in solid state mechanics, the theory of continuous dipolar materials with voids is a distinctive part of microstructure theory, a theory that emerged with the necessity of eliminating the discrepancies between the classical theory and its experimental applications. These inconsistencies are caused by the influence of the microstructure of materials on the general deformations of the bodies, such as ceramics, graphite or polymers. In the present work, we study the mixed boundary value problem with initial data for the thermoelasticity of three-phase-lag dipolar materials with voids, in order to obtain the corresponding constitutive laws, using the same method as in the classical elasticity. By going deeper into the study of these materials, we achieve a uniqueness result and a reciprocal relation, using less common methods, like the dissipative inequality regarding the result of uniqueness. Along with these aspects, we demonstrate a variational principle for anisotropic and non-homogeneous materials, derived from a well-known variational principle, but studied in the context of thermoelasticity of three-phase-lag dipolar materials with voids. |
abstract_unstemmed |
Abstract With a wide applicability in solid state mechanics, the theory of continuous dipolar materials with voids is a distinctive part of microstructure theory, a theory that emerged with the necessity of eliminating the discrepancies between the classical theory and its experimental applications. These inconsistencies are caused by the influence of the microstructure of materials on the general deformations of the bodies, such as ceramics, graphite or polymers. In the present work, we study the mixed boundary value problem with initial data for the thermoelasticity of three-phase-lag dipolar materials with voids, in order to obtain the corresponding constitutive laws, using the same method as in the classical elasticity. By going deeper into the study of these materials, we achieve a uniqueness result and a reciprocal relation, using less common methods, like the dissipative inequality regarding the result of uniqueness. Along with these aspects, we demonstrate a variational principle for anisotropic and non-homogeneous materials, derived from a well-known variational principle, but studied in the context of thermoelasticity of three-phase-lag dipolar materials with voids. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A study on the thermoelasticity of three-phase-lag dipolar materials with voids |
url |
https://dx.doi.org/10.1186/s13661-019-1250-9 |
remote_bool |
true |
author2 |
Marin, Marin |
author2Str |
Marin, Marin |
ppnlink |
48672557X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13661-019-1250-9 |
up_date |
2024-07-03T15:15:43.424Z |
_version_ |
1803571422492098560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR032879571</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111204300.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13661-019-1250-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR032879571</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13661-019-1250-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.44</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Codarcea-Munteanu, Lavinia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A study on the thermoelasticity of three-phase-lag dipolar materials with voids</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract With a wide applicability in solid state mechanics, the theory of continuous dipolar materials with voids is a distinctive part of microstructure theory, a theory that emerged with the necessity of eliminating the discrepancies between the classical theory and its experimental applications. These inconsistencies are caused by the influence of the microstructure of materials on the general deformations of the bodies, such as ceramics, graphite or polymers. In the present work, we study the mixed boundary value problem with initial data for the thermoelasticity of three-phase-lag dipolar materials with voids, in order to obtain the corresponding constitutive laws, using the same method as in the classical elasticity. By going deeper into the study of these materials, we achieve a uniqueness result and a reciprocal relation, using less common methods, like the dissipative inequality regarding the result of uniqueness. Along with these aspects, we demonstrate a variational principle for anisotropic and non-homogeneous materials, derived from a well-known variational principle, but studied in the context of thermoelasticity of three-phase-lag dipolar materials with voids.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermoelasticity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dipolar</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Voids</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-phase-lag</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marin, Marin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Boundary value problems</subfield><subfield code="d">Heidelberg : Springer, 2005</subfield><subfield code="g">2019(2019), 1 vom: 22. Aug.</subfield><subfield code="w">(DE-627)48672557X</subfield><subfield code="w">(DE-600)2187777-4</subfield><subfield code="x">1687-2770</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2019</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13661-019-1250-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.44</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.45</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2019</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.402793 |