Clinical Pharmacokinetics of Probenecid
Summary A review of the clinical applications and of the disposition of probenecid in man, including drug interactions, is presented. Probenecid is the classical competitive inhibitor of organic acid transport in the kidney and other organs. There are 2 primary clinical uses for probenecid: as a uri...
Ausführliche Beschreibung
Autor*in: |
Cunningham, R. F. [verfasserIn] Israili, Z. H. [verfasserIn] Dayton, P. G. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1981 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Clinical pharmacokinetics - Berlin [u.a.] : Springer, 1976, 6(1981), 2 vom: Apr., Seite 135-151 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:1981 ; number:2 ; month:04 ; pages:135-151 |
Links: |
---|
DOI / URN: |
10.2165/00003088-198106020-00004 |
---|
Katalog-ID: |
SPR033032858 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR033032858 | ||
003 | DE-627 | ||
005 | 20230519074216.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s1981 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2165/00003088-198106020-00004 |2 doi | |
035 | |a (DE-627)SPR033032858 | ||
035 | |a (SPR)00003088-198106020-00004-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q ASE |
084 | |a 44.00 |2 bkl | ||
084 | |a 44.40 |2 bkl | ||
100 | 1 | |a Cunningham, R. F. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Clinical Pharmacokinetics of Probenecid |
264 | 1 | |c 1981 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Summary A review of the clinical applications and of the disposition of probenecid in man, including drug interactions, is presented. Probenecid is the classical competitive inhibitor of organic acid transport in the kidney and other organs. There are 2 primary clinical uses for probenecid: as a uricosuric agent in the treatment of chronic gout and as an adjunct to enhance blood levels of antibiotics (such as penicillins and Cephalosporins). Adsorption of probenecid is essentially complete following oral administration. The drug is extensively metabolised by glucuronide conjugation and by oxidation of the alkyl side chains; oxidation of the aromatic ring does not occur. The half-life of probenecid in plasma (4 to 12 hours) is dose-dependent. Renal excretion is the major route of elimination of the metabolites; excretion of the parent drug is minimal and is dependent on urinary pH. Probenecid and its oxidised metabolites are extensively bound to plasma proteins, mainly to albumin. Tissue concentrations (based on animal studies) are generally lower than plasma concentrations. Most of the drug-drug interactions involving probenecid are due to an effect on the kidneyblock of transport of acidic drugs. Similarly probenecid affects the tubular secretion of a number of acidic endogenous substances by the kidney. Probenecid is also involved in the block of transport of acidic metabolites of catecholamines, for example homovanillic and hydroxyindoleacetic acids, in the brain. There are a number of analytical procedures for the assay of probenecid. These are based on spectrophotometry, spectrofluorometry, gas and liquid chromatography and radioimmunoassay. | ||
650 | 4 | |a Gout |7 (dpeaa)DE-He213 | |
650 | 4 | |a Allopurinol |7 (dpeaa)DE-He213 | |
650 | 4 | |a Probenecid |7 (dpeaa)DE-He213 | |
650 | 4 | |a Oxypurinol |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cinoxacin |7 (dpeaa)DE-He213 | |
700 | 1 | |a Israili, Z. H. |e verfasserin |4 aut | |
700 | 1 | |a Dayton, P. G. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Clinical pharmacokinetics |d Berlin [u.a.] : Springer, 1976 |g 6(1981), 2 vom: Apr., Seite 135-151 |w (DE-627)327644974 |w (DE-600)2043781-X |x 1179-1926 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:1981 |g number:2 |g month:04 |g pages:135-151 |
856 | 4 | 0 | |u https://dx.doi.org/10.2165/00003088-198106020-00004 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-PHA | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2190 | ||
936 | b | k | |a 44.00 |q ASE |
936 | b | k | |a 44.40 |q ASE |
951 | |a AR | ||
952 | |d 6 |j 1981 |e 2 |c 04 |h 135-151 |
author_variant |
r f c rf rfc z h i zh zhi p g d pg pgd |
---|---|
matchkey_str |
article:11791926:1981----::lnclhraoieisf |
hierarchy_sort_str |
1981 |
bklnumber |
44.00 44.40 |
publishDate |
1981 |
allfields |
