Modelling variation in wood density within and among trees in stands of New Zealand-grown radiata pine
Background Density is an important wood property due to its correlation with other wood properties such as stiffness and pulp yield, as well as being central to the accounting of carbon sequestration in forests. It is influenced by site, silviculture, and genetics, and models that predict the variat...
Ausführliche Beschreibung
Autor*in: |
Kimberley, Mark O. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Kimberley et al. 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: New Zealand journal of forestry science - Berlin : SpringerOpen, 1971, 45(2015), 1 vom: 12. Nov. |
---|---|
Übergeordnetes Werk: |
volume:45 ; year:2015 ; number:1 ; day:12 ; month:11 |
Links: |
---|
DOI / URN: |
10.1186/s40490-015-0053-8 |
---|
Katalog-ID: |
SPR036527637 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR036527637 | ||
003 | DE-627 | ||
005 | 20230328190859.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40490-015-0053-8 |2 doi | |
035 | |a (DE-627)SPR036527637 | ||
035 | |a (SPR)s40490-015-0053-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Kimberley, Mark O. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modelling variation in wood density within and among trees in stands of New Zealand-grown radiata pine |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Kimberley et al. 2015 | ||
520 | |a Background Density is an important wood property due to its correlation with other wood properties such as stiffness and pulp yield, as well as being central to the accounting of carbon sequestration in forests. It is influenced by site, silviculture, and genetics, and models that predict the variation in wood density within and among trees are required by forest managers so that they can develop strategies to achieve certain wood density targets. The aim of the study presented here was to develop a wood density model for radiata pine (Pinus radiata D. Don) growing in New Zealand. Methods The model was developed using an extensive historical dataset containing wood density values from increment cores and stem discs that were obtained from almost 10,000 trees at over 300 sites. The model consists of two sub-models: (1) a sub-model for predicting the radial variation in breast-height wood density and (2) a sub-model for predicting the distribution of density vertically within the stem. Results The radial variation in breast-height wood density was predicted as a function of either ring number or both ring number and ring width, with the latter model better accounting for the effects of stand spacing. Additional model components were also developed in order to convert from annual ring density values to a whole-disc density, predict log density from disc densities, and account for the variation in wood density among individual trees within in a stand. The model can be used to predict the density of discs or logs cut from any position within a tree and can utilise measured outerwood density values to predict the density by log height for a particular stand. It can be used in conjunction with outerwood density to predict wood density distributions by logs for stands of any specified geographic location and management regime and is designed to be able to incorporate genetic adjustments at a later stage. Conclusions The analysis has confirmed and quantified much of the previous knowledge on the factors that affect the variation in wood density in radiata pine, particularly the influences of site factors and silviculture. It has also quantified the extent and patterns of variation in wood density within and among trees. | ||
650 | 4 | |a Wood Density |7 (dpeaa)DE-He213 | |
650 | 4 | |a Ring Width |7 (dpeaa)DE-He213 | |
650 | 4 | |a Annual Ring |7 (dpeaa)DE-He213 | |
650 | 4 | |a Wood Property |7 (dpeaa)DE-He213 | |
650 | 4 | |a Basic Density |7 (dpeaa)DE-He213 | |
700 | 1 | |a Cown, Dave J. |4 aut | |
700 | 1 | |a McKinley, Russell B. |4 aut | |
700 | 1 | |a Moore, John R. |4 aut | |
700 | 1 | |a Dowling, Leslie J. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t New Zealand journal of forestry science |d Berlin : SpringerOpen, 1971 |g 45(2015), 1 vom: 12. Nov. |w (DE-627)593140486 |w (DE-600)2482291-7 |x 1179-5395 |7 nnns |
773 | 1 | 8 | |g volume:45 |g year:2015 |g number:1 |g day:12 |g month:11 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40490-015-0053-8 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 45 |j 2015 |e 1 |b 12 |c 11 |
author_variant |
m o k mo mok d j c dj djc r b m rb rbm j r m jr jrm l j d lj ljd |
---|---|
matchkey_str |
