Optimal Control of Relative Motion in Arbitrary Fields: Application at Deimos
Abstract A second-order, general dynamics, relative motion framework is formulated to solve for optimal finite-burn transfers in complex gravity fields that are not amenable to analytic solutions. The second-order variational equations are employed in a Cartesian frame that is general in fidelity an...
Ausführliche Beschreibung
Autor*in: |
Russell, Ryan P. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© American Astronautical Society 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: The Journal of the Astronautical Sciences - Springer-Verlag, 2006, 59(2012), 1-2 vom: Juni, Seite 193-215 |
---|---|
Übergeordnetes Werk: |
volume:59 ; year:2012 ; number:1-2 ; month:06 ; pages:193-215 |
Links: |
---|
DOI / URN: |
10.1007/s40295-013-0013-6 |
---|
Katalog-ID: |
SPR036446076 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR036446076 | ||
003 | DE-627 | ||
005 | 20230328165750.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40295-013-0013-6 |2 doi | |
035 | |a (DE-627)SPR036446076 | ||
035 | |a (SPR)s40295-013-0013-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Russell, Ryan P. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimal Control of Relative Motion in Arbitrary Fields: Application at Deimos |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © American Astronautical Society 2014 | ||
520 | |a Abstract A second-order, general dynamics, relative motion framework is formulated to solve for optimal finite-burn transfers in complex gravity fields that are not amenable to analytic solutions. The second-order variational equations are employed in a Cartesian frame that is general in fidelity and simple to implement. For a passive chief orbit we show that only 16 coefficient functions are necessary to accommodate most dynamical environments of interest. We pre-compute and curve-fit the coefficient functions which represent the time-varying Jacobians and Hessians of the state equations evaluated along the chief orbit. Once the coefficient functions are evaluated, the resulting CUrve-fit quadRatic Variational Equations (CURVE) model is almost transparent to the fidelity level and therefore is well suited for the repeated iterations required by nonlinear optimization. The optimal control problem is solved using a robust, second-order technique that is a variant of differential dynamic programming. The model and optimal rendezvous problems are demonstrated in the highly perturbed dynamical environment of the Martian moon Deimos. The resulting implementation is useful for any relative motion application requiring optimal targeting, particularly in the context of complex force fields. While intended primarily for exotic destinations such as the Moon, asteroids, comets, and planetary satellites, the CURVE model and optimal control framework can also be useful for Earth orbiters, especially in cases of large eccentricity and high fidelity geopotentials. | ||
650 | 4 | |a Relative Motion |7 (dpeaa)DE-He213 | |
650 | 4 | |a Optimal Control Problem |7 (dpeaa)DE-He213 | |
650 | 4 | |a Solar Radiation Pressure |7 (dpeaa)DE-He213 | |
650 | 4 | |a Halo Orbit |7 (dpeaa)DE-He213 | |
650 | 4 | |a Model Fidelity |7 (dpeaa)DE-He213 | |
700 | 1 | |a Lantoine, Gregory |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The Journal of the Astronautical Sciences |d Springer-Verlag, 2006 |g 59(2012), 1-2 vom: Juni, Seite 193-215 |w (DE-627)SPR036426385 |7 nnns |
773 | 1 | 8 | |g volume:59 |g year:2012 |g number:1-2 |g month:06 |g pages:193-215 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40295-013-0013-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 59 |j 2012 |e 1-2 |c 06 |h 193-215 |
author_variant |
r p r rp rpr g l gl |
---|---|
matchkey_str |
russellryanplantoinegregory:2012----:piacnrlfeaieoinnrirrfeda |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1007/s40295-013-0013-6 doi (DE-627)SPR036446076 (SPR)s40295-013-0013-6-e DE-627 ger DE-627 rakwb eng Russell, Ryan P. verfasserin aut Optimal Control of Relative Motion in Arbitrary Fields: Application at Deimos 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © American Astronautical Society 2014 Abstract A second-order, general dynamics, relative motion framework is formulated to solve for optimal finite-burn transfers in complex gravity fields that are not amenable to analytic solutions. The second-order variational equations are employed in a Cartesian frame that is general in fidelity and simple to implement. For a passive chief orbit we show that only 16 coefficient functions are necessary to accommodate most dynamical environments of interest. We pre-compute and curve-fit the coefficient functions which represent the time-varying Jacobians and Hessians of the state equations evaluated along the chief orbit. Once the coefficient functions are evaluated, the resulting CUrve-fit quadRatic Variational Equations (CURVE) model is almost transparent to the fidelity level and therefore is well suited for the repeated iterations required by nonlinear optimization. The optimal control problem is solved using a