Maneuver Design Using Relative Orbital Elements
Abstract Relative orbital elements provide a geometric interpretation of the motion of a deputy spacecraft about a chief spacecraft. The formulation yields an intuitive understanding of how the relative motion evolves with time, and by incorporating velocity changes in the local-vertical, local-hori...
Ausführliche Beschreibung
Autor*in: |
Spencer, David A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© American Astronautical Society 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: The Journal of the Astronautical Sciences - Springer-Verlag, 2006, 62(2015), 4 vom: Dez., Seite 315-350 |
---|---|
Übergeordnetes Werk: |
volume:62 ; year:2015 ; number:4 ; month:12 ; pages:315-350 |
Links: |
---|
DOI / URN: |
10.1007/s40295-015-0072-y |
---|
Katalog-ID: |
SPR036457086 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR036457086 | ||
003 | DE-627 | ||
005 | 20230328165753.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40295-015-0072-y |2 doi | |
035 | |a (DE-627)SPR036457086 | ||
035 | |a (SPR)s40295-015-0072-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Spencer, David A. |e verfasserin |0 (orcid)0000-0003-0799-7491 |4 aut | |
245 | 1 | 0 | |a Maneuver Design Using Relative Orbital Elements |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © American Astronautical Society 2015 | ||
520 | |a Abstract Relative orbital elements provide a geometric interpretation of the motion of a deputy spacecraft about a chief spacecraft. The formulation yields an intuitive understanding of how the relative motion evolves with time, and by incorporating velocity changes in the local-vertical, local-horizontal component directions, the change in relative motion due to impulsive maneuvers can be evaluated. This paper utilizes a relative orbital element formulation that characterizes relative motion where the chief spacecraft is assumed to be in a circular orbit. Expressions are developed for changes to the relative orbital elements as a function of the impulsive maneuver components in each coordinate direction. A general maneuver strategy is developed for targeting a set of relative orbital elements, and this strategy is applied to scenarios that are relevant for close proximity operations, including establishing a stationary relative orbit, natural motion circumnavigation, and station-keeping in a leading or trailing orbit. | ||
650 | 4 | |a Orbital mechanics |7 (dpeaa)DE-He213 | |
650 | 4 | |a Relative motion |7 (dpeaa)DE-He213 | |
650 | 4 | |a Proximity operations |7 (dpeaa)DE-He213 | |
700 | 1 | |a Lovell, Thomas A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The Journal of the Astronautical Sciences |d Springer-Verlag, 2006 |g 62(2015), 4 vom: Dez., Seite 315-350 |w (DE-627)SPR036426385 |7 nnns |
773 | 1 | 8 | |g volume:62 |g year:2015 |g number:4 |g month:12 |g pages:315-350 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40295-015-0072-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 62 |j 2015 |e 4 |c 12 |h 315-350 |
author_variant |
d a s da das t a l ta tal |
---|---|
matchkey_str |
spencerdavidalovellthomasa:2015----:aevreinsnrltvob |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s40295-015-0072-y doi (DE-627)SPR036457086 (SPR)s40295-015-0072-y-e DE-627 ger DE-627 rakwb eng Spencer, David A. verfasserin (orcid)0000-0003-0799-7491 aut Maneuver Design Using Relative Orbital Elements 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © American Astronautical Society 2015 Abstract Relative orbital elements provide a geometric interpretation of the motion of a deputy spacecraft about a chief spacecraft. The formulation yields an intuitive understanding of how the relative motion evolves with time, and by incorporating velocity changes in the local-vertical, local-horizontal component directions, the change in relative motion due to impulsive maneuvers can be evaluated. This paper utilizes a relative orbital element formulation that characterizes relative motion where the chief spacecraft is assumed to be in a circular orbit. Expressions are developed for changes to the relative orbital elements as a function of the impulsive maneuver components in each coordinate direction. A general maneuver strategy is developed for targeting a set of relative orbital elements, and this strategy is applied to scenarios that are relevant for close proximity operations, including establishing a stationary relative orbit, natural motion circumnavigation, and station-keeping in a leading or trailing orbit. Orbital mechanics (dpeaa)DE-He213 Relative motion (dpeaa)DE-He213 Proximity operations (dpeaa)DE-He213 Lovell, Thomas A. aut Enthalten in The Journal of the Astronautical Sciences Springer-Verlag, 2006 62(2015), 4 vom: Dez., Seite 315-350 (DE-627)SPR036426385 nnns volume:62 year:2015 number:4 month:12 pages:315-350 https://dx.doi.org/10.1007/s40295-015-0072-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 62 2015 4 12 315-350 |