article:11795395:2015----::oelnvrainnodestwtiadmntesntnsfe |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1186/s40490-015-0053-8 doi (DE-627)SPR036527637 (SPR)s40490-015-0053-8-e DE-627 ger DE-627 rakwb eng Kimberley, Mark O. verfasserin aut Modelling variation in wood density within and among trees in stands of New Zealand-grown radiata pine 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Kimberley et al. 2015 Background Density is an important wood property due to its correlation with other wood properties such as stiffness and pulp yield, as well as being central to the accounting of carbon sequestration in forests. It is influenced by site, silviculture, and genetics, and models that predict the variation in wood density within and among trees are required by forest managers so that they can develop strategies to achieve certain wood density targets. The aim of the study presented here was to develop a wood density model for radiata pine (Pinus radiata D. Don) growing in New Zealand. Methods The model was developed using an extensive historical dataset containing wood density values from increment cores and stem discs that were obtained from almost 10,000 trees at over 300 sites. The model consists of two sub-models: (1) a sub-model for predicting the radial variation in breast-height wood density and (2) a sub-model for predicting the distribution of density vertically within the stem. Results The radial variation in breast-height wood density was predicted as a function of either ring number or both ring number and ring width, with the latter model better accounting for the effects of stand spacing. Additional model components were also developed in order to convert from annual ring density values to a whole-disc density, predict log density from disc densities, and account for the variation in wood density among individual trees within in a stand. The model can be used to predict the density of discs or logs cut from any position within a tree and can utilise measured outerwood density values to predict the density by log height for a particular stand. It can be used in conjunction with outerwood density to predict wood density distributions by logs for stands of any specified geographic location and management regime and is designed to be able to incorporate genetic adjustments at a later stage. Conclusions The analysis has confirmed and quantified much of the previous knowledge on the factors that affect the variation in wood density in radiata pine, particularly the influences of site factors and silviculture. It has also quantified the extent and patterns of variation in wood density within and among trees. Wood Density (dpeaa)DE-He213 Ring Width (dpeaa)DE-He213 Annual Ring (dpeaa)DE-He213 Wood Property (dpeaa)DE-He213 Basic Density (dpeaa)DE-He213 Cown, Dave J. aut McKinley, Russell B. aut Moore, John R. aut Dowling, Leslie J. aut Enthalten in New Zealand journal of forestry science Berlin : SpringerOpen, 1971 45(2015), 1 vom: 12. Nov. (DE-627)593140486 (DE-600)2482291-7 1179-5395 nnns volume:45 year:2015 number:1 day:12 month:11 https://dx.doi.org/10.1186/s40490-015-0053-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 45 2015 1 12 11 |
spelling |
10.1186/s40490-015-0053-8 doi (DE-627)SPR036527637 (SPR)s40490-015-0053-8-e DE-627 ger DE-627 rakwb eng Kimberley, Mark O. verfasserin aut Modelling variation in wood density within and among trees in stands of New Zealand-grown radiata pine 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Kimberley et al. 2015 Background Density is an important wood property due to its correlation with other wood properties such as stiffness and pulp yield, as well as being central to the accounting of carbon sequestration in forests. It is influenced by site, silviculture, and genetics, and models that predict the variation in wood density within and among trees are required by forest managers so that they can develop strategies to achieve certain wood density targets. The aim of the study presented here was to develop a wood density model for radiata pine (Pinus radiata D. Don) growing in New Zealand. Methods The model was developed using an extensive historical dataset containing wood density values from increment cores and stem discs that were obtained from almost 10,000 trees at over 300 sites. The model consists of two sub-models: (1) a sub-model for predicting the radial variation in breast-height wood density and (2) a sub-model for predicting the distribution of density vertically within the stem. Results The radial variation in breast-height wood density was predicted as a function of either ring number or both ring number and ring width, with the latter model better accounting for the effects of stand spacing. Additional model components were also developed in order to convert from annual ring density values to a whole-disc density, predict log density from disc densities, and account for the variation in wood density among individual trees within in a stand. The model can be used to predict the density of discs or logs cut from any position within a tree and can utilise measured outerwood density values to predict the density by log height for a particular stand. It can be used in conjunction with outerwood density to predict wood density distributions by logs for stands of any specified geographic location and management regime and is designed to be able to incorporate genetic adjustments at a later stage. Conclusions The analysis has confirmed and quantified much of the previous knowledge on the factors that affect the variation in wood density in radiata pine, particularly the influences of site factors and silviculture. It has also quantified the extent and patterns of variation in wood density within and among trees. Wood Density (dpeaa)DE-He213 Ring Width (dpeaa)DE-He213 Annual Ring (dpeaa)DE-He213 Wood Property (dpeaa)DE-He213 Basic Density (dpeaa)DE-He213 Cown, Dave J. aut McKinley, Russell B. aut Moore, John R. aut Dowling, Leslie J. aut Enthalten in New Zealand journal of forestry science Berlin : SpringerOpen, 1971 45(2015), 1 vom: 12. Nov. (DE-627)593140486 (DE-600)2482291-7 1179-5395 nnns volume:45 year:2015 number:1 day:12 month:11 https://dx.doi.org/10.1186/s40490-015-0053-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 45 2015 1 12 11 |
