Personalized CT-based radiomics nomogram preoperative predicting Ki-67 expression in gastrointestinal stromal tumors: a multicenter development and validation cohort
Background and Aim To develop and validate radiomic prediction models using contrast-enhanced computed tomography (CE-CT) to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors (GISTs). Method A total of 339 GIST patients from four centers were categorized into the training, i...
Ausführliche Beschreibung
Autor*in: |
Zhang, Qing-Wei [verfasserIn] Gao, Yun-Jie [verfasserIn] Zhang, Ran-Ying [verfasserIn] Zhou, Xiao-Xuan [verfasserIn] Chen, Shuang-Li [verfasserIn] Zhang, Yan [verfasserIn] Liu, Qiang [verfasserIn] Xu, Jian-Rong [verfasserIn] Ge, Zhi-Zheng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Clinical and translational medicine - Hoboken, NJ : Wiley, 2012, 9(2020), 1 vom: 31. Jan. |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2020 ; number:1 ; day:31 ; month:01 |
Links: |
---|
DOI / URN: |
10.1186/s40169-020-0263-4 |
---|
Katalog-ID: |
SPR033329273 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR033329273 | ||
003 | DE-627 | ||
005 | 20230519232609.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40169-020-0263-4 |2 doi | |
035 | |a (DE-627)SPR033329273 | ||
035 | |a (SPR)s40169-020-0263-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q ASE |
100 | 1 | |a Zhang, Qing-Wei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Personalized CT-based radiomics nomogram preoperative predicting Ki-67 expression in gastrointestinal stromal tumors: a multicenter development and validation cohort |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background and Aim To develop and validate radiomic prediction models using contrast-enhanced computed tomography (CE-CT) to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors (GISTs). Method A total of 339 GIST patients from four centers were categorized into the training, internal validation, and external validation cohort. By filtering unstable features, minimum redundancy, maximum relevance, Least Absolute Shrinkage and Selection Operator (LASSO) algorithm, a radiomic signature was built to predict the malignant potential of GISTs. Individual nomograms of Ki-67 expression incorporating the radiomic signature or clinical factors were developed using the multivariate logistic model and evaluated regarding its calibration, discrimination, and clinical usefulness. Results The radiomic signature, consisting of 6 radiomic features had AUC of 0.787 [95% confidence interval (CI) 0.632–0.801], 0.765 (95% CI 0.683–0.847), and 0.754 (95% CI 0.666–0.842) in the prediction of high Ki-67 expression in the training, internal validation and external validation cohort, respectively. The radiomic nomogram including the radiomic signature and tumor size demonstrated significant calibration, and discrimination with AUC of 0.801 (95% CI 0.726–0.876), 0.828 (95% CI 0.681–0.974), and 0.784 (95% CI 0.701–0.868) in the training, internal validation and external validation cohort respectively. Based on the Decision curve analysis, the radiomics nomogram was found to be clinically significant and useful. Conclusions The radiomic signature from CE-CT was significantly associated with Ki-67 expression in GISTs. A nomogram consisted of radiomic signature, and tumor size had maximum accuracy in the prediction of Ki-67 expression in GISTs. Results from our study provide vital insight to make important preoperative clinical decisions. | ||
650 | 4 | |a Radiomic signature |7 (dpeaa)DE-He213 | |
650 | 4 | |a Gastrointestinal stromal tumor |7 (dpeaa)DE-He213 | |
650 | 4 | |a Ki-67 |7 (dpeaa)DE-He213 | |
650 | 4 | |a Prediction |7 (dpeaa)DE-He213 | |
700 | 1 | |a Gao, Yun-Jie |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Ran-Ying |e verfasserin |4 aut | |
700 | 1 | |a Zhou, Xiao-Xuan |e verfasserin |4 aut | |
700 | 1 | |a Chen, Shuang-Li |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Yan |e verfasserin |4 aut | |
700 | 1 | |a Liu, Qiang |e verfasserin |4 aut | |
700 | 1 | |a Xu, Jian-Rong |e verfasserin |4 aut | |
700 | 1 | |a Ge, Zhi-Zheng |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Clinical and translational medicine |d Hoboken, NJ : Wiley, 2012 |g 9(2020), 1 vom: 31. Jan. |w (DE-627)733752837 |w (DE-600)2697013-2 |x 2001-1326 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2020 |g number:1 |g day:31 |g month:01 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40169-020-0263-4 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2020 |e 1 |b 31 |c 01 |
