Renal response to short- and long-term exercise in very-long-chain acyl-CoA dehydrogenase-deficient ($ VLCAD^{−/−} $) mice
Background Deficiency of very long-chain acyl-CoA dehydrogenase (VLCAD) is the most common disorder of mitochondrial β-oxidation of long-chain fatty acids. In order to maintain glucose homeostasis, the kidney and liver as the main gluconeogenic organs play an important role under conditions of impai...
Ausführliche Beschreibung
Autor*in: |
Tucci, Sara [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Tucci et al.; Licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
---|
Übergeordnetes Werk: |
Enthalten in: Molecular and Cellular Pediatrics - Berlin : SpringerOpen, 2014, 1(2014), 1 vom: 02. Okt. |
---|---|
Übergeordnetes Werk: |
volume:1 ; year:2014 ; number:1 ; day:02 ; month:10 |
Links: |
---|
DOI / URN: |
10.1186/s40348-014-0005-z |
---|
Katalog-ID: |
SPR036356948 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR036356948 | ||
003 | DE-627 | ||
005 | 20230519212515.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40348-014-0005-z |2 doi | |
035 | |a (DE-627)SPR036356948 | ||
035 | |a (SPR)s40348-014-0005-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Tucci, Sara |e verfasserin |4 aut | |
245 | 1 | 0 | |a Renal response to short- and long-term exercise in very-long-chain acyl-CoA dehydrogenase-deficient ($ VLCAD^{−/−} $) mice |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Tucci et al.; Licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( | ||
520 | |a Background Deficiency of very long-chain acyl-CoA dehydrogenase (VLCAD) is the most common disorder of mitochondrial β-oxidation of long-chain fatty acids. In order to maintain glucose homeostasis, the kidney and liver as the main gluconeogenic organs play an important role under conditions of impaired fatty acid oxidation. However, little is known about how a defective fatty acid oxidation machinery affects renal metabolism and function as well as renal energy supply especially during catabolic situations. Methods In this study, we analyzed $ VLCAD^{−/−} $ mice under different metabolic conditions such as after moderate (1 h) and intensive long-term (1 h twice per day over 2 weeks) physical exercise and after 24 h of fasting. We measured the oxidation rate of palmitoyl-CoA (C16-CoA) as well as the expression of genes involved in lipogenesis and renal failure. Oxidative stress was assessed by the function of antioxidant enzymes. Moreover, we quantified the content of glycogen and long-chain acylcarnitines in the kidney. Results We observed a significant depletion in renal glycogen with a concomitant reduction in long-chain acylcarnitines, suggesting a substrate switch for energy production and an optimal compensation of impaired fatty acid oxidation in the kidney. In fact, the mutants did not show any signs of oxidative stress or renal failure under catabolic conditions. Conclusions Our data demonstrate that despite Acadvl ablation, the kidney of $ VLCAD^{−/−} $ mice fully compensates for impaired fatty acid oxidation by enhanced glycogen utilization and preserves renal energy metabolism and function. | ||
650 | 4 | |a VLCAD deficiency |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fatty acid oxidation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Acylcarnitines |7 (dpeaa)DE-He213 | |
650 | 4 | |a Glucose homeostasis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Oxidative stress |7 (dpeaa)DE-He213 | |
700 | 1 | |a Krogmann, Antonia |4 aut | |
700 | 1 | |a Herebian, Diran |4 aut | |
700 | 1 | |a Spiekerkoetter, Ute |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Molecular and Cellular Pediatrics |d Berlin : SpringerOpen, 2014 |g 1(2014), 1 vom: 02. Okt. |w (DE-627)797382186 |w (DE-600)2785551-X |x 2194-7791 |7 nnns |
773 | 1 | 8 | |g volume:1 |g year:2014 |g number:1 |g day:02 |g month:10 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40348-014-0005-z |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 1 |j 2014 |e 1 |b 02 |c 10 |
author_variant |
s t st a k ak d h dh u s us |
---|---|
matchkey_str |