10.2165/00003088-198106020-00004 doi (DE-627)SPR033032858 (SPR)00003088-198106020-00004-e DE-627 ger DE-627 rakwb eng 610 ASE 44.00 bkl 44.40 bkl Cunningham, R. F. verfasserin aut Clinical Pharmacokinetics of Probenecid 1981 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary A review of the clinical applications and of the disposition of probenecid in man, including drug interactions, is presented. Probenecid is the classical competitive inhibitor of organic acid transport in the kidney and other organs. There are 2 primary clinical uses for probenecid: as a uricosuric agent in the treatment of chronic gout and as an adjunct to enhance blood levels of antibiotics (such as penicillins and Cephalosporins). Adsorption of probenecid is essentially complete following oral administration. The drug is extensively metabolised by glucuronide conjugation and by oxidation of the alkyl side chains; oxidation of the aromatic ring does not occur. The half-life of probenecid in plasma (4 to 12 hours) is dose-dependent. Renal excretion is the major route of elimination of the metabolites; excretion of the parent drug is minimal and is dependent on urinary pH. Probenecid and its oxidised metabolites are extensively bound to plasma proteins, mainly to albumin. Tissue concentrations (based on animal studies) are generally lower than plasma concentrations. Most of the drug-drug interactions involving probenecid are due to an effect on the kidneyblock of transport of acidic drugs. Similarly probenecid affects the tubular secretion of a number of acidic endogenous substances by the kidney. Probenecid is also involved in the block of transport of acidic metabolites of catecholamines, for example homovanillic and hydroxyindoleacetic acids, in the brain. There are a number of analytical procedures for the assay of probenecid. These are based on spectrophotometry, spectrofluorometry, gas and liquid chromatography and radioimmunoassay. Gout (dpeaa)DE-He213 Allopurinol (dpeaa)DE-He213 Probenecid (dpeaa)DE-He213 Oxypurinol (dpeaa)DE-He213 Cinoxacin (dpeaa)DE-He213 Israili, Z. H. verfasserin aut Dayton, P. G. verfasserin aut Enthalten in Clinical pharmacokinetics Berlin [u.a.] : Springer, 1976 6(1981), 2 vom: Apr., Seite 135-151 (DE-627)327644974 (DE-600)2043781-X 1179-1926 nnns volume:6 year:1981 number:2 month:04 pages:135-151 https://dx.doi.org/10.2165/00003088-198106020-00004 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-PHA SSG-OPC-ASE GBV_ILN_702 GBV_ILN_2190 44.00 ASE 44.40 ASE AR 6 1981 2 04 135-151 |
spelling |
10.2165/00003088-198106020-00004 doi (DE-627)SPR033032858 (SPR)00003088-198106020-00004-e DE-627 ger DE-627 rakwb eng 610 ASE 44.00 bkl 44.40 bkl Cunningham, R. F. verfasserin aut Clinical Pharmacokinetics of Probenecid 1981 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary A review of the clinical applications and of the disposition of probenecid in man, including drug interactions, is presented. Probenecid is the classical competitive inhibitor of organic acid transport in the kidney and other organs. There are 2 primary clinical uses for probenecid: as a uricosuric agent in the treatment of chronic gout and as an adjunct to enhance blood levels of antibiotics (such as penicillins and Cephalosporins). Adsorption of probenecid is essentially complete following oral administration. The drug is extensively metabolised by glucuronide conjugation and by oxidation of the alkyl side chains; oxidation of the aromatic ring does not occur. The half-life of probenecid in plasma (4 to 12 hours) is dose-dependent. Renal excretion is the major route of elimination of the metabolites; excretion of the parent drug is minimal and is dependent on urinary pH. Probenecid and its oxidised metabolites are extensively bound to plasma proteins, mainly to albumin. Tissue concentrations (based on animal studies) are generally lower than plasma concentrations. Most of the drug-drug interactions involving probenecid are due to an effect on the kidneyblock of transport of acidic drugs. Similarly probenecid affects the tubular secretion of a number of acidic endogenous substances by the kidney. Probenecid is also involved in the block of transport of acidic metabolites of catecholamines, for example homovanillic and hydroxyindoleacetic acids, in the brain. There are a number of analytical procedures for the assay of probenecid. These are based on spectrophotometry, spectrofluorometry, gas and liquid chromatography and radioimmunoassay. Gout (dpeaa)DE-He213 Allopurinol (dpeaa)DE-He213 Probenecid (dpeaa)DE-He213 Oxypurinol (dpeaa)DE-He213 Cinoxacin (dpeaa)DE-He213 Israili, Z. H. verfasserin aut Dayton, P. G. verfasserin aut Enthalten in Clinical pharmacokinetics Berlin [u.a.] : Springer, 1976 6(1981), 2 vom: Apr., Seite 135-151 (DE-627)327644974 (DE-600)2043781-X 1179-1926 nnns volume:6 year:1981 number:2 month:04 pages:135-151 https://dx.doi.org/10.2165/00003088-198106020-00004 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-PHA SSG-OPC-ASE GBV_ILN_702 GBV_ILN_2190 44.00 ASE 44.40 ASE AR 6 1981 2 04 135-151 |