author_variant |
q w z qwz y j g yjg r y z ryz x x z xxz s l c slc y z yz q l ql j r x jrx z z g zzg |
---|---|
matchkey_str |
article:20011326:2020----::esnlzdtaerdoisoormroeaierdcigi7xrsinnatonetnltoatmraut |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1186/s40169-020-0263-4 doi (DE-627)SPR033329273 (SPR)s40169-020-0263-4-e DE-627 ger DE-627 rakwb eng 610 ASE Zhang, Qing-Wei verfasserin aut Personalized CT-based radiomics nomogram preoperative predicting Ki-67 expression in gastrointestinal stromal tumors: a multicenter development and validation cohort 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and Aim To develop and validate radiomic prediction models using contrast-enhanced computed tomography (CE-CT) to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors (GISTs). Method A total of 339 GIST patients from four centers were categorized into the training, internal validation, and external validation cohort. By filtering unstable features, minimum redundancy, maximum relevance, Least Absolute Shrinkage and Selection Operator (LASSO) algorithm, a radiomic signature was built to predict the malignant potential of GISTs. Individual nomograms of Ki-67 expression incorporating the radiomic signature or clinical factors were developed using the multivariate logistic model and evaluated regarding its calibration, discrimination, and clinical usefulness. Results The radiomic signature, consisting of 6 radiomic features had AUC of 0.787 [95% confidence interval (CI) 0.632–0.801], 0.765 (95% CI 0.683–0.847), and 0.754 (95% CI 0.666–0.842) in the prediction of high Ki-67 expression in the training, internal validation and external validation cohort, respectively. The radiomic nomogram including the radiomic signature and tumor size demonstrated significant calibration, and discrimination with AUC of 0.801 (95% CI 0.726–0.876), 0.828 (95% CI 0.681–0.974), and 0.784 (95% CI 0.701–0.868) in the training, internal validation and external validation cohort respectively. Based on the Decision curve analysis, the radiomics nomogram was found to be clinically significant and useful. Conclusions The radiomic signature from CE-CT was significantly associated with Ki-67 expression in GISTs. A nomogram consisted of radiomic signature, and tumor size had maximum accuracy in the prediction of Ki-67 expression in GISTs. Results from our study provide vital insight to make important preoperative clinical decisions. Radiomic signature (dpeaa)DE-He213 Gastrointestinal stromal tumor (dpeaa)DE-He213 Ki-67 (dpeaa)DE-He213 Prediction (dpeaa)DE-He213 Gao, Yun-Jie verfasserin aut Zhang, Ran-Ying verfasserin aut Zhou, Xiao-Xuan verfasserin aut Chen, Shuang-Li verfasserin aut Zhang, Yan verfasserin aut Liu, Qiang verfasserin aut Xu, Jian-Rong verfasserin aut Ge, Zhi-Zheng verfasserin aut Enthalten in Clinical and translational medicine Hoboken, NJ : Wiley, 2012 9(2020), 1 vom: 31. Jan. (DE-627)733752837 (DE-600)2697013-2 2001-1326 nnns volume:9 year:2020 number:1 day:31 month:01 https://dx.doi.org/10.1186/s40169-020-0263-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 1 31 01 |
spelling |
10.1186/s40169-020-0263-4 doi (DE-627)SPR033329273 (SPR)s40169-020-0263-4-e DE-627 ger DE-627 rakwb eng 610 ASE Zhang, Qing-Wei verfasserin aut Personalized CT-based radiomics nomogram preoperative predicting Ki-67 expression in gastrointestinal stromal tumors: a multicenter development and validation cohort 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and Aim To develop and validate radiomic prediction models using contrast-enhanced computed tomography (CE-CT) to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors (GISTs). Method A total of 339 GIST patients from four centers were categorized into the training, internal validation, and external validation cohort. By filtering unstable features, minimum redundancy, maximum relevance, Least Absolute Shrinkage and Selection Operator (LASSO) algorithm, a radiomic signature was built to predict the malignant potential of GISTs. Individual nomograms of Ki-67 expression incorporating the radiomic signature or clinical factors were developed using the multivariate logistic model and evaluated regarding its calibration, discrimination, and clinical usefulness. Results The radiomic signature, consisting of 6 radiomic features had AUC of 0.787 [95% confidence interval (CI) 0.632–0.801], 0.765 (95% CI 0.683–0.847), and 0.754 (95% CI 0.666–0.842) in the prediction of high Ki-67 expression in the training, internal validation and external validation