article:21947791:2014----::earsostsotnlntreecsivrlncanclodhdo |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1186/s40348-014-0005-z doi (DE-627)SPR036356948 (SPR)s40348-014-0005-z-e DE-627 ger DE-627 rakwb eng Tucci, Sara verfasserin aut Renal response to short- and long-term exercise in very-long-chain acyl-CoA dehydrogenase-deficient ($ VLCAD^{−/−} $) mice 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Tucci et al.; Licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Deficiency of very long-chain acyl-CoA dehydrogenase (VLCAD) is the most common disorder of mitochondrial β-oxidation of long-chain fatty acids. In order to maintain glucose homeostasis, the kidney and liver as the main gluconeogenic organs play an important role under conditions of impaired fatty acid oxidation. However, little is known about how a defective fatty acid oxidation machinery affects renal metabolism and function as well as renal energy supply especially during catabolic situations. Methods In this study, we analyzed $ VLCAD^{−/−} $ mice under different metabolic conditions such as after moderate (1 h) and intensive long-term (1 h twice per day over 2 weeks) physical exercise and after 24 h of fasting. We measured the oxidation rate of palmitoyl-CoA (C16-CoA) as well as the expression of genes involved in lipogenesis and renal failure. Oxidative stress was assessed by the function of antioxidant enzymes. Moreover, we quantified the content of glycogen and long-chain acylcarnitines in the kidney. Results We observed a significant depletion in renal glycogen with a concomitant reduction in long-chain acylcarnitines, suggesting a substrate switch for energy production and an optimal compensation of impaired fatty acid oxidation in the kidney. In fact, the mutants did not show any signs of oxidative stress or renal failure under catabolic conditions. Conclusions Our data demonstrate that despite Acadvl ablation, the kidney of $ VLCAD^{−/−} $ mice fully compensates for impaired fatty acid oxidation by enhanced glycogen utilization and preserves renal energy metabolism and function. VLCAD deficiency (dpeaa)DE-He213 Fatty acid oxidation (dpeaa)DE-He213 Acylcarnitines (dpeaa)DE-He213 Glucose homeostasis (dpeaa)DE-He213 Oxidative stress (dpeaa)DE-He213 Krogmann, Antonia aut Herebian, Diran aut Spiekerkoetter, Ute aut Enthalten in Molecular and Cellular Pediatrics Berlin : SpringerOpen, 2014 1(2014), 1 vom: 02. Okt. (DE-627)797382186 (DE-600)2785551-X 2194-7791 nnns volume:1 year:2014 number:1 day:02 month:10 https://dx.doi.org/10.1186/s40348-014-0005-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2014 1 02 10 |
spelling |
10.1186/s40348-014-0005-z doi (DE-627)SPR036356948 (SPR)s40348-014-0005-z-e DE-627 ger DE-627 rakwb eng Tucci, Sara verfasserin aut Renal response to short- and long-term exercise in very-long-chain acyl-CoA dehydrogenase-deficient ($ VLCAD^{−/−} $) mice 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Tucci et al.; Licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Deficiency of very long-chain acyl-CoA dehydrogenase (VLCAD) is the most common disorder of mitochondrial β-oxidation of long-chain fatty acids. In order to maintain glucose homeostasis, the kidney and liver as the main gluconeogenic organs play an important role under conditions of impaired fatty acid oxidation. However, little is known about how a defective fatty acid oxidation machinery affects renal metabolism and function as well as renal energy supply especially during catabolic situations. Methods In this study, we analyzed $ VLCAD^{−/−} $ mice under different metabolic conditions such as after moderate (1 h) and intensive long-term (1 h twice per day over 2 weeks) physical exercise and after 24 h of fasting. We measured the oxidation rate of palmitoyl-CoA (C16-CoA) as well as the expression of genes involved in lipogenesis and renal failure. Oxidative stress was assessed by the function of antioxidant enzymes. Moreover, we quantified the content of glycogen and long-chain acylcarnitines in the kidney. Results We observed a significant depletion in renal glycogen with a concomitant reduction in long-chain acylcarnitines, suggesting a substrate switch for energy production and an optimal compensation of impaired fatty acid oxidation in the kidney. In fact, the mutants did not show any signs of oxidative stress or renal failure under catabolic conditions. Conclusions Our data demonstrate that despite Acadvl ablation, the kidney of $ VLCAD^{−/−} $ mice fully compensates for impaired fatty acid oxidation by enhanced glycogen utilization and preserves renal energy metabolism and function. VLCAD deficiency (dpeaa)DE-He213 Fatty acid oxidation (dpeaa)DE-He213 Acylcarnitines (dpeaa)DE-He213 Glucose homeostasis (dpeaa)DE-He213 Oxidative stress (dpeaa)DE-He213 Krogmann, Antonia aut Herebian, Diran aut Spiekerkoetter, Ute aut Enthalten in Molecular and Cellular Pediatrics Berlin : SpringerOpen, 2014 1(2014), 1 vom: 02. Okt. (DE-627)797382186 (DE-600)2785551-X 2194-7791 nnns volume:1 year:2014 number:1 day:02 month:10 https://dx.doi.org/10.1186/s40348-014-0005-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2014 1 02 10 |
allfields_unstemmed |