spelling |
10.1007/s40295-015-0072-y doi (DE-627)SPR036457086 (SPR)s40295-015-0072-y-e DE-627 ger DE-627 rakwb eng Spencer, David A. verfasserin (orcid)0000-0003-0799-7491 aut Maneuver Design Using Relative Orbital Elements 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © American Astronautical Society 2015 Abstract Relative orbital elements provide a geometric interpretation of the motion of a deputy spacecraft about a chief spacecraft. The formulation yields an intuitive understanding of how the relative motion evolves with time, and by incorporating velocity changes in the local-vertical, local-horizontal component directions, the change in relative motion due to impulsive maneuvers can be evaluated. This paper utilizes a relative orbital element formulation that characterizes relative motion where the chief spacecraft is assumed to be in a circular orbit. Expressions are developed for changes to the relative orbital elements as a function of the impulsive maneuver components in each coordinate direction. A general maneuver strategy is developed for targeting a set of relative orbital elements, and this strategy is applied to scenarios that are relevant for close proximity operations, including establishing a stationary relative orbit, natural motion circumnavigation, and station-keeping in a leading or trailing orbit. Orbital mechanics (dpeaa)DE-He213 Relative motion (dpeaa)DE-He213 Proximity operations (dpeaa)DE-He213 Lovell, Thomas A. aut Enthalten in The Journal of the Astronautical Sciences Springer-Verlag, 2006 62(2015), 4 vom: Dez., Seite 315-350 (DE-627)SPR036426385 nnns volume:62 year:2015 number:4 month:12 pages:315-350 https://dx.doi.org/10.1007/s40295-015-0072-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 62 2015 4 12 315-350 |
allfields_unstemmed |
10.1007/s40295-015-0072-y doi (DE-627)SPR036457086 (SPR)s40295-015-0072-y-e DE-627 ger DE-627 rakwb eng Spencer, David A. verfasserin (orcid)0000-0003-0799-7491 aut Maneuver Design Using Relative Orbital Elements 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © American Astronautical Society 2015 Abstract Relative orbital elements provide a geometric interpretation of the motion of a deputy spacecraft about a chief spacecraft. The formulation yields an intuitive understanding of how the relative motion evolves with time, and by incorporating velocity changes in the local-vertical, local-horizontal component directions, the change in relative motion due to impulsive maneuvers can be evaluated. This paper utilizes a relative orbital element formulation that characterizes relative motion where the chief spacecraft is assumed to be in a circular orbit. Expressions are developed for changes to the relative orbital elements as a function of the impulsive maneuver components in each coordinate direction. A general maneuver strategy is developed for targeting a set of relative orbital elements, and this strategy is applied to scenarios that are relevant for close proximity operations, including establishing a stationary relative orbit, natural motion circumnavigation, and station-keeping in a leading or trailing orbit. Orbital mechanics (dpeaa)DE-He213 Relative motion (dpeaa)DE-He213 Proximity operations (dpeaa)DE-He213 Lovell, Thomas A. aut Enthalten in The Journal of the Astronautical Sciences Springer-Verlag, 2006 62(2015), 4 vom: Dez., Seite 315-350 (DE-627)SPR036426385 nnns volume:62 year:2015 number:4 month:12 pages:315-350 https://dx.doi.org/10.1007/s40295-015-0072-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 62 2015 4 12 315-350 |
allfieldsGer |
10.1007/s40295-015-0072-y doi (DE-627)SPR036457086 (SPR)s40295-015-0072-y-e DE-627 ger DE-627 rakwb eng Spencer, David A. verfasserin (orcid)0000-0003-0799-7491 aut Maneuver Design Using Relative Orbital Elements 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © American Astronautical Society 2015 Abstract Relative orbital elements provide a geometric interpretation of the motion of a deputy spacecraft about a chief spacecraft. The formulation yields an intuitive understanding of how the relative motion evolves with time, and by incorporating velocity changes in the local-vertical, local-horizontal component directions, the change in relative motion due to impulsive maneuvers can be evaluated. This paper utilizes a relative orbital element formulation that characterizes relative motion where the chief spacecraft is assumed to be in a circular orbit. Expressions