cohort, respectively. The radiomic nomogram including the radiomic signature and tumor size demonstrated significant calibration, and discrimination with AUC of 0.801 (95% CI 0.726–0.876), 0.828 (95% CI 0.681–0.974), and 0.784 (95% CI 0.701–0.868) in the training, internal validation and external validation cohort respectively. Based on the Decision curve analysis, the radiomics nomogram was found to be clinically significant and useful. Conclusions The radiomic signature from CE-CT was significantly associated with Ki-67 expression in GISTs. A nomogram consisted of radiomic signature, and tumor size had maximum accuracy in the prediction of Ki-67 expression in GISTs. Results from our study provide vital insight to make important preoperative clinical decisions. Radiomic signature (dpeaa)DE-He213 Gastrointestinal stromal tumor (dpeaa)DE-He213 Ki-67 (dpeaa)DE-He213 Prediction (dpeaa)DE-He213 Gao, Yun-Jie verfasserin aut Zhang, Ran-Ying verfasserin aut Zhou, Xiao-Xuan verfasserin aut Chen, Shuang-Li verfasserin aut Zhang, Yan verfasserin aut Liu, Qiang verfasserin aut Xu, Jian-Rong verfasserin aut Ge, Zhi-Zheng verfasserin aut Enthalten in Clinical and translational medicine Hoboken, NJ : Wiley, 2012 9(2020), 1 vom: 31. Jan. (DE-627)733752837 (DE-600)2697013-2 2001-1326 nnns volume:9 year:2020 number:1 day:31 month:01 https://dx.doi.org/10.1186/s40169-020-0263-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 1 31 01 |
allfields_unstemmed |
10.1186/s40169-020-0263-4 doi (DE-627)SPR033329273 (SPR)s40169-020-0263-4-e DE-627 ger DE-627 rakwb eng 610 ASE Zhang, Qing-Wei verfasserin aut Personalized CT-based radiomics nomogram preoperative predicting Ki-67 expression in gastrointestinal stromal tumors: a multicenter development and validation cohort 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and Aim To develop and validate radiomic prediction models using contrast-enhanced computed tomography (CE-CT) to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors (GISTs). Method A total of 339 GIST patients from four centers were categorized into the training, internal validation, and external validation cohort. By filtering unstable features, minimum redundancy, maximum relevance, Least Absolute Shrinkage and Selection Operator (LASSO) algorithm, a radiomic signature was built to predict the malignant potential of GISTs. Individual nomograms of Ki-67 expression incorporating the radiomic signature or clinical factors were developed using the multivariate logistic model and evaluated regarding its calibration, discrimination, and clinical usefulness. Results The radiomic signature, consisting of 6 radiomic features had AUC of 0.787 [95% confidence interval (CI) 0.632–0.801], 0.765 (95% CI 0.683–0.847), and 0.754 (95% CI 0.666–0.842) in the prediction of high Ki-67 expression in the training, internal validation and external validation cohort, respectively. The radiomic nomogram including the radiomic signature and tumor size demonstrated significant calibration, and discrimination with AUC of 0.801 (95% CI 0.726–0.876), 0.828 (95% CI 0.681–0.974), and 0.784 (95% CI 0.701–0.868) in the training, internal validation and external validation cohort respectively. Based on the Decision curve analysis, the radiomics nomogram was found to be clinically significant and useful. Conclusions The radiomic signature from CE-CT was significantly associated with Ki-67 expression in GISTs. A nomogram consisted of radiomic signature, and tumor size had maximum accuracy in the prediction of Ki-67 expression in GISTs. Results from our study provide vital insight to make important preoperative clinical decisions. Radiomic signature (dpeaa)DE-He213 Gastrointestinal stromal tumor (dpeaa)DE-He213 Ki-67 (dpeaa)DE-He213 Prediction (dpeaa)DE-He213 Gao, Yun-Jie verfasserin aut Zhang, Ran-Ying verfasserin aut Zhou, Xiao-Xuan verfasserin aut Chen, Shuang-Li verfasserin aut Zhang, Yan verfasserin aut Liu, Qiang verfasserin aut Xu, Jian-Rong verfasserin aut Ge, Zhi-Zheng verfasserin aut Enthalten in Clinical and translational medicine Hoboken, NJ : Wiley, 2012 9(2020), 1 vom: 31. Jan. (DE-627)733752837 (DE-600)2697013-2 2001-1326 nnns volume:9 year:2020 number:1 day:31 month:01 https://dx.doi.org/10.1186/s40169-020-0263-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 1 31 01 |
allfieldsGer |