10.1186/s40348-014-0005-z doi (DE-627)SPR036356948 (SPR)s40348-014-0005-z-e DE-627 ger DE-627 rakwb eng Tucci, Sara verfasserin aut Renal response to short- and long-term exercise in very-long-chain acyl-CoA dehydrogenase-deficient ($ VLCAD^{−/−} $) mice 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Tucci et al.; Licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Deficiency of very long-chain acyl-CoA dehydrogenase (VLCAD) is the most common disorder of mitochondrial β-oxidation of long-chain fatty acids. In order to maintain glucose homeostasis, the kidney and liver as the main gluconeogenic organs play an important role under conditions of impaired fatty acid oxidation. However, little is known about how a defective fatty acid oxidation machinery affects renal metabolism and function as well as renal energy supply especially during catabolic situations. Methods In this study, we analyzed $ VLCAD^{−/−} $ mice under different metabolic conditions such as after moderate (1 h) and intensive long-term (1 h twice per day over 2 weeks) physical exercise and after 24 h of fasting. We measured the oxidation rate of palmitoyl-CoA (C16-CoA) as well as the expression of genes involved in lipogenesis and renal failure. Oxidative stress was assessed by the function of antioxidant enzymes. Moreover, we quantified the content of glycogen and long-chain acylcarnitines in the kidney. Results We observed a significant depletion in renal glycogen with a concomitant reduction in long-chain acylcarnitines, suggesting a substrate switch for energy production and an optimal compensation of impaired fatty acid oxidation in the kidney. In fact, the mutants did not show any signs of oxidative stress or renal failure under catabolic conditions. Conclusions Our data demonstrate that despite Acadvl ablation, the kidney of $ VLCAD^{−/−} $ mice fully compensates for impaired fatty acid oxidation by enhanced glycogen utilization and preserves renal energy metabolism and function. VLCAD deficiency (dpeaa)DE-He213 Fatty acid oxidation (dpeaa)DE-He213 Acylcarnitines (dpeaa)DE-He213 Glucose homeostasis (dpeaa)DE-He213 Oxidative stress (dpeaa)DE-He213 Krogmann, Antonia aut Herebian, Diran aut Spiekerkoetter, Ute aut Enthalten in Molecular and Cellular Pediatrics Berlin : SpringerOpen, 2014 1(2014), 1 vom: 02. Okt. (DE-627)797382186 (DE-600)2785551-X 2194-7791 nnns volume:1 year:2014 number:1 day:02 month:10 https://dx.doi.org/10.1186/s40348-014-0005-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2014 1 02 10 |
allfieldsGer |
10.1186/s40348-014-0005-z doi (DE-627)SPR036356948 (SPR)s40348-014-0005-z-e DE-627 ger DE-627 rakwb eng Tucci, Sara verfasserin aut Renal response to short- and long-term exercise in very-long-chain acyl-CoA dehydrogenase-deficient ($ VLCAD^{−/−} $) mice 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Tucci et al.; Licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Deficiency of very long-chain acyl-CoA dehydrogenase (VLCAD) is the most common disorder of mitochondrial β-oxidation of long-chain fatty acids. In order to maintain glucose homeostasis, the kidney and liver as the main gluconeogenic organs play an important role under conditions of impaired fatty acid oxidation. However, little is known about how a defective fatty acid oxidation machinery affects renal metabolism and function as well as renal energy supply especially during catabolic situations. Methods In this study, we analyzed $ VLCAD^{−/−} $ mice under different metabolic conditions such as after moderate (1 h) and intensive long-term (1 h twice per day over 2 weeks) physical exercise and after 24 h of fasting. We measured the oxidation rate of palmitoyl-CoA (C16-CoA) as well as the expression of genes involved in lipogenesis and renal failure. Oxidative stress was assessed by the function of antioxidant enzymes. Moreover, we quantified the content of glycogen and long-chain acylcarnitines in the kidney. Results We observed a significant depletion in renal glycogen with a concomitant reduction in long-chain acylcarnitines, suggesting a substrate switch for energy production and an optimal compensation of impaired fatty acid oxidation in the kidney. In fact, the mutants did not show any signs of oxidative stress or renal failure under catabolic conditions. Conclusions Our data demonstrate that despite Acadvl ablation, the kidney of $ VLCAD^{−/−} $ mice fully compensates for impaired fatty acid oxidation by enhanced glycogen utilization and preserves renal energy metabolism and function. VLCAD deficiency (dpeaa)DE-He213 Fatty acid oxidation (dpeaa)DE-He213 Acylcarnitines (dpeaa)DE-He213 Glucose homeostasis (dpeaa)DE-He213 Oxidative stress (dpeaa)DE-He213 Krogmann, Antonia aut Herebian, Diran aut Spiekerkoetter, Ute aut Enthalten in Molecular and Cellular Pediatrics Berlin : SpringerOpen, 2014 1(2014), 1 vom: 02. Okt. (DE-627)797382186 (DE-600)2785551-X 2194-7791 nnns volume:1 year:2014 number:1 day:02 month:10 https://dx.doi.org/10.1186/s40348-014-0005-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2014 1 02 10 |