are developed for changes to the relative orbital elements as a function of the impulsive maneuver components in each coordinate direction. A general maneuver strategy is developed for targeting a set of relative orbital elements, and this strategy is applied to scenarios that are relevant for close proximity operations, including establishing a stationary relative orbit, natural motion circumnavigation, and station-keeping in a leading or trailing orbit. Orbital mechanics (dpeaa)DE-He213 Relative motion (dpeaa)DE-He213 Proximity operations (dpeaa)DE-He213 Lovell, Thomas A. aut Enthalten in The Journal of the Astronautical Sciences Springer-Verlag, 2006 62(2015), 4 vom: Dez., Seite 315-350 (DE-627)SPR036426385 nnns volume:62 year:2015 number:4 month:12 pages:315-350 https://dx.doi.org/10.1007/s40295-015-0072-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 62 2015 4 12 315-350 |
allfieldsSound |
10.1007/s40295-015-0072-y doi (DE-627)SPR036457086 (SPR)s40295-015-0072-y-e DE-627 ger DE-627 rakwb eng Spencer, David A. verfasserin (orcid)0000-0003-0799-7491 aut Maneuver Design Using Relative Orbital Elements 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © American Astronautical Society 2015 Abstract Relative orbital elements provide a geometric interpretation of the motion of a deputy spacecraft about a chief spacecraft. The formulation yields an intuitive understanding of how the relative motion evolves with time, and by incorporating velocity changes in the local-vertical, local-horizontal component directions, the change in relative motion due to impulsive maneuvers can be evaluated. This paper utilizes a relative orbital element formulation that characterizes relative motion where the chief spacecraft is assumed to be in a circular orbit. Expressions are developed for changes to the relative orbital elements as a function of the impulsive maneuver components in each coordinate direction. A general maneuver strategy is developed for targeting a set of relative orbital elements, and this strategy is applied to scenarios that are relevant for close proximity operations, including establishing a stationary relative orbit, natural motion circumnavigation, and station-keeping in a leading or trailing orbit. Orbital mechanics (dpeaa)DE-He213 Relative motion (dpeaa)DE-He213 Proximity operations (dpeaa)DE-He213 Lovell, Thomas A. aut Enthalten in The Journal of the Astronautical Sciences Springer-Verlag, 2006 62(2015), 4 vom: Dez., Seite 315-350 (DE-627)SPR036426385 nnns volume:62 year:2015 number:4 month:12 pages:315-350 https://dx.doi.org/10.1007/s40295-015-0072-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 62 2015 4 12 315-350 |
language |
English |
source |
Enthalten in The Journal of the Astronautical Sciences 62(2015), 4 vom: Dez., Seite 315-350 volume:62 year:2015 number:4 month:12 pages:315-350 |
sourceStr |
Enthalten in The Journal of the Astronautical Sciences 62(2015), 4 vom: Dez., Seite 315-350 volume:62 year:2015 number:4 month:12 pages:315-350 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Orbital mechanics Relative motion Proximity operations |
isfreeaccess_bool |
false |
container_title |
The Journal of the Astronautical Sciences |
authorswithroles_txt_mv |
Spencer, David A. @@aut@@ Lovell, Thomas A. @@aut@@ |
publishDateDaySort_date |
2015-12-01T00:00:00Z |
hierarchy_top_id |
SPR036426385 |
id |
SPR036457086 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036457086</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328165753.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40295-015-0072-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036457086</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40295-015-0072-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Spencer, David A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0799-7491</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Maneuver Design Using Relative Orbital Elements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© American Astronautical Society 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Relative orbital elements provide a geometric interpretation of the motion of a deputy spacecraft about a chief spacecraft. The formulation yields an intuitive understanding of how the relative motion evolves with time, and by incorporating velocity changes in the local-vertical, local-horizontal component directions, the change in relative motion due to impulsive maneuvers can be evaluated. This paper utilizes a relative orbital element formulation that characterizes relative motion where the chief spacecraft is assumed to be in a circular orbit. Expressions are developed for changes to the relative orbital elements as a function of the impulsive maneuver components in each coordinate direction. A general maneuver strategy is developed for targeting a set of relative orbital elements, and this strategy is applied to scenarios that are relevant for close proximity operations, including establishing a stationary relative orbit, natural motion circumnavigation, and station-keeping in a leading or trailing orbit.