10.1186/s40169-020-0263-4 doi (DE-627)SPR033329273 (SPR)s40169-020-0263-4-e DE-627 ger DE-627 rakwb eng 610 ASE Zhang, Qing-Wei verfasserin aut Personalized CT-based radiomics nomogram preoperative predicting Ki-67 expression in gastrointestinal stromal tumors: a multicenter development and validation cohort 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and Aim To develop and validate radiomic prediction models using contrast-enhanced computed tomography (CE-CT) to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors (GISTs). Method A total of 339 GIST patients from four centers were categorized into the training, internal validation, and external validation cohort. By filtering unstable features, minimum redundancy, maximum relevance, Least Absolute Shrinkage and Selection Operator (LASSO) algorithm, a radiomic signature was built to predict the malignant potential of GISTs. Individual nomograms of Ki-67 expression incorporating the radiomic signature or clinical factors were developed using the multivariate logistic model and evaluated regarding its calibration, discrimination, and clinical usefulness. Results The radiomic signature, consisting of 6 radiomic features had AUC of 0.787 [95% confidence interval (CI) 0.632–0.801], 0.765 (95% CI 0.683–0.847), and 0.754 (95% CI 0.666–0.842) in the prediction of high Ki-67 expression in the training, internal validation and external validation cohort, respectively. The radiomic nomogram including the radiomic signature and tumor size demonstrated significant calibration, and discrimination with AUC of 0.801 (95% CI 0.726–0.876), 0.828 (95% CI 0.681–0.974), and 0.784 (95% CI 0.701–0.868) in the training, internal validation and external validation cohort respectively. Based on the Decision curve analysis, the radiomics nomogram was found to be clinically significant and useful. Conclusions The radiomic signature from CE-CT was significantly associated with Ki-67 expression in GISTs. A nomogram consisted of radiomic signature, and tumor size had maximum accuracy in the prediction of Ki-67 expression in GISTs. Results from our study provide vital insight to make important preoperative clinical decisions. Radiomic signature (dpeaa)DE-He213 Gastrointestinal stromal tumor (dpeaa)DE-He213 Ki-67 (dpeaa)DE-He213 Prediction (dpeaa)DE-He213 Gao, Yun-Jie verfasserin aut Zhang, Ran-Ying verfasserin aut Zhou, Xiao-Xuan verfasserin aut Chen, Shuang-Li verfasserin aut Zhang, Yan verfasserin aut Liu, Qiang verfasserin aut Xu, Jian-Rong verfasserin aut Ge, Zhi-Zheng verfasserin aut Enthalten in Clinical and translational medicine Hoboken, NJ : Wiley, 2012 9(2020), 1 vom: 31. Jan. (DE-627)733752837 (DE-600)2697013-2 2001-1326 nnns volume:9 year:2020 number:1 day:31 month:01 https://dx.doi.org/10.1186/s40169-020-0263-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 1 31 01 |
allfieldsSound |
10.1186/s40169-020-0263-4 doi (DE-627)SPR033329273 (SPR)s40169-020-0263-4-e DE-627 ger DE-627 rakwb eng 610 ASE Zhang, Qing-Wei verfasserin aut Personalized CT-based radiomics nomogram preoperative predicting Ki-67 expression in gastrointestinal stromal tumors: a multicenter development and validation cohort 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and Aim To develop and validate radiomic prediction models using contrast-enhanced computed tomography (CE-CT) to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors (GISTs). Method A total of 339 GIST patients from four centers were categorized into the training, internal validation, and external validation cohort. By filtering unstable features, minimum redundancy, maximum relevance, Least Absolute Shrinkage and Selection Operator (LASSO) algorithm, a radiomic signature was built to predict the malignant potential of GISTs. Individual nomograms of Ki-67 expression incorporating the radiomic signature or clinical factors were developed using the multivariate logistic model and evaluated regarding its calibration, discrimination, and clinical usefulness. Results The radiomic signature, consisting of 6 radiomic features had AUC of 0.787 [95% confidence interval (CI) 0.632–0.801], 0.765 (95% CI 0.683–0.847), and 0.754 (95% CI 0.666–0.842) in the prediction of high Ki-67 expression in the training, internal validation and external validation cohort, respectively. The radiomic nomogram including the radiomic signature and tumor size demonstrated significant calibration, and discrimination with AUC of 0.801 (95% CI 0.726–0.876), 0.828 (95% CI 0.681–0.974), and 0.784 (95% CI 0.701–0.868) in the training, internal validation and external validation cohort respectively. Based on the Decision curve analysis, the radiomics nomogram was found to be clinically significant and useful. Conclusions The radiomic signature from CE-CT was significantly