allfieldsSound |
10.1186/s40348-014-0005-z doi (DE-627)SPR036356948 (SPR)s40348-014-0005-z-e DE-627 ger DE-627 rakwb eng Tucci, Sara verfasserin aut Renal response to short- and long-term exercise in very-long-chain acyl-CoA dehydrogenase-deficient ($ VLCAD^{−/−} $) mice 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Tucci et al.; Licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Deficiency of very long-chain acyl-CoA dehydrogenase (VLCAD) is the most common disorder of mitochondrial β-oxidation of long-chain fatty acids. In order to maintain glucose homeostasis, the kidney and liver as the main gluconeogenic organs play an important role under conditions of impaired fatty acid oxidation. However, little is known about how a defective fatty acid oxidation machinery affects renal metabolism and function as well as renal energy supply especially during catabolic situations. Methods In this study, we analyzed $ VLCAD^{−/−} $ mice under different metabolic conditions such as after moderate (1 h) and intensive long-term (1 h twice per day over 2 weeks) physical exercise and after 24 h of fasting. We measured the oxidation rate of palmitoyl-CoA (C16-CoA) as well as the expression of genes involved in lipogenesis and renal failure. Oxidative stress was assessed by the function of antioxidant enzymes. Moreover, we quantified the content of glycogen and long-chain acylcarnitines in the kidney. Results We observed a significant depletion in renal glycogen with a concomitant reduction in long-chain acylcarnitines, suggesting a substrate switch for energy production and an optimal compensation of impaired fatty acid oxidation in the kidney. In fact, the mutants did not show any signs of oxidative stress or renal failure under catabolic conditions. Conclusions Our data demonstrate that despite Acadvl ablation, the kidney of $ VLCAD^{−/−} $ mice fully compensates for impaired fatty acid oxidation by enhanced glycogen utilization and preserves renal energy metabolism and function. VLCAD deficiency (dpeaa)DE-He213 Fatty acid oxidation (dpeaa)DE-He213 Acylcarnitines (dpeaa)DE-He213 Glucose homeostasis (dpeaa)DE-He213 Oxidative stress (dpeaa)DE-He213 Krogmann, Antonia aut Herebian, Diran aut Spiekerkoetter, Ute aut Enthalten in Molecular and Cellular Pediatrics Berlin : SpringerOpen, 2014 1(2014), 1 vom: 02. Okt. (DE-627)797382186 (DE-600)2785551-X 2194-7791 nnns volume:1 year:2014 number:1 day:02 month:10 https://dx.doi.org/10.1186/s40348-014-0005-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2014 1 02 10 |
language |
English |
source |
Enthalten in Molecular and Cellular Pediatrics 1(2014), 1 vom: 02. Okt. volume:1 year:2014 number:1 day:02 month:10 |
sourceStr |
Enthalten in Molecular and Cellular Pediatrics 1(2014), 1 vom: 02. Okt. volume:1 year:2014 number:1 day:02 month:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
VLCAD deficiency Fatty acid oxidation Acylcarnitines Glucose homeostasis Oxidative stress |
isfreeaccess_bool |
true |
container_title |
Molecular and Cellular Pediatrics |
authorswithroles_txt_mv |
Tucci, Sara @@aut@@ Krogmann, Antonia @@aut@@ Herebian, Diran @@aut@@ Spiekerkoetter, Ute @@aut@@ |
publishDateDaySort_date |
2014-10-02T00:00:00Z |
hierarchy_top_id |
797382186 |
id |
SPR036356948 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036356948</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519212515.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40348-014-0005-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036356948</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40348-014-0005-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tucci, Sara</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Renal response to short- and long-term exercise in very-long-chain acyl-CoA dehydrogenase-deficient ($ VLCAD^{−/−} $) mice</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Tucci et al.; Licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Deficiency of very long-chain acyl-CoA dehydrogenase (VLCAD) is the most common disorder of mitochondrial β-oxidation of long-chain fatty acids. In order to maintain glucose homeostasis, the kidney and liver as the main gluconeogenic organs play an important role under