allfields_unstemmed |
10.1186/s40490-015-0053-8 doi (DE-627)SPR036527637 (SPR)s40490-015-0053-8-e DE-627 ger DE-627 rakwb eng Kimberley, Mark O. verfasserin aut Modelling variation in wood density within and among trees in stands of New Zealand-grown radiata pine 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Kimberley et al. 2015 Background Density is an important wood property due to its correlation with other wood properties such as stiffness and pulp yield, as well as being central to the accounting of carbon sequestration in forests. It is influenced by site, silviculture, and genetics, and models that predict the variation in wood density within and among trees are required by forest managers so that they can develop strategies to achieve certain wood density targets. The aim of the study presented here was to develop a wood density model for radiata pine (Pinus radiata D. Don) growing in New Zealand. Methods The model was developed using an extensive historical dataset containing wood density values from increment cores and stem discs that were obtained from almost 10,000 trees at over 300 sites. The model consists of two sub-models: (1) a sub-model for predicting the radial variation in breast-height wood density and (2) a sub-model for predicting the distribution of density vertically within the stem. Results The radial variation in breast-height wood density was predicted as a function of either ring number or both ring number and ring width, with the latter model better accounting for the effects of stand spacing. Additional model components were also developed in order to convert from annual ring density values to a whole-disc density, predict log density from disc densities, and account for the variation in wood density among individual trees within in a stand. The model can be used to predict the density of discs or logs cut from any position within a tree and can utilise measured outerwood density values to predict the density by log height for a particular stand. It can be used in conjunction with outerwood density to predict wood density distributions by logs for stands of any specified geographic location and management regime and is designed to be able to incorporate genetic adjustments at a later stage. Conclusions The analysis has confirmed and quantified much of the previous knowledge on the factors that affect the variation in wood density in radiata pine, particularly the influences of site factors and silviculture. It has also quantified the extent and patterns of variation in wood density within and among trees. Wood Density (dpeaa)DE-He213 Ring Width (dpeaa)DE-He213 Annual Ring (dpeaa)DE-He213 Wood Property (dpeaa)DE-He213 Basic Density (dpeaa)DE-He213 Cown, Dave J. aut McKinley, Russell B. aut Moore, John R. aut Dowling, Leslie J. aut Enthalten in New Zealand journal of forestry science Berlin : SpringerOpen, 1971 45(2015), 1 vom: 12. Nov. (DE-627)593140486 (DE-600)2482291-7 1179-5395 nnns volume:45 year:2015 number:1 day:12 month:11 https://dx.doi.org/10.1186/s40490-015-0053-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 45 2015 1 12 11 |
allfieldsGer |
10.1186/s40490-015-0053-8 doi (DE-627)SPR036527637 (SPR)s40490-015-0053-8-e DE-627 ger DE-627 rakwb eng Kimberley, Mark O. verfasserin aut Modelling variation in wood density within and among trees in stands of New Zealand-grown radiata pine 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Kimberley et al. 2015 Background Density is an important wood property due to its correlation with other wood properties such as stiffness and pulp yield, as well as being central to the accounting of carbon sequestration in forests. It is influenced by site, silviculture, and genetics, and models that predict the variation in wood density within and among trees are required by forest managers so that they can develop strategies to achieve certain wood density targets. The aim of the study presented here was to develop a wood density model for radiata pine (Pinus radiata D. Don) growing in New Zealand. Methods The model was developed using an extensive historical dataset containing wood density values from increment cores and stem discs that were obtained from almost 10,000 trees at over 300 sites. The model consists of two sub-models: (1) a sub-model for predicting the radial variation in breast-height wood density and (2) a sub-model for predicting the distribution of density vertically within the stem. Results The radial variation in breast-height wood density was predicted as a function