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orbital mechanics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relative motion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proximity operations</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lovell, Thomas A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Journal of the Astronautical Sciences</subfield><subfield code="d">Springer-Verlag, 2006</subfield><subfield code="g">62(2015), 4 vom: Dez., Seite 315-350</subfield><subfield code="w">(DE-627)SPR036426385</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:4</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:315-350</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40295-015-0072-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2015</subfield><subfield code="e">4</subfield><subfield code="c">12</subfield><subfield code="h">315-350</subfield></datafield></record></collection>
|
author |
Spencer, David A. |
spellingShingle |
Spencer, David A. misc Orbital mechanics misc Relative motion misc Proximity operations Maneuver Design Using Relative Orbital Elements |
authorStr |
Spencer, David A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR036426385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
Maneuver Design Using Relative Orbital Elements Orbital mechanics (dpeaa)DE-He213 Relative motion (dpeaa)DE-He213 Proximity operations (dpeaa)DE-He213 |
topic |
misc Orbital mechanics misc Relative motion misc Proximity operations |
topic_unstemmed |
misc Orbital mechanics misc Relative motion misc Proximity operations |
topic_browse |
misc Orbital mechanics misc Relative motion misc Proximity operations |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The Journal of the Astronautical Sciences |
hierarchy_parent_id |
SPR036426385 |
hierarchy_top_title |
The Journal of the Astronautical Sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR036426385 |
title |
Maneuver Design Using Relative Orbital Elements |
ctrlnum |
(DE-627)SPR036457086 (SPR)s40295-015-0072-y-e |
title_full |
Maneuver Design Using Relative Orbital Elements |
author_sort |
Spencer, David A. |
journal |
The Journal of the Astronautical Sciences |
journalStr |
The Journal of the Astronautical Sciences |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
315 |
author_browse |
Spencer, David A. Lovell, Thomas A. |
container_volume |
62 |
format_se |
Elektronische Aufsätze |
author-letter |
Spencer, David A. |
doi_str_mv |
10.1007/s40295-015-0072-y |
normlink |
(ORCID)0000-0003-0799-7491 |
normlink_prefix_str_mv |
(orcid)0000-0003-0799-7491 |
title_sort |
maneuver design using relative orbital elements |
title_auth |
Maneuver Design Using Relative Orbital Elements |
abstract |
Abstract Relative orbital elements provide a geometric interpretation of the motion of a deputy spacecraft about a chief spacecraft. The formulation yields an intuitive understanding of how the relative motion evolves with time, and by incorporating velocity changes in the local-vertical, local-horizontal component directions, the change in relative motion due to impulsive maneuvers can be evaluated. This paper utilizes a relative orbital element formulation that characterizes relative motion where the chief spacecraft is assumed to be in a circular orbit. Expressions are developed for changes to the relative orbital elements as a function of the impulsive maneuver components in each coordinate direction. A general maneuver strategy is developed for targeting a set of relative orbital elements, and this strategy is applied to scenarios that are relevant for close proximity operations, including establishing a stationary relative orbit, natural motion circumnavigation, and station-keeping in a leading or trailing orbit. © American Astronautical Society 2015 |
abstractGer |
Abstract Relative orbital elements provide a geometric interpretation of the motion of a deputy spacecraft about a chief spacecraft. The formulation yields an intuitive understanding of how the relative motion evolves with time, and by incorporating velocity changes in the local-vertical, local-horizontal component directions, the change in relative motion due to impulsive maneuvers can be evaluated. This paper utilizes a relative orbital element formulation that characterizes relative motion where the chief spacecraft is assumed to be in a circular orbit. Expressions are developed for changes to the relative orbital elements as a function of the impulsive maneuver components in each coordinate direction. A general maneuver strategy is developed for targeting a set of relative orbital elements, and this strategy is applied to scenarios that are relevant for close proximity operations, including establishing a stationary relative orbit, natural motion circumnavigation, and station-keeping in a leading or trailing orbit. © American Astronautical Society 2015 |
abstract_unstemmed |
Abstract Relative orbital elements provide a geometric interpretation of the motion of a deputy spacecraft about a chief spacecraft. The formulation yields an intuitive understanding of how the relative motion evolves with time, and by incorporating velocity changes in the local-vertical, local-horizontal component directions, the change in relative motion due to impulsive maneuvers can be evaluated. This paper utilizes a relative orbital element formulation that characterizes relative motion where the chief spacecraft is assumed to be in a circular orbit. Expressions are developed for changes to the relative orbital elements as a function of the impulsive maneuver components in each coordinate direction. A general maneuver strategy is developed for targeting a set of relative orbital elements, and this strategy is applied to scenarios that are relevant for close proximity operations, including establishing a stationary relative orbit, natural motion circumnavigation, and station-keeping in a leading or trailing orbit. © American Astronautical Society 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
4 |
title_short |
Maneuver Design Using Relative Orbital Elements |
url |
https://dx.doi.org/10.1007/s40295-015-0072-y |
remote_bool |
true |
author2 |
Lovell, Thomas A. |
author2Str |
Lovell, Thomas A. |
ppnlink |
SPR036426385 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40295-015-0072-y |
up_date |
2024-07-03T17:44:07.542Z |
_version_ |
1803580759128145920 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036457086</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328165753.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40295-015-0072-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036457086</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40295-015-0072-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Spencer, David A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0799-7491</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Maneuver Design Using Relative Orbital Elements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© American Astronautical Society 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Relative orbital elements provide a geometric interpretation of the motion of a deputy spacecraft about a chief spacecraft. The formulation yields an intuitive understanding of how the relative motion evolves with time, and by incorporating velocity changes in the local-vertical, local-horizontal component directions, the change in relative motion due to impulsive maneuvers can be evaluated. This paper utilizes a relative orbital element formulation that characterizes relative motion where the chief spacecraft is assumed to be in a circular orbit. Expressions are developed for changes to the relative orbital elements as a function of the impulsive maneuver components in each coordinate direction. A general maneuver strategy is developed for targeting a set of relative orbital elements, and this strategy is applied to scenarios that are relevant for close proximity operations, including establishing a stationary relative orbit, natural motion circumnavigation, and station-keeping in a leading or trailing orbit.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orbital mechanics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relative motion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proximity operations</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lovell, Thomas A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Journal of the Astronautical Sciences</subfield><subfield code="d">Springer-Verlag, 2006</subfield><subfield code="g">62(2015), 4 vom: Dez., Seite 315-350</subfield><subfield code="w">(DE-627)SPR036426385</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:4</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:315-350</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40295-015-0072-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2015</subfield><subfield code="e">4</subfield><subfield code="c">12</subfield><subfield code="h">315-350</subfield></datafield></record></collection>
|
score |
7.39966 |