conditions of impaired fatty acid oxidation. However, little is known about how a defective fatty acid oxidation machinery affects renal metabolism and function as well as renal energy supply especially during catabolic situations. Methods In this study, we analyzed $ VLCAD^{−/−} $ mice under different metabolic conditions such as after moderate (1 h) and intensive long-term (1 h twice per day over 2 weeks) physical exercise and after 24 h of fasting. We measured the oxidation rate of palmitoyl-CoA (C16-CoA) as well as the expression of genes involved in lipogenesis and renal failure. Oxidative stress was assessed by the function of antioxidant enzymes. Moreover, we quantified the content of glycogen and long-chain acylcarnitines in the kidney. Results We observed a significant depletion in renal glycogen with a concomitant reduction in long-chain acylcarnitines, suggesting a substrate switch for energy production and an optimal compensation of impaired fatty acid oxidation in the kidney. In fact, the mutants did not show any signs of oxidative stress or renal failure under catabolic conditions. Conclusions Our data demonstrate that despite Acadvl ablation, the kidney of $ VLCAD^{−/−} $ mice fully compensates for impaired fatty acid oxidation by enhanced glycogen utilization and preserves renal energy metabolism and function.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VLCAD deficiency</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatty acid oxidation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acylcarnitines</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glucose homeostasis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxidative stress</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krogmann, Antonia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Herebian, Diran</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spiekerkoetter, Ute</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Molecular and Cellular Pediatrics</subfield><subfield code="d">Berlin : SpringerOpen, 2014</subfield><subfield code="g">1(2014), 1 vom: 02. Okt.</subfield><subfield code="w">(DE-627)797382186</subfield><subfield code="w">(DE-600)2785551-X</subfield><subfield code="x">2194-7791</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:02</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40348-014-0005-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">02</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
author |
Tucci, Sara |
spellingShingle |
Tucci, Sara misc VLCAD deficiency misc Fatty acid oxidation misc Acylcarnitines misc Glucose homeostasis misc Oxidative stress Renal response to short- and long-term exercise in very-long-chain acyl-CoA dehydrogenase-deficient ($ VLCAD^{−/−} $) mice |
authorStr |
Tucci, Sara |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)797382186 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2194-7791 |
topic_title |
Renal response to short- and long-term exercise in very-long-chain acyl-CoA dehydrogenase-deficient ($ VLCAD^{−/−} $) mice VLCAD deficiency (dpeaa)DE-He213 Fatty acid oxidation (dpeaa)DE-He213 Acylcarnitines (dpeaa)DE-He213 Glucose homeostasis (dpeaa)DE-He213 Oxidative stress (dpeaa)DE-He213 |
topic |
misc VLCAD deficiency misc Fatty acid oxidation misc Acylcarnitines misc Glucose homeostasis misc Oxidative stress |
topic_unstemmed |
misc VLCAD deficiency misc Fatty acid oxidation misc Acylcarnitines misc Glucose homeostasis misc Oxidative stress |
topic_browse |
misc VLCAD deficiency misc Fatty acid oxidation misc Acylcarnitines misc Glucose homeostasis misc Oxidative stress |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Molecular and Cellular Pediatrics |
hierarchy_parent_id |
797382186 |
hierarchy_top_title |
Molecular and Cellular Pediatrics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)797382186 (DE-600)2785551-X |
title |
Renal response to short- and long-term exercise in very-long-chain acyl-CoA dehydrogenase-deficient ($ VLCAD^{−/−} $) mice |
ctrlnum |
(DE-627)SPR036356948 (SPR)s40348-014-0005-z-e |
title_full |
Renal response to short- and long-term exercise in very-long-chain acyl-CoA dehydrogenase-deficient ($ VLCAD^{−/−} $) mice |
author_sort |
Tucci, Sara |
journal |
Molecular and Cellular Pediatrics |
journalStr |
Molecular and Cellular Pediatrics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
author_browse |
Tucci, Sara Krogmann, Antonia Herebian, Diran Spiekerkoetter, Ute |
container_volume |
1 |
format_se |
Elektronische Aufsätze |
author-letter |
Tucci, Sara |
doi_str_mv |
10.1186/s40348-014-0005-z |
title_sort |