associated with Ki-67 expression in GISTs. A nomogram consisted of radiomic signature, and tumor size had maximum accuracy in the prediction of Ki-67 expression in GISTs. Results from our study provide vital insight to make important preoperative clinical decisions. Radiomic signature (dpeaa)DE-He213 Gastrointestinal stromal tumor (dpeaa)DE-He213 Ki-67 (dpeaa)DE-He213 Prediction (dpeaa)DE-He213 Gao, Yun-Jie verfasserin aut Zhang, Ran-Ying verfasserin aut Zhou, Xiao-Xuan verfasserin aut Chen, Shuang-Li verfasserin aut Zhang, Yan verfasserin aut Liu, Qiang verfasserin aut Xu, Jian-Rong verfasserin aut Ge, Zhi-Zheng verfasserin aut Enthalten in Clinical and translational medicine Hoboken, NJ : Wiley, 2012 9(2020), 1 vom: 31. Jan. (DE-627)733752837 (DE-600)2697013-2 2001-1326 nnns volume:9 year:2020 number:1 day:31 month:01 https://dx.doi.org/10.1186/s40169-020-0263-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2020 1 31 01 |
language |
English |
source |
Enthalten in Clinical and translational medicine 9(2020), 1 vom: 31. Jan. volume:9 year:2020 number:1 day:31 month:01 |
sourceStr |
Enthalten in Clinical and translational medicine 9(2020), 1 vom: 31. Jan. volume:9 year:2020 number:1 day:31 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Radiomic signature Gastrointestinal stromal tumor Ki-67 Prediction |
dewey-raw |
610 |
isfreeaccess_bool |
true |
container_title |
Clinical and translational medicine |
authorswithroles_txt_mv |
Zhang, Qing-Wei @@aut@@ Gao, Yun-Jie @@aut@@ Zhang, Ran-Ying @@aut@@ Zhou, Xiao-Xuan @@aut@@ Chen, Shuang-Li @@aut@@ Zhang, Yan @@aut@@ Liu, Qiang @@aut@@ Xu, Jian-Rong @@aut@@ Ge, Zhi-Zheng @@aut@@ |
publishDateDaySort_date |
2020-01-31T00:00:00Z |
hierarchy_top_id |
733752837 |
dewey-sort |
3610 |
id |
SPR033329273 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR033329273</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519232609.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40169-020-0263-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR033329273</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40169-020-0263-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Qing-Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Personalized CT-based radiomics nomogram preoperative predicting Ki-67 expression in gastrointestinal stromal tumors: a multicenter development and validation cohort</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background and Aim To develop and validate radiomic prediction models using contrast-enhanced computed tomography (CE-CT) to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors (GISTs). Method A total of 339 GIST patients from four centers were categorized into the training, internal validation, and external validation cohort. By filtering unstable features, minimum redundancy, maximum relevance, Least Absolute Shrinkage and Selection Operator (LASSO) algorithm, a radiomic signature was built to predict the malignant potential of GISTs. Individual nomograms of Ki-67 expression incorporating the radiomic signature or clinical factors were developed using the multivariate logistic model and evaluated regarding its calibration, discrimination, and clinical usefulness. Results The radiomic signature, consisting of 6 radiomic features had AUC of 0.787 [95% confidence interval (CI) 0.632–0.801], 0.765 (95% CI 0.683–0.847), and 0.754 (95% CI 0.666–0.842) in the prediction of high Ki-67 expression in the training, internal validation and external validation cohort, respectively. The radiomic nomogram including the radiomic signature and tumor size demonstrated significant calibration, and discrimination with AUC of 0.801 (95% CI 0.726–0.876), 0.828 (95% CI 0.681–0.974), and 0.784 (95% CI 0.701–0.868) in the training, internal validation and external validation cohort respectively. Based on the Decision curve analysis, the radiomics nomogram was found to be clinically significant and useful. Conclusions The radiomic signature from CE-CT was significantly associated with Ki-67 expression in GISTs. A nomogram consisted of radiomic signature, and tumor size had maximum accuracy in the prediction of Ki-67 expression in GISTs. Results from our study provide vital insight to make important preoperative clinical decisions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiomic signature</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gastrointestinal stromal tumor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ki-67</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prediction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Yun-Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Ran-Ying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Xiao-Xuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Shuang-Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Qiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Jian-Rong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ge, Zhi-Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Clinical and translational medicine</subfield><subfield code="d">Hoboken, NJ : Wiley, 2012</subfield><subfield code="g">9(2020), 1 vom: 31. Jan.