allfields_unstemmed |
10.2165/00003088-198106020-00004 doi (DE-627)SPR033032858 (SPR)00003088-198106020-00004-e DE-627 ger DE-627 rakwb eng 610 ASE 44.00 bkl 44.40 bkl Cunningham, R. F. verfasserin aut Clinical Pharmacokinetics of Probenecid 1981 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary A review of the clinical applications and of the disposition of probenecid in man, including drug interactions, is presented. Probenecid is the classical competitive inhibitor of organic acid transport in the kidney and other organs. There are 2 primary clinical uses for probenecid: as a uricosuric agent in the treatment of chronic gout and as an adjunct to enhance blood levels of antibiotics (such as penicillins and Cephalosporins). Adsorption of probenecid is essentially complete following oral administration. The drug is extensively metabolised by glucuronide conjugation and by oxidation of the alkyl side chains; oxidation of the aromatic ring does not occur. The half-life of probenecid in plasma (4 to 12 hours) is dose-dependent. Renal excretion is the major route of elimination of the metabolites; excretion of the parent drug is minimal and is dependent on urinary pH. Probenecid and its oxidised metabolites are extensively bound to plasma proteins, mainly to albumin. Tissue concentrations (based on animal studies) are generally lower than plasma concentrations. Most of the drug-drug interactions involving probenecid are due to an effect on the kidneyblock of transport of acidic drugs. Similarly probenecid affects the tubular secretion of a number of acidic endogenous substances by the kidney. Probenecid is also involved in the block of transport of acidic metabolites of catecholamines, for example homovanillic and hydroxyindoleacetic acids, in the brain. There are a number of analytical procedures for the assay of probenecid. These are based on spectrophotometry, spectrofluorometry, gas and liquid chromatography and radioimmunoassay. Gout (dpeaa)DE-He213 Allopurinol (dpeaa)DE-He213 Probenecid (dpeaa)DE-He213 Oxypurinol (dpeaa)DE-He213 Cinoxacin (dpeaa)DE-He213 Israili, Z. H. verfasserin aut Dayton, P. G. verfasserin aut Enthalten in Clinical pharmacokinetics Berlin [u.a.] : Springer, 1976 6(1981), 2 vom: Apr., Seite 135-151 (DE-627)327644974 (DE-600)2043781-X 1179-1926 nnns volume:6 year:1981 number:2 month:04 pages:135-151 https://dx.doi.org/10.2165/00003088-198106020-00004 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-PHA SSG-OPC-ASE GBV_ILN_702 GBV_ILN_2190 44.00 ASE 44.40 ASE AR 6 1981 2 04 135-151 |
allfieldsGer |
10.2165/00003088-198106020-00004 doi (DE-627)SPR033032858 (SPR)00003088-198106020-00004-e DE-627 ger DE-627 rakwb eng 610 ASE 44.00 bkl 44.40 bkl Cunningham, R. F. verfasserin aut Clinical Pharmacokinetics of Probenecid 1981 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary A review of the clinical applications and of the disposition of probenecid in man, including drug interactions, is presented. Probenecid is the classical competitive inhibitor of organic acid transport in the kidney and other organs. There are 2 primary clinical uses for probenecid: as a uricosuric agent in the treatment of chronic gout and as an adjunct to enhance blood levels of antibiotics (such as penicillins and Cephalosporins). Adsorption of probenecid is essentially complete following oral administration. The drug is extensively metabolised by glucuronide conjugation and by oxidation of the alkyl side chains; oxidation of the aromatic ring does not occur. The half-life of probenecid in plasma (4 to 12 hours) is dose-dependent. Renal excretion is the major route of elimination of the metabolites; excretion of the parent drug is minimal and is dependent on urinary pH. Probenecid and its oxidised metabolites are extensively bound to plasma proteins, mainly to albumin. Tissue concentrations (based on animal studies) are generally lower than plasma concentrations. Most of the drug-drug interactions involving probenecid are due to an effect on the kidneyblock of transport of acidic drugs. Similarly probenecid affects the tubular secretion of a number of acidic endogenous substances by the kidney. Probenecid is also involved in the block of transport of acidic metabolites of catecholamines, for example homovanillic and hydroxyindoleacetic acids, in the brain. There are a number of analytical procedures for the assay of probenecid. These are based on spectrophotometry, spectrofluorometry, gas and liquid chromatography and radioimmunoassay. Gout (dpeaa)DE-He213 Allopurinol (dpeaa)DE-He213 Probenecid (dpeaa)DE-He213 Oxypurinol (dpeaa)DE-He213 Cinoxacin (dpeaa)DE-He213 Israili, Z. H. verfasserin aut Dayton, P. G. verfasserin aut Enthalten in Clinical pharmacokinetics Berlin [u.a.] : Springer, 1976 6(1981), 2 vom: Apr., Seite 135-151 (DE-627)327644974 (DE-600)2043781-X 1179-1926 nnns volume:6 year:1981 number:2 month:04 pages:135-151 https://dx.doi.org/10.2165/00003088-198106020-00004 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-PHA SSG-OPC-ASE GBV_ILN_702 GBV_ILN_2190 44.00 ASE 44.40 ASE AR 6 1981 2 04 135-151 |
allfieldsSound |
10.2165/00003088-198106020-00004 doi (DE-627)SPR033032858 (SPR)00003088-198106020-00004-e DE-627 ger DE-627 rakwb eng 610 ASE 44.00 bkl 44.40 bkl Cunningham, R. F. verfasserin aut Clinical Pharmacokinetics of Probenecid 1981 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary A review of the clinical applications and of the disposition of probenecid in man, including drug interactions, is presented. Probenecid is the classical competitive inhibitor of organic acid transport in the kidney and other organs. There are 2 primary clinical uses for probenecid: as a uricosuric agent in the treatment of chronic gout and as an adjunct to enhance blood levels of antibiotics (such as penicillins and Cephalosporins). Adsorption of probenecid is essentially complete following oral administration. The drug is extensively metabolised by glucuronide conjugation and by oxidation of the alkyl side chains; oxidation of the aromatic ring does not occur. The half-life of probenecid in plasma (4 to 12 hours) is dose-dependent. Renal excretion is the major route of elimination of the metabolites; excretion of the parent drug is minimal and is dependent on urinary pH. Probenecid and its oxidised metabolites are extensively bound to plasma proteins, mainly to albumin. Tissue concentrations (based on animal studies) are generally lower than plasma concentrations. Most of the drug-drug interactions involving probenecid are due to an effect on the kidneyblock of transport of acidic drugs. Similarly probenecid affects the tubular secretion of a number of acidic endogenous substances by the kidney. Probenecid is also involved in the block of transport of acidic metabolites of catecholamines, for example homovanillic and hydroxyindoleacetic acids, in the brain. There are a number of analytical procedures for the assay of probenecid. These are based on spectrophotometry, spectrofluorometry, gas and liquid chromatography and radioimmunoassay. Gout (dpeaa)DE-He213 Allopurinol (dpeaa)DE-He213 Probenecid (dpeaa)DE-He213 Oxypurinol (dpeaa)DE-He213 Cinoxacin (dpeaa)DE-He213 Israili, Z. H. verfasserin aut Dayton, P. G. verfasserin aut Enthalten in Clinical pharmacokinetics Berlin [u.a.] : Springer, 1976 6(1981), 2 vom: Apr., Seite 135-151 (DE-627)327644974 (DE-600)2043781-X 1179-1926 nnns volume:6 year:1981 number:2 month:04 pages:135-151 https://dx.doi.org/10.2165/00003088-198106020-00004 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-PHA SSG-OPC-ASE GBV_ILN_702 GBV_ILN_2190 44.00 ASE 44.40 ASE AR 6 1981 2 04 135-151 |
language |
English |
source |
Enthalten in Clinical pharmacokinetics 6(1981), 2 vom: Apr., Seite 135-151 volume:6 year:1981 number:2 month:04 pages:135-151 |
sourceStr |
Enthalten in Clinical pharmacokinetics 6(1981), 2 vom: Apr., Seite 135-151 volume:6 year:1981 number:2 month:04 pages:135-151 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Gout Allopurinol Probenecid Oxypurinol Cinoxacin |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Clinical pharmacokinetics |
authorswithroles_txt_mv |
Cunningham, R. F. @@aut@@ Israili, Z. H. @@aut@@ Dayton, P. G. @@aut@@ |
publishDateDaySort_date |
1981-04-01T00:00:00Z |
hierarchy_top_id |
327644974 |
dewey-sort |
3610 |
id |
SPR033032858 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR033032858</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519074216.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s1981 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2165/00003088-198106020-00004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR033032858</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)00003088-198106020-00004-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cunningham, R. F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Clinical Pharmacokinetics of Probenecid</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1981</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary A review of the clinical applications and of the disposition of probenecid in man, including drug interactions, is presented. Probenecid