robust, second-order technique that is a variant of differential dynamic programming. The model and optimal rendezvous problems are demonstrated in the highly perturbed dynamical environment of the Martian moon Deimos. The resulting implementation is useful for any relative motion application requiring optimal targeting, particularly in the context of complex force fields. While intended primarily for exotic destinations such as the Moon, asteroids, comets, and planetary satellites, the CURVE model and optimal control framework can also be useful for Earth orbiters, especially in cases of large eccentricity and high fidelity geopotentials. Relative Motion (dpeaa)DE-He213 Optimal Control Problem (dpeaa)DE-He213 Solar Radiation Pressure (dpeaa)DE-He213 Halo Orbit (dpeaa)DE-He213 Model Fidelity (dpeaa)DE-He213 Lantoine, Gregory aut Enthalten in The Journal of the Astronautical Sciences Springer-Verlag, 2006 59(2012), 1-2 vom: Juni, Seite 193-215 (DE-627)SPR036426385 nnns volume:59 year:2012 number:1-2 month:06 pages:193-215 https://dx.doi.org/10.1007/s40295-013-0013-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 59 2012 1-2 06 193-215 |
spelling |
10.1007/s40295-013-0013-6 doi (DE-627)SPR036446076 (SPR)s40295-013-0013-6-e DE-627 ger DE-627 rakwb eng Russell, Ryan P. verfasserin aut Optimal Control of Relative Motion in Arbitrary Fields: Application at Deimos 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © American Astronautical Society 2014 Abstract A second-order, general dynamics, relative motion framework is formulated to solve for optimal finite-burn transfers in complex gravity fields that are not amenable to analytic solutions. The second-order variational equations are employed in a Cartesian frame that is general in fidelity and simple to implement. For a passive chief orbit we show that only 16 coefficient functions are necessary to accommodate most dynamical environments of interest. We pre-compute and curve-fit the coefficient functions which represent the time-varying Jacobians and Hessians of the state equations evaluated along the chief orbit. Once the coefficient functions are evaluated, the resulting CUrve-fit quadRatic Variational Equations (CURVE) model is almost transparent to the fidelity level and therefore is well suited for the repeated iterations required by nonlinear optimization. The optimal control problem is solved using a robust, second-order technique that is a variant of differential dynamic programming. The model and optimal rendezvous problems are demonstrated in the highly perturbed dynamical environment of the Martian moon Deimos. The resulting implementation is useful for any relative motion application requiring optimal targeting, particularly in the context of complex force fields. While intended primarily for exotic destinations such as the Moon, asteroids, comets, and planetary satellites, the CURVE model and optimal control framework can also be useful for Earth orbiters, especially in cases of large eccentricity and high fidelity geopotentials. Relative Motion (dpeaa)DE-He213 Optimal Control Problem (dpeaa)DE-He213 Solar Radiation Pressure (dpeaa)DE-He213 Halo Orbit (dpeaa)DE-He213 Model Fidelity (dpeaa)DE-He213 Lantoine, Gregory aut Enthalten in The Journal of the Astronautical Sciences Springer-Verlag, 2006 59(2012), 1-2 vom: Juni, Seite 193-215 (DE-627)SPR036426385 nnns volume:59 year:2012 number:1-2 month:06 pages:193-215 https://dx.doi.org/10.1007/s40295-013-0013-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 59 2012 1-2 06 193-215 |
allfields_unstemmed |
10.1007/s40295-013-0013-6 doi (DE-627)SPR036446076 (SPR)s40295-013-0013-6-e DE-627 ger DE-627 rakwb eng Russell, Ryan P. verfasserin aut Optimal Control of Relative Motion in Arbitrary Fields: Application at Deimos 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © American Astronautical Society 2014 Abstract A second-order, general dynamics, relative motion framework is formulated to solve for optimal finite-burn transfers in complex gravity fields that are not amenable to analytic solutions. The second-order variational equations are employed in a Cartesian frame that is general in fidelity and simple to implement. For a passive chief orbit we show that only 16 coefficient functions are necessary to accommodate most dynamical environments of interest. We pre-compute and curve-fit the coefficient functions which represent the time-varying Jacobians and Hessians of the state equations evaluated along the chief orbit. Once the coefficient functions are evaluated, the resulting CUrve-fit quadRatic Variational Equations (CURVE) model is almost transparent to the fidelity level and therefore is well suited for the repeated iterations required by nonlinear optimization. The optimal control problem is solved using a robust, second-order technique that is a variant of differential dynamic programming. The model and optimal rendezvous problems are demonstrated in the highly perturbed dynamical environment of the Martian moon Deimos. The resulting implementation is useful for any relative motion application requiring optimal targeting, particularly in the