of either ring number or both ring number and ring width, with the latter model better accounting for the effects of stand spacing. Additional model components were also developed in order to convert from annual ring density values to a whole-disc density, predict log density from disc densities, and account for the variation in wood density among individual trees within in a stand. The model can be used to predict the density of discs or logs cut from any position within a tree and can utilise measured outerwood density values to predict the density by log height for a particular stand. It can be used in conjunction with outerwood density to predict wood density distributions by logs for stands of any specified geographic location and management regime and is designed to be able to incorporate genetic adjustments at a later stage. Conclusions The analysis has confirmed and quantified much of the previous knowledge on the factors that affect the variation in wood density in radiata pine, particularly the influences of site factors and silviculture. It has also quantified the extent and patterns of variation in wood density within and among trees. Wood Density (dpeaa)DE-He213 Ring Width (dpeaa)DE-He213 Annual Ring (dpeaa)DE-He213 Wood Property (dpeaa)DE-He213 Basic Density (dpeaa)DE-He213 Cown, Dave J. aut McKinley, Russell B. aut Moore, John R. aut Dowling, Leslie J. aut Enthalten in New Zealand journal of forestry science Berlin : SpringerOpen, 1971 45(2015), 1 vom: 12. Nov. (DE-627)593140486 (DE-600)2482291-7 1179-5395 nnns volume:45 year:2015 number:1 day:12 month:11 https://dx.doi.org/10.1186/s40490-015-0053-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 45 2015 1 12 11 |
allfieldsSound |
10.1186/s40490-015-0053-8 doi (DE-627)SPR036527637 (SPR)s40490-015-0053-8-e DE-627 ger DE-627 rakwb eng Kimberley, Mark O. verfasserin aut Modelling variation in wood density within and among trees in stands of New Zealand-grown radiata pine 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Kimberley et al. 2015 Background Density is an important wood property due to its correlation with other wood properties such as stiffness and pulp yield, as well as being central to the accounting of carbon sequestration in forests. It is influenced by site, silviculture, and genetics, and models that predict the variation in wood density within and among trees are required by forest managers so that they can develop strategies to achieve certain wood density targets. The aim of the study presented here was to develop a wood density model for radiata pine (Pinus radiata D. Don) growing in New Zealand. Methods The model was developed using an extensive historical dataset containing wood density values from increment cores and stem discs that were obtained from almost 10,000 trees at over 300 sites. The model consists of two sub-models: (1) a sub-model for predicting the radial variation in breast-height wood density and (2) a sub-model for predicting the distribution of density vertically within the stem. Results The radial variation in breast-height wood density was predicted as a function of either ring number or both ring number and ring width, with the latter model better accounting for the effects of stand spacing. Additional model components were also developed in order to convert from annual ring density values to a whole-disc density, predict log density from disc densities, and account for the variation in wood density among individual trees within in a stand. The model can be used to predict the density of discs or logs cut from any position within a tree and can utilise measured outerwood density values to predict the density by log height for a particular stand. It can be used in conjunction with outerwood density to predict wood density distributions by logs for stands of any specified geographic location and management regime and is designed to be able to incorporate genetic adjustments at a later stage. Conclusions The analysis has confirmed and quantified much of the previous knowledge on the factors that affect the variation in wood density in radiata pine, particularly the influences of site factors and silviculture. It has also quantified the extent and patterns of variation in wood density within and among trees. Wood Density (dpeaa)DE-He213 Ring Width (dpeaa)DE-He213 Annual Ring (dpeaa)DE-He213 Wood Property (dpeaa)DE-He213 Basic Density (dpeaa)DE-He213 Cown, Dave J. aut McKinley, Russell B. aut Moore, John R. aut Dowling, Leslie J. aut Enthalten in New Zealand journal of forestry science Berlin : SpringerOpen, 1971 45(2015), 1 vom: 12. Nov. (DE-627)593140486 (DE-600)2482291-7 1179-5395 nnns volume:45 year:2015 number:1 day:12 month:11 https://dx.doi.org/10.1186/s40490-015-0053-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 45 2015 1 12 11 |
language |
English |
source |
Enthalten in New Zealand journal of forestry science 45(2015), 1 vom: 12. Nov. volume:45 year:2015 number:1 day:12 month:11 |
sourceStr |
Enthalten in New Zealand journal of forestry science 45(2015), 1 vom: 12. Nov. volume:45 year:2015 number:1 day:12 month:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Wood Density Ring Width Annual Ring Wood Property Basic Density |