is the classical competitive inhibitor of organic acid transport in the kidney and other organs. There are 2 primary clinical uses for probenecid: as a uricosuric agent in the treatment of chronic gout and as an adjunct to enhance blood levels of antibiotics (such as penicillins and Cephalosporins). Adsorption of probenecid is essentially complete following oral administration. The drug is extensively metabolised by glucuronide conjugation and by oxidation of the alkyl side chains; oxidation of the aromatic ring does not occur. The half-life of probenecid in plasma (4 to 12 hours) is dose-dependent. Renal excretion is the major route of elimination of the metabolites; excretion of the parent drug is minimal and is dependent on urinary pH. Probenecid and its oxidised metabolites are extensively bound to plasma proteins, mainly to albumin. Tissue concentrations (based on animal studies) are generally lower than plasma concentrations. Most of the drug-drug interactions involving probenecid are due to an effect on the kidneyblock of transport of acidic drugs. Similarly probenecid affects the tubular secretion of a number of acidic endogenous substances by the kidney. Probenecid is also involved in the block of transport of acidic metabolites of catecholamines, for example homovanillic and hydroxyindoleacetic acids, in the brain. There are a number of analytical procedures for the assay of probenecid. These are based on spectrophotometry, spectrofluorometry, gas and liquid chromatography and radioimmunoassay.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gout</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Allopurinol</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probenecid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxypurinol</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cinoxacin</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Israili, Z. H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dayton, P. G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Clinical pharmacokinetics</subfield><subfield code="d">Berlin [u.a.] : Springer, 1976</subfield><subfield code="g">6(1981), 2 vom: Apr., Seite 135-151</subfield><subfield code="w">(DE-627)327644974</subfield><subfield code="w">(DE-600)2043781-X</subfield><subfield code="x">1179-1926</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:1981</subfield><subfield code="g">number:2</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:135-151</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.2165/00003088-198106020-00004</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">1981</subfield><subfield code="e">2</subfield><subfield code="c">04</subfield><subfield code="h">135-151</subfield></datafield></record></collection>
|
author |
Cunningham, R. F. |
spellingShingle |
Cunningham, R. F. ddc 610 bkl 44.00 bkl 44.40 misc Gout misc Allopurinol misc Probenecid misc Oxypurinol misc Cinoxacin Clinical Pharmacokinetics of Probenecid |
authorStr |
Cunningham, R. F. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)327644974 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1179-1926 |
topic_title |
610 ASE 44.00 bkl 44.40 bkl Clinical Pharmacokinetics of Probenecid Gout (dpeaa)DE-He213 Allopurinol (dpeaa)DE-He213 Probenecid (dpeaa)DE-He213 Oxypurinol (dpeaa)DE-He213 Cinoxacin (dpeaa)DE-He213 |
topic |
ddc 610 bkl 44.00 bkl 44.40 misc Gout misc Allopurinol misc Probenecid misc Oxypurinol misc Cinoxacin |
topic_unstemmed |
ddc 610 bkl 44.00 bkl 44.40 misc Gout misc Allopurinol misc Probenecid misc Oxypurinol misc Cinoxacin |
topic_browse |
ddc 610 bkl 44.00 bkl 44.40 misc Gout misc Allopurinol misc Probenecid misc Oxypurinol misc Cinoxacin |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Clinical pharmacokinetics |
hierarchy_parent_id |
327644974 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Clinical pharmacokinetics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)327644974 (DE-600)2043781-X |
title |
Clinical Pharmacokinetics of Probenecid |
ctrlnum |
(DE-627)SPR033032858 (SPR)00003088-198106020-00004-e |
title_full |
Clinical Pharmacokinetics of Probenecid |
author_sort |
Cunningham, R. F. |
journal |
Clinical pharmacokinetics |
journalStr |
Clinical pharmacokinetics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1981 |
contenttype_str_mv |
txt |
container_start_page |
135 |
author_browse |
Cunningham, R. F. Israili, Z. H. Dayton, P. G. |
container_volume |
6 |
class |
610 ASE 44.00 bkl 44.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Cunningham, R. F. |
doi_str_mv |
10.2165/00003088-198106020-00004 |
dewey-full |
610 |
author2-role |
verfasserin |
title_sort |
clinical pharmacokinetics of probenecid |
title_auth |
Clinical Pharmacokinetics of Probenecid |
abstract |
Summary A review of the clinical applications and of the disposition of probenecid in man, including drug interactions, is presented. Probenecid is the classical competitive inhibitor of organic acid transport in the kidney and other organs. There are 2 primary clinical uses for probenecid: as a uricosuric agent in the treatment of chronic gout and as an adjunct to enhance blood levels of antibiotics (such as penicillins and Cephalosporins). Adsorption of probenecid is essentially complete following oral administration. The drug is extensively metabolised by glucuronide conjugation and by oxidation of the alkyl side chains; oxidation of the aromatic ring does not occur. The half-life of probenecid in plasma (4 to 12 hours) is dose-dependent. Renal excretion is the major route of elimination of the metabolites; excretion of the parent drug is minimal and is dependent on urinary pH. Probenecid and its oxidised metabolites are extensively bound to plasma proteins, mainly to albumin. Tissue concentrations (based on animal studies) are generally lower than plasma concentrations. Most of the drug-drug interactions involving probenecid are due to an effect on the kidneyblock of transport of acidic drugs. Similarly probenecid affects the tubular secretion of a number of acidic endogenous substances by the kidney. Probenecid is also involved in the block of transport of acidic metabolites of catecholamines, for example homovanillic and hydroxyindoleacetic acids, in the brain. There are a number of analytical procedures for the assay of probenecid. These are based on spectrophotometry, spectrofluorometry, gas and liquid chromatography and radioimmunoassay. |
abstractGer |
Summary A review of the clinical applications and of the disposition of probenecid in man, including drug interactions, is presented. Probenecid is the classical competitive inhibitor of organic acid transport in the kidney and other organs. There are 2 primary clinical uses for probenecid: as a uricosuric agent in the treatment of chronic gout and as an adjunct to enhance blood levels of antibiotics (such as penicillins and Cephalosporins). Adsorption of probenecid is essentially complete following oral administration. The drug is extensively metabolised by glucuronide conjugation and by oxidation of the alkyl side chains; oxidation of the aromatic ring does not occur. The half-life of probenecid in plasma (4 to 12 hours) is dose-dependent. Renal excretion is the major route of elimination of the metabolites; excretion of the parent drug is minimal and is dependent on urinary pH. Probenecid and its oxidised metabolites are extensively bound to plasma proteins, mainly to albumin. Tissue concentrations (based on animal studies) are generally lower than plasma concentrations. Most of the drug-drug interactions involving probenecid are due to an effect on the kidneyblock of transport of acidic drugs. Similarly probenecid affects the tubular secretion of a number of acidic endogenous substances by the kidney. Probenecid is also involved in the block of transport of acidic metabolites of catecholamines, for example homovanillic and hydroxyindoleacetic acids, in the brain. There are a number of analytical procedures for the assay of probenecid. These are based on spectrophotometry, spectrofluorometry, gas and liquid chromatography and radioimmunoassay. |
abstract_unstemmed |
Summary A review of the clinical applications and of the disposition of probenecid in man, including drug interactions, is presented. Probenecid is the classical competitive inhibitor of organic acid transport in the kidney and other organs. There are 2 primary clinical uses for probenecid: as a uricosuric agent in the treatment of chronic gout and as an adjunct to enhance blood levels of antibiotics (such as penicillins and Cephalosporins). Adsorption of probenecid is essentially complete following oral administration. The drug is extensively metabolised by glucuronide conjugation and by oxidation of the alkyl side chains; oxidation of the aromatic ring does not occur. The half-life of probenecid in plasma (4 to 12 hours) is dose-dependent. Renal excretion is the major route of elimination of the metabolites; excretion of the parent drug is minimal and is dependent on urinary pH. Probenecid and its oxidised metabolites are extensively bound to plasma proteins, mainly to albumin. Tissue concentrations (based on animal studies) are generally lower than plasma concentrations. Most of the drug-drug interactions involving probenecid are due to an effect on the kidneyblock of transport of acidic drugs. Similarly probenecid affects the tubular secretion of a number of acidic endogenous substances by the kidney. Probenecid is also involved in the block of transport of acidic metabolites of catecholamines, for example homovanillic and hydroxyindoleacetic acids, in the brain. There are a number of analytical procedures for the assay of probenecid. These are based on spectrophotometry, spectrofluorometry, gas and liquid chromatography and radioimmunoassay. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-PHA SSG-OPC-ASE GBV_ILN_702 GBV_ILN_2190 |
container_issue |
2 |
title_short |
Clinical Pharmacokinetics of Probenecid |
url |
https://dx.doi.org/10.2165/00003088-198106020-00004 |
remote_bool |
true |
author2 |
Israili, Z. H. Dayton, P. G. |
author2Str |
Israili, Z. H. Dayton, P. G. |
ppnlink |
327644974 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.2165/00003088-198106020-00004 |
up_date |
2024-07-03T16:11:21.844Z |
_version_ |
1803574923069751296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR033032858</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519074216.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s1981 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2165/00003088-198106020-00004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR033032858</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)00003088-198106020-00004-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cunningham, R. F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Clinical Pharmacokinetics of Probenecid</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1981</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary A review of the clinical applications and of the disposition of probenecid in man, including drug interactions, is presented. Probenecid is the classical competitive inhibitor of organic acid transport in the kidney and other organs. There are 2 primary clinical uses for probenecid: as a uricosuric agent in the treatment of chronic gout and as an adjunct to enhance blood levels of antibiotics (such as penicillins and Cephalosporins). Adsorption of probenecid is essentially complete following oral administration. The drug is extensively metabolised by glucuronide conjugation and by oxidation of the alkyl side chains; oxidation of the aromatic ring does not occur. The half-life of probenecid in plasma (4 to 12 hours) is dose-dependent. Renal excretion is the major route of elimination of the metabolites; excretion of the parent drug is minimal and is dependent on urinary pH. Probenecid and its oxidised metabolites are extensively bound to plasma proteins, mainly to albumin. Tissue concentrations (based on animal studies) are generally lower than plasma concentrations. Most of the drug-drug interactions involving probenecid are due to an effect on the kidneyblock of transport of acidic drugs. Similarly probenecid affects the tubular secretion of a number of acidic endogenous substances by the kidney. Probenecid is also involved in the block of transport of acidic metabolites of catecholamines, for example homovanillic and hydroxyindoleacetic acids, in the brain. There are a number of analytical procedures for the assay of probenecid. These are based on spectrophotometry, spectrofluorometry, gas and liquid chromatography and radioimmunoassay.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gout</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Allopurinol</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probenecid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxypurinol</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cinoxacin</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Israili, Z. H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dayton, P. G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Clinical pharmacokinetics</subfield><subfield code="d">Berlin [u.a.] : Springer, 1976</subfield><subfield code="g">6(1981), 2 vom: Apr., Seite 135-151</subfield><subfield code="w">(DE-627)327644974</subfield><subfield code="w">(DE-600)2043781-X</subfield><subfield code="x">1179-1926</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:1981</subfield><subfield code="g">number:2</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:135-151</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.2165/00003088-198106020-00004</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">1981</subfield><subfield code="e">2</subfield><subfield code="c">04</subfield><subfield code="h">135-151</subfield></datafield></record></collection>
|
score |
7.4021635 |