context of complex force fields. While intended primarily for exotic destinations such as the Moon, asteroids, comets, and planetary satellites, the CURVE model and optimal control framework can also be useful for Earth orbiters, especially in cases of large eccentricity and high fidelity geopotentials. Relative Motion (dpeaa)DE-He213 Optimal Control Problem (dpeaa)DE-He213 Solar Radiation Pressure (dpeaa)DE-He213 Halo Orbit (dpeaa)DE-He213 Model Fidelity (dpeaa)DE-He213 Lantoine, Gregory aut Enthalten in The Journal of the Astronautical Sciences Springer-Verlag, 2006 59(2012), 1-2 vom: Juni, Seite 193-215 (DE-627)SPR036426385 nnns volume:59 year:2012 number:1-2 month:06 pages:193-215 https://dx.doi.org/10.1007/s40295-013-0013-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 59 2012 1-2 06 193-215 |
allfieldsGer |
10.1007/s40295-013-0013-6 doi (DE-627)SPR036446076 (SPR)s40295-013-0013-6-e DE-627 ger DE-627 rakwb eng Russell, Ryan P. verfasserin aut Optimal Control of Relative Motion in Arbitrary Fields: Application at Deimos 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © American Astronautical Society 2014 Abstract A second-order, general dynamics, relative motion framework is formulated to solve for optimal finite-burn transfers in complex gravity fields that are not amenable to analytic solutions. The second-order variational equations are employed in a Cartesian frame that is general in fidelity and simple to implement. For a passive chief orbit we show that only 16 coefficient functions are necessary to accommodate most dynamical environments of interest. We pre-compute and curve-fit the coefficient functions which represent the time-varying Jacobians and Hessians of the state equations evaluated along the chief orbit. Once the coefficient functions are evaluated, the resulting CUrve-fit quadRatic Variational Equations (CURVE) model is almost transparent to the fidelity level and therefore is well suited for the repeated iterations required by nonlinear optimization. The optimal control problem is solved using a robust, second-order technique that is a variant of differential dynamic programming. The model and optimal rendezvous problems are demonstrated in the highly perturbed dynamical environment of the Martian moon Deimos. The resulting implementation is useful for any relative motion application requiring optimal targeting, particularly in the context of complex force fields. While intended primarily for exotic destinations such as the Moon, asteroids, comets, and planetary satellites, the CURVE model and optimal control framework can also be useful for Earth orbiters, especially in cases of large eccentricity and high fidelity geopotentials. Relative Motion (dpeaa)DE-He213 Optimal Control Problem (dpeaa)DE-He213 Solar Radiation Pressure (dpeaa)DE-He213 Halo Orbit (dpeaa)DE-He213 Model Fidelity (dpeaa)DE-He213 Lantoine, Gregory aut Enthalten in The Journal of the Astronautical Sciences Springer-Verlag, 2006 59(2012), 1-2 vom: Juni, Seite 193-215 (DE-627)SPR036426385 nnns volume:59 year:2012 number:1-2 month:06 pages:193-215 https://dx.doi.org/10.1007/s40295-013-0013-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 59 2012 1-2 06 193-215 |
allfieldsSound |
10.1007/s40295-013-0013-6 doi (DE-627)SPR036446076 (SPR)s40295-013-0013-6-e DE-627 ger DE-627 rakwb eng Russell, Ryan P. verfasserin aut Optimal Control of Relative Motion in Arbitrary Fields: Application at Deimos 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © American Astronautical Society 2014 Abstract A second-order, general dynamics, relative motion framework is formulated to solve for optimal finite-burn transfers in complex gravity fields that are not amenable to analytic solutions. The second-order variational equations are employed in a Cartesian frame that is general in fidelity and simple to implement. For a passive chief orbit we show that only 16 coefficient functions are necessary to accommodate most dynamical environments of interest. We pre-compute and curve-fit the coefficient functions which represent the time-varying Jacobians and Hessians of the state equations evaluated along the chief orbit. Once the coefficient functions are evaluated, the resulting CUrve-fit quadRatic Variational Equations (CURVE) model is almost transparent to the fidelity level and therefore is well suited for the repeated iterations required by nonlinear optimization. The optimal control problem is solved using a robust, second-order technique that is a variant of differential dynamic programming. The model and optimal rendezvous problems are demonstrated in the highly perturbed dynamical environment of the Martian moon Deimos. The resulting implementation is useful for any relative motion application requiring optimal targeting, particularly in the context of complex force fields. While intended primarily for exotic destinations such as the Moon, asteroids, comets, and planetary satellites, the CURVE model and optimal control framework can also be useful for Earth orbiters, especially in cases of large eccentricity and high fidelity geopotentials. Relative Motion (dpeaa)DE-He213 Optimal Control Problem (dpeaa)DE-He213 Solar Radiation Pressure (dpeaa)DE-He213 Halo Orbit (dpeaa)DE-He213 Model Fidelity (dpeaa)DE-He213 Lantoine, Gregory aut Enthalten in The Journal of the Astronautical Sciences Springer-Verlag, 2006 59(2012), 1-2 vom: Juni, Seite 193-215 (DE-627)SPR036426385 nnns volume:59 year:2012 number:1-2 month:06 pages:193-215 https://dx.doi.org/10.1007/s40295-013-0013-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 59 2012 1-2 06 193-215 |
language |
English |
source |
Enthalten in The Journal of the Astronautical Sciences 59(2012), 1-2 vom: Juni, Seite 193-215 volume:59 year:2012 number:1-2 month:06 pages:193-215 |
sourceStr |
Enthalten in The Journal of the Astronautical Sciences 59(2012), 1-2 vom: Juni, Seite 193-215 volume:59 year:2012 number:1-2 month:06 pages:193-215 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Relative Motion Optimal Control Problem Solar Radiation Pressure Halo Orbit Model Fidelity |
isfreeaccess_bool |
false |
container_title |
The Journal of the Astronautical Sciences |
authorswithroles_txt_mv |
Russell, Ryan P. @@aut@@ Lantoine, Gregory @@aut@@ |
publishDateDaySort_date |
2012-06-01T00:00:00Z |
hierarchy_top_id |
SPR036426385 |
id |
SPR036446076 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036446076</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328165750.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40295-013-0013-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036446076</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40295-013-0013-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Russell, Ryan P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal Control of Relative Motion in Arbitrary Fields: Application at Deimos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© American Astronautical Society 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A second-order, general dynamics, relative motion framework is formulated to solve for optimal finite-burn transfers in complex gravity fields that are not amenable to analytic solutions. The second-order variational equations are employed in a Cartesian frame that is general in fidelity and simple to implement. For a passive chief orbit we show that only 16 coefficient functions are necessary to accommodate most dynamical environments of interest. We pre-compute and curve-fit the coefficient functions which represent the time-varying Jacobians and Hessians of the state equations evaluated along the chief orbit. Once the coefficient functions are evaluated, the resulting CUrve-fit quadRatic Variational Equations (CURVE) model is almost transparent to the fidelity level and therefore is well suited for the repeated iterations required by nonlinear optimization. The optimal control problem is solved using a robust, second-order technique that is a variant of differential dynamic programming. The model and optimal rendezvous problems are demonstrated in the highly perturbed dynamical environment of the Martian moon Deimos. The resulting implementation is useful for any relative motion application requiring optimal targeting, particularly in the context of complex force fields. While intended primarily for exotic destinations such as the Moon, asteroids, comets, and planetary satellites, the CURVE model and optimal control framework can also be useful for Earth orbiters, especially in cases of large eccentricity and high fidelity geopotentials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relative Motion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal Control Problem</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar Radiation Pressure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Halo Orbit</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Model Fidelity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lantoine, Gregory</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Journal of the Astronautical Sciences</subfield><subfield code="d">Springer-Verlag, 2006</subfield><subfield code="g">59(2012), 1-2 vom: Juni, Seite 193-215</subfield><subfield code="w">(DE-627)SPR036426385</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:59</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1-2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:193-215</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40295-013-0013-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">59</subfield><subfield code="j">2012</subfield><subfield code="e">1-2</subfield><subfield code="c">06</subfield><subfield code="h">193-215</subfield></datafield></record></collection>
|
author |
Russell, Ryan P. |
spellingShingle |
Russell, Ryan P. misc Relative Motion misc Optimal Control Problem misc Solar Radiation Pressure misc Halo Orbit misc Model Fidelity Optimal Control of Relative Motion in Arbitrary Fields: Application at Deimos |
authorStr |
Russell, Ryan P. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR036426385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
Optimal Control of Relative Motion in Arbitrary Fields: Application at Deimos Relative Motion (dpeaa)DE-He213 Optimal Control Problem (dpeaa)DE-He213 Solar Radiation Pressure (dpeaa)DE-He213 Halo Orbit (dpeaa)DE-He213 Model Fidelity (dpeaa)DE-He213 |
topic |
misc Relative Motion misc Optimal Control Problem misc Solar Radiation Pressure misc Halo Orbit misc Model Fidelity |
topic_unstemmed |
misc Relative Motion misc Optimal Control Problem misc Solar Radiation Pressure misc Halo Orbit misc Model Fidelity |
topic_browse |
misc Relative Motion misc Optimal Control Problem misc Solar Radiation Pressure misc Halo Orbit misc Model Fidelity |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Journal of the Astronautical Sciences |
hierarchy_parent_id |
SPR036426385 |
hierarchy_top_title |
The Journal of the Astronautical Sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR036426385 |
title |
Optimal Control of Relative Motion in Arbitrary Fields: Application at Deimos |
ctrlnum |
(DE-627)SPR036446076 (SPR)s40295-013-0013-6-e |
title_full |
Optimal Control of Relative Motion in Arbitrary Fields: Application at Deimos |
author_sort |
Russell, Ryan P. |
journal |
The Journal of the Astronautical Sciences |
journalStr |
The Journal of the Astronautical Sciences |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
193 |
author_browse |
Russell, Ryan P. Lantoine, Gregory |
container_volume |
59 |
format_se |
Elektronische Aufsätze |
author-letter |
Russell, Ryan P. |
doi_str_mv |
10.1007/s40295-013-0013-6 |
title_sort |
optimal control of relative motion in arbitrary fields: application at deimos |
title_auth |
Optimal Control of Relative Motion in Arbitrary Fields: Application at Deimos |
abstract |
Abstract A second-order, general dynamics, relative motion framework is formulated to solve for optimal finite-burn transfers in complex gravity fields that are not amenable to analytic solutions. The second-order variational equations are employed in a Cartesian frame that is general in fidelity and simple to implement. For a passive chief orbit we show that only 16 coefficient functions are necessary to accommodate most dynamical environments of interest. We pre-compute and curve-fit the coefficient functions which represent the time-varying Jacobians and Hessians of the state equations evaluated along the chief orbit. Once the coefficient functions are evaluated, the resulting CUrve-fit quadRatic Variational Equations (CURVE) model is almost transparent to the fidelity level and therefore is well suited for the repeated iterations required by nonlinear optimization. The optimal control problem is solved using a robust, second-order technique that is a variant of differential dynamic programming. The model and optimal rendezvous problems are demonstrated in the highly perturbed dynamical environment of the Martian moon Deimos. The resulting implementation is useful for any relative motion application requiring optimal targeting, particularly in the context of complex force fields. While intended primarily for exotic destinations such as the Moon, asteroids, comets, and planetary satellites, the CURVE model and optimal control framework can also be useful for Earth orbiters, especially in cases of large eccentricity and high fidelity geopotentials. © American Astronautical Society 2014 |
abstractGer |
Abstract A second-order, general dynamics, relative motion framework is formulated to solve for optimal finite-burn transfers in complex gravity fields that are not amenable to analytic solutions. The second-order variational equations are employed in a Cartesian frame that is general in fidelity and simple to implement. For a passive chief orbit we show that only 16 coefficient functions are necessary to accommodate most dynamical environments of interest. We pre-compute and curve-fit the coefficient functions which represent the time-varying Jacobians and Hessians of the state equations evaluated along the chief orbit. Once the coefficient functions are evaluated, the resulting CUrve-fit quadRatic Variational Equations (CURVE) model is almost transparent to the fidelity level and therefore is well suited for the repeated iterations required by nonlinear optimization. The optimal control problem is solved using a robust, second-order technique that is a variant of differential dynamic programming. The model and optimal rendezvous problems are demonstrated in the highly perturbed dynamical environment of the Martian moon Deimos. The resulting implementation is useful for any relative motion application requiring optimal targeting, particularly in the context of complex force fields. While intended primarily for exotic destinations such as the Moon, asteroids, comets, and planetary satellites, the CURVE model and optimal control framework can also be useful for Earth orbiters, especially in cases of large eccentricity and high fidelity geopotentials. © American Astronautical Society 2014 |
abstract_unstemmed |
Abstract A second-order, general dynamics, relative motion framework is formulated to solve for optimal finite-burn transfers in complex gravity fields that are not amenable to analytic solutions. The second-order variational equations are employed in a Cartesian frame that is general in fidelity and simple to implement. For a passive chief orbit we show that only 16 coefficient functions are necessary to accommodate most dynamical environments of interest. We pre-compute and curve-fit the coefficient functions which represent the time-varying Jacobians and Hessians of the state equations evaluated along the chief orbit. Once the coefficient functions are evaluated, the resulting CUrve-fit quadRatic Variational Equations (CURVE) model is almost transparent to the fidelity level and therefore is well suited for the repeated iterations required by nonlinear optimization. The optimal control problem is solved using a robust, second-order technique that is a variant of differential dynamic programming. The model and optimal rendezvous problems are demonstrated in the highly perturbed dynamical environment of the Martian moon Deimos. The resulting implementation is useful for any relative motion application requiring optimal targeting, particularly in the context of complex force fields. While intended primarily for exotic destinations such as the Moon, asteroids, comets, and planetary satellites, the CURVE model and optimal control framework can also be useful for Earth orbiters, especially in cases of large eccentricity and high fidelity geopotentials. © American Astronautical Society 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
1-2 |
title_short |
Optimal Control of Relative Motion in Arbitrary Fields: Application at Deimos |
url |
https://dx.doi.org/10.1007/s40295-013-0013-6 |
remote_bool |
true |
author2 |
Lantoine, Gregory |
author2Str |
Lantoine, Gregory |
ppnlink |
SPR036426385 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40295-013-0013-6 |
up_date |
2024-07-03T17:40:09.066Z |
_version_ |
1803580509064790017 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036446076</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328165750.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40295-013-0013-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036446076</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40295-013-0013-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Russell, Ryan P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal Control of Relative Motion in Arbitrary Fields: Application at Deimos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© American Astronautical Society 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A second-order, general dynamics, relative motion framework is formulated to solve for optimal finite-burn transfers in complex gravity fields that are not amenable to analytic solutions. The second-order variational equations are employed in a Cartesian frame that is general in fidelity and simple to implement. For a passive chief orbit we show that only 16 coefficient functions are necessary to accommodate most dynamical environments of interest. We pre-compute and curve-fit the coefficient functions which represent the time-varying Jacobians and Hessians of the state equations evaluated along the chief orbit. Once the coefficient functions are evaluated, the resulting CUrve-fit quadRatic Variational Equations (CURVE) model is almost transparent to the fidelity level and therefore is well suited for the repeated iterations required by nonlinear optimization. The optimal control problem is solved using a robust, second-order technique that is a variant of differential dynamic programming. The model and optimal rendezvous problems are demonstrated in the highly perturbed dynamical environment of the Martian moon Deimos. The resulting implementation is useful for any relative motion application requiring optimal targeting, particularly in the context of complex force fields. While intended primarily for exotic destinations such as the Moon, asteroids, comets, and planetary satellites, the CURVE model and optimal control framework can also be useful for Earth orbiters, especially in cases of large eccentricity and high fidelity geopotentials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relative Motion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal Control Problem</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar Radiation Pressure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Halo Orbit</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Model Fidelity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lantoine, Gregory</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Journal of the Astronautical Sciences</subfield><subfield code="d">Springer-Verlag, 2006</subfield><subfield code="g">59(2012), 1-2 vom: Juni, Seite 193-215</subfield><subfield code="w">(DE-627)SPR036426385</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:59</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1-2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:193-215</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40295-013-0013-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">59</subfield><subfield code="j">2012</subfield><subfield code="e">1-2</subfield><subfield code="c">06</subfield><subfield code="h">193-215</subfield></datafield></record></collection>
|
score |
7.3993053 |