renal response to short- and long-term exercise in very-long-chain acyl-coa dehydrogenase-deficient ($ vlcad^{−/−} $) mice |
title_auth |
Renal response to short- and long-term exercise in very-long-chain acyl-CoA dehydrogenase-deficient ($ VLCAD^{−/−} $) mice |
abstract |
Background Deficiency of very long-chain acyl-CoA dehydrogenase (VLCAD) is the most common disorder of mitochondrial β-oxidation of long-chain fatty acids. In order to maintain glucose homeostasis, the kidney and liver as the main gluconeogenic organs play an important role under conditions of impaired fatty acid oxidation. However, little is known about how a defective fatty acid oxidation machinery affects renal metabolism and function as well as renal energy supply especially during catabolic situations. Methods In this study, we analyzed $ VLCAD^{−/−} $ mice under different metabolic conditions such as after moderate (1 h) and intensive long-term (1 h twice per day over 2 weeks) physical exercise and after 24 h of fasting. We measured the oxidation rate of palmitoyl-CoA (C16-CoA) as well as the expression of genes involved in lipogenesis and renal failure. Oxidative stress was assessed by the function of antioxidant enzymes. Moreover, we quantified the content of glycogen and long-chain acylcarnitines in the kidney. Results We observed a significant depletion in renal glycogen with a concomitant reduction in long-chain acylcarnitines, suggesting a substrate switch for energy production and an optimal compensation of impaired fatty acid oxidation in the kidney. In fact, the mutants did not show any signs of oxidative stress or renal failure under catabolic conditions. Conclusions Our data demonstrate that despite Acadvl ablation, the kidney of $ VLCAD^{−/−} $ mice fully compensates for impaired fatty acid oxidation by enhanced glycogen utilization and preserves renal energy metabolism and function. © Tucci et al.; Licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstractGer |
Background Deficiency of very long-chain acyl-CoA dehydrogenase (VLCAD) is the most common disorder of mitochondrial β-oxidation of long-chain fatty acids. In order to maintain glucose homeostasis, the kidney and liver as the main gluconeogenic organs play an important role under conditions of impaired fatty acid oxidation. However, little is known about how a defective fatty acid oxidation machinery affects renal metabolism and function as well as renal energy supply especially during catabolic situations. Methods In this study, we analyzed $ VLCAD^{−/−} $ mice under different metabolic conditions such as after moderate (1 h) and intensive long-term (1 h twice per day over 2 weeks) physical exercise and after 24 h of fasting. We measured the oxidation rate of palmitoyl-CoA (C16-CoA) as well as the expression of genes involved in lipogenesis and renal failure. Oxidative stress was assessed by the function of antioxidant enzymes. Moreover, we quantified the content of glycogen and long-chain acylcarnitines in the kidney. Results We observed a significant depletion in renal glycogen with a concomitant reduction in long-chain acylcarnitines, suggesting a substrate switch for energy production and an optimal compensation of impaired fatty acid oxidation in the kidney. In fact, the mutants did not show any signs of oxidative stress or renal failure under catabolic conditions. Conclusions Our data demonstrate that despite Acadvl ablation, the kidney of $ VLCAD^{−/−} $ mice fully compensates for impaired fatty acid oxidation by enhanced glycogen utilization and preserves renal energy metabolism and function. © Tucci et al.; Licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstract_unstemmed |
Background Deficiency of very long-chain acyl-CoA dehydrogenase (VLCAD) is the most common disorder of mitochondrial β-oxidation of long-chain fatty acids. In order to maintain glucose homeostasis, the kidney and liver as the main gluconeogenic organs play an important role under conditions of impaired fatty acid oxidation. However, little is known about how a defective fatty acid oxidation machinery affects renal metabolism and function as well as renal energy supply especially during catabolic situations. Methods In this study, we analyzed $ VLCAD^{−/−} $ mice under different metabolic conditions such as after moderate (1 h) and intensive long-term (1 h twice per day over 2 weeks) physical exercise and after 24 h of fasting. We measured the oxidation rate of palmitoyl-CoA (C16-CoA) as well as the expression of genes involved in lipogenesis and renal failure. Oxidative stress was assessed by the function of antioxidant enzymes. Moreover, we quantified the content of glycogen and long-chain acylcarnitines in the kidney. Results We observed a significant depletion in renal glycogen with a concomitant reduction in long-chain acylcarnitines, suggesting a substrate switch for energy production and an optimal compensation of impaired fatty acid oxidation in the kidney. In fact, the mutants did not show any signs of oxidative stress or renal failure under catabolic conditions. Conclusions Our data demonstrate that despite Acadvl ablation, the kidney of $ VLCAD^{−/−} $ mice fully compensates for impaired fatty acid oxidation by enhanced glycogen utilization and preserves renal energy metabolism and function. © Tucci et al.; Licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Renal response to short- and long-term exercise in very-long-chain acyl-CoA dehydrogenase-deficient ($ VLCAD^{−/−} $) mice |
url |
https://dx.doi.org/10.1186/s40348-014-0005-z |
remote_bool |
true |
author2 |
Krogmann, Antonia Herebian, Diran Spiekerkoetter, Ute |
author2Str |
Krogmann, Antonia Herebian, Diran Spiekerkoetter, Ute |
ppnlink |
797382186 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40348-014-0005-z |
up_date |
2024-07-03T17:08:43.570Z |
_version_ |
1803578531992567808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036356948</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519212515.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40348-014-0005-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036356948</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40348-014-0005-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tucci, Sara</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Renal response to short- and long-term exercise in very-long-chain acyl-CoA dehydrogenase-deficient ($ VLCAD^{−/−} $) mice</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Tucci et al.; Licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Deficiency of very long-chain acyl-CoA dehydrogenase (VLCAD) is the most common disorder of mitochondrial β-oxidation of long-chain fatty acids. In order to maintain glucose homeostasis, the kidney and liver as the main gluconeogenic organs play an important role under conditions of impaired fatty acid oxidation. However, little is known about how a defective fatty acid oxidation machinery affects renal metabolism and function as well as renal energy supply especially during catabolic situations. Methods In this study, we analyzed $ VLCAD^{−/−} $ mice under different metabolic conditions such as after moderate (1 h) and intensive long-term (1 h twice per day over 2 weeks) physical exercise and after 24 h of fasting. We measured the oxidation rate of palmitoyl-CoA (C16-CoA) as well as the expression of genes involved in lipogenesis and renal failure. Oxidative stress was assessed by the function of antioxidant enzymes. Moreover, we quantified the content of glycogen and long-chain acylcarnitines in the kidney. Results We observed a significant depletion in renal glycogen with a concomitant reduction in long-chain acylcarnitines, suggesting a substrate switch for energy production and an optimal compensation of impaired fatty acid oxidation in the kidney. In fact, the mutants did not show any signs of oxidative stress or renal failure under catabolic conditions. Conclusions Our data demonstrate that despite Acadvl ablation, the kidney of $ VLCAD^{−/−} $ mice fully compensates for impaired fatty acid oxidation by enhanced glycogen utilization and preserves renal energy metabolism and function.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">VLCAD deficiency</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatty acid oxidation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acylcarnitines</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glucose homeostasis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxidative stress</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krogmann, Antonia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Herebian, Diran</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spiekerkoetter, Ute</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Molecular and Cellular Pediatrics</subfield><subfield code="d">Berlin : SpringerOpen, 2014</subfield><subfield code="g">1(2014), 1 vom: 02. Okt.</subfield><subfield code="w">(DE-627)797382186</subfield><subfield code="w">(DE-600)2785551-X</subfield><subfield code="x">2194-7791</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:02</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40348-014-0005-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">02</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
score |
7.402011 |