</subfield><subfield code="w">(DE-627)733752837</subfield><subfield code="w">(DE-600)2697013-2</subfield><subfield code="x">2001-1326</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:31</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40169-020-0263-4</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">31</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Zhang, Qing-Wei |
spellingShingle |
Zhang, Qing-Wei ddc 610 misc Radiomic signature misc Gastrointestinal stromal tumor misc Ki-67 misc Prediction Personalized CT-based radiomics nomogram preoperative predicting Ki-67 expression in gastrointestinal stromal tumors: a multicenter development and validation cohort |
authorStr |
Zhang, Qing-Wei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)733752837 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2001-1326 |
topic_title |
610 ASE Personalized CT-based radiomics nomogram preoperative predicting Ki-67 expression in gastrointestinal stromal tumors: a multicenter development and validation cohort Radiomic signature (dpeaa)DE-He213 Gastrointestinal stromal tumor (dpeaa)DE-He213 Ki-67 (dpeaa)DE-He213 Prediction (dpeaa)DE-He213 |
topic |
ddc 610 misc Radiomic signature misc Gastrointestinal stromal tumor misc Ki-67 misc Prediction |
topic_unstemmed |
ddc 610 misc Radiomic signature misc Gastrointestinal stromal tumor misc Ki-67 misc Prediction |
topic_browse |
ddc 610 misc Radiomic signature misc Gastrointestinal stromal tumor misc Ki-67 misc Prediction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Clinical and translational medicine |
hierarchy_parent_id |
733752837 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Clinical and translational medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)733752837 (DE-600)2697013-2 |
title |
Personalized CT-based radiomics nomogram preoperative predicting Ki-67 expression in gastrointestinal stromal tumors: a multicenter development and validation cohort |
ctrlnum |
(DE-627)SPR033329273 (SPR)s40169-020-0263-4-e |
title_full |
Personalized CT-based radiomics nomogram preoperative predicting Ki-67 expression in gastrointestinal stromal tumors: a multicenter development and validation cohort |
author_sort |
Zhang, Qing-Wei |
journal |
Clinical and translational medicine |
journalStr |
Clinical and translational medicine |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Zhang, Qing-Wei Gao, Yun-Jie Zhang, Ran-Ying Zhou, Xiao-Xuan Chen, Shuang-Li Zhang, Yan Liu, Qiang Xu, Jian-Rong Ge, Zhi-Zheng |
container_volume |
9 |
class |
610 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Qing-Wei |
doi_str_mv |
10.1186/s40169-020-0263-4 |
dewey-full |
610 |
author2-role |
verfasserin |
title_sort |
personalized ct-based radiomics nomogram preoperative predicting ki-67 expression in gastrointestinal stromal tumors: a multicenter development and validation cohort |
title_auth |
Personalized CT-based radiomics nomogram preoperative predicting Ki-67 expression in gastrointestinal stromal tumors: a multicenter development and validation cohort |
abstract |
Background and Aim To develop and validate radiomic prediction models using contrast-enhanced computed tomography (CE-CT) to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors (GISTs). Method A total of 339 GIST patients from four centers were categorized into the training, internal validation, and external validation cohort. By filtering unstable features, minimum redundancy, maximum relevance, Least Absolute Shrinkage and Selection Operator (LASSO) algorithm, a radiomic signature was built to predict the malignant potential of GISTs. Individual nomograms of Ki-67 expression incorporating the radiomic signature or clinical factors were developed using the multivariate logistic model and evaluated regarding its calibration, discrimination, and clinical usefulness. Results The radiomic signature, consisting of 6 radiomic features had AUC of 0.787 [95% confidence interval (CI) 0.632–0.801], 0.765 (95% CI 0.683–0.847), and 0.754 (95% CI 0.666–0.842) in the prediction of high Ki-67 expression in the training, internal validation and external validation cohort, respectively. The radiomic nomogram including the radiomic signature and tumor size demonstrated significant calibration, and discrimination with AUC of 0.801 (95% CI 0.726–0.876), 0.828 (95% CI 0.681–0.974), and 0.784 (95% CI 0.701–0.868) in the training, internal validation and external validation cohort respectively. Based on the Decision curve analysis, the radiomics nomogram was found to be clinically significant and useful. Conclusions The radiomic signature from CE-CT was significantly associated with Ki-67 expression in GISTs. A nomogram consisted of radiomic signature, and tumor size had maximum accuracy in the prediction of Ki-67 expression in GISTs. Results from our study provide vital insight to make important preoperative clinical decisions. |
abstractGer |
Background and Aim To develop and validate radiomic prediction models using contrast-enhanced computed tomography (CE-CT) to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors (GISTs). Method A total of 339 GIST patients from four centers were categorized into the training, internal validation, and external validation cohort. By filtering unstable features, minimum redundancy, maximum relevance, Least Absolute Shrinkage and Selection Operator (LASSO) algorithm, a radiomic signature was built to predict the malignant potential of GISTs. Individual nomograms of Ki-67 expression incorporating the radiomic signature or clinical factors were developed using the multivariate logistic model and evaluated regarding its calibration, discrimination, and clinical usefulness. Results The radiomic signature, consisting of 6 radiomic features had AUC of 0.787 [95% confidence interval (CI) 0.632–0.801], 0.765 (95% CI 0.683–0.847), and 0.754 (95% CI 0.666–0.842) in the prediction of high Ki-67 expression in the training, internal validation and external validation cohort, respectively. The radiomic nomogram including the radiomic signature and tumor size demonstrated significant calibration, and discrimination with AUC of 0.801 (95% CI 0.726–0.876), 0.828 (95% CI 0.681–0.974), and 0.784 (95% CI 0.701–0.868) in the training, internal validation and external validation cohort respectively. Based on the Decision curve analysis, the radiomics nomogram was found to be clinically significant and useful. Conclusions The radiomic signature from CE-CT was significantly associated with Ki-67 expression in GISTs. A nomogram consisted of radiomic signature, and tumor size had maximum accuracy in the prediction of Ki-67 expression in GISTs. Results from our study provide vital insight to make important preoperative clinical decisions. |
abstract_unstemmed |
Background and Aim To develop and validate radiomic prediction models using contrast-enhanced computed tomography (CE-CT) to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors (GISTs). Method A total of 339 GIST patients from four centers were categorized into the training, internal validation, and external validation cohort. By filtering unstable features, minimum redundancy, maximum relevance, Least Absolute Shrinkage and Selection Operator (LASSO) algorithm, a radiomic signature was built to predict the malignant potential of GISTs. Individual nomograms of Ki-67 expression incorporating the radiomic signature or clinical factors were developed using the multivariate logistic model and evaluated regarding its calibration, discrimination, and clinical usefulness. Results The radiomic signature, consisting of 6 radiomic features had AUC of 0.787 [95% confidence interval (CI) 0.632–0.801], 0.765 (95% CI 0.683–0.847), and 0.754 (95% CI 0.666–0.842) in the prediction of high Ki-67 expression in the training, internal validation and external validation cohort, respectively. The radiomic nomogram including the radiomic signature and tumor size demonstrated significant calibration, and discrimination with AUC of 0.801 (95% CI 0.726–0.876), 0.828 (95% CI 0.681–0.974), and 0.784 (95% CI 0.701–0.868) in the training, internal validation and external validation cohort respectively. Based on the Decision curve analysis, the radiomics nomogram was found to be clinically significant and useful. Conclusions The radiomic signature from CE-CT was significantly associated with Ki-67 expression in GISTs. A nomogram consisted of radiomic signature, and tumor size had maximum accuracy in the prediction of Ki-67 expression in GISTs. Results from our study provide vital insight to make important preoperative clinical decisions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Personalized CT-based radiomics nomogram preoperative predicting Ki-67 expression in gastrointestinal stromal tumors: a multicenter development and validation cohort |
url |
https://dx.doi.org/10.1186/s40169-020-0263-4 |
remote_bool |
true |
author2 |
Gao, Yun-Jie Zhang, Ran-Ying Zhou, Xiao-Xuan Chen, Shuang-Li Zhang, Yan Liu, Qiang Xu, Jian-Rong Ge, Zhi-Zheng |
author2Str |
Gao, Yun-Jie Zhang, Ran-Ying Zhou, Xiao-Xuan Chen, Shuang-Li Zhang, Yan Liu, Qiang Xu, Jian-Rong Ge, Zhi-Zheng |
ppnlink |
733752837 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40169-020-0263-4 |
up_date |
2024-07-03T17:58:57.312Z |
_version_ |
1803581692131147776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR033329273</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519232609.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40169-020-0263-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR033329273</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40169-020-0263-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Qing-Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Personalized CT-based radiomics nomogram preoperative predicting Ki-67 expression in gastrointestinal stromal tumors: a multicenter development and validation cohort</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background and Aim To develop and validate radiomic prediction models using contrast-enhanced computed tomography (CE-CT) to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors (GISTs). Method A total of 339 GIST patients from four centers were categorized into the training, internal validation, and external validation cohort. By filtering unstable features, minimum redundancy, maximum relevance, Least Absolute Shrinkage and Selection Operator (LASSO) algorithm, a radiomic signature was built to predict the malignant potential of GISTs. Individual nomograms of Ki-67 expression incorporating the radiomic signature or clinical factors were developed using the multivariate logistic model and evaluated regarding its calibration, discrimination, and clinical usefulness. Results The radiomic signature, consisting of 6 radiomic features had AUC of 0.787 [95% confidence interval (CI) 0.632–0.801], 0.765 (95% CI 0.683–0.847), and 0.754 (95% CI 0.666–0.842) in the prediction of high Ki-67 expression in the training, internal validation and external validation cohort, respectively. The radiomic nomogram including the radiomic signature and tumor size demonstrated significant calibration, and discrimination with AUC of 0.801 (95% CI 0.726–0.876), 0.828 (95% CI 0.681–0.974), and 0.784 (95% CI 0.701–0.868) in the training, internal validation and external validation cohort respectively. Based on the Decision curve analysis, the radiomics nomogram was found to be clinically significant and useful. Conclusions The radiomic signature from CE-CT was significantly associated with Ki-67 expression in GISTs. A nomogram consisted of radiomic signature, and tumor size had maximum accuracy in the prediction of Ki-67 expression in GISTs. Results from our study provide vital insight to make important preoperative clinical decisions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiomic signature</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gastrointestinal stromal tumor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ki-67</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prediction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Yun-Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Ran-Ying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Xiao-Xuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Shuang-Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Qiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Jian-Rong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ge, Zhi-Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Clinical and translational medicine</subfield><subfield code="d">Hoboken, NJ : Wiley, 2012</subfield><subfield code="g">9(2020), 1 vom: 31. Jan.</subfield><subfield code="w">(DE-627)733752837</subfield><subfield code="w">(DE-600)2697013-2</subfield><subfield code="x">2001-1326</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:31</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40169-020-0263-4</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">31</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.4004908 |