isfreeaccess_bool |
true |
container_title |
New Zealand journal of forestry science |
authorswithroles_txt_mv |
Kimberley, Mark O. @@aut@@ Cown, Dave J. @@aut@@ McKinley, Russell B. @@aut@@ Moore, John R. @@aut@@ Dowling, Leslie J. @@aut@@ |
publishDateDaySort_date |
2015-11-12T00:00:00Z |
hierarchy_top_id |
593140486 |
id |
SPR036527637 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036527637</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328190859.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40490-015-0053-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036527637</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40490-015-0053-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kimberley, Mark O.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modelling variation in wood density within and among trees in stands of New Zealand-grown radiata pine</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kimberley et al. 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Density is an important wood property due to its correlation with other wood properties such as stiffness and pulp yield, as well as being central to the accounting of carbon sequestration in forests. It is influenced by site, silviculture, and genetics, and models that predict the variation in wood density within and among trees are required by forest managers so that they can develop strategies to achieve certain wood density targets. The aim of the study presented here was to develop a wood density model for radiata pine (Pinus radiata D. Don) growing in New Zealand. Methods The model was developed using an extensive historical dataset containing wood density values from increment cores and stem discs that were obtained from almost 10,000 trees at over 300 sites. The model consists of two sub-models: (1) a sub-model for predicting the radial variation in breast-height wood density and (2) a sub-model for predicting the distribution of density vertically within the stem. Results The radial variation in breast-height wood density was predicted as a function of either ring number or both ring number and ring width, with the latter model better accounting for the effects of stand spacing. Additional model components were also developed in order to convert from annual ring density values to a whole-disc density, predict log density from disc densities, and account for the variation in wood density among individual trees within in a stand. The model can be used to predict the density of discs or logs cut from any position within a tree and can utilise measured outerwood density values to predict the density by log height for a particular stand. It can be used in conjunction with outerwood density to predict wood density distributions by logs for stands of any specified geographic location and management regime and is designed to be able to incorporate genetic adjustments at a later stage. Conclusions The analysis has confirmed and quantified much of the previous knowledge on the factors that affect the variation in wood density in radiata pine, particularly the influences of site factors and silviculture. It has also quantified the extent and patterns of variation in wood density within and among trees.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wood Density</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ring Width</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Annual Ring</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wood Property</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Basic Density</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cown, Dave J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McKinley, Russell B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moore, John R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dowling, Leslie J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">New Zealand journal of forestry science</subfield><subfield code="d">Berlin : SpringerOpen, 1971</subfield><subfield code="g">45(2015), 1 vom: 12. Nov.</subfield><subfield code="w">(DE-627)593140486</subfield><subfield code="w">(DE-600)2482291-7</subfield><subfield code="x">1179-5395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:12</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40490-015-0053-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">12</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
author |
Kimberley, Mark O. |
spellingShingle |
Kimberley, Mark O. misc Wood Density misc Ring Width misc Annual Ring misc Wood Property misc Basic Density Modelling variation in wood density within and among trees in stands of New Zealand-grown radiata pine |
authorStr |
Kimberley, Mark O. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)593140486 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1179-5395 |
topic_title |
Modelling variation in wood density within and among trees in stands of New Zealand-grown radiata pine Wood Density (dpeaa)DE-He213 Ring Width (dpeaa)DE-He213 Annual Ring (dpeaa)DE-He213 Wood Property (dpeaa)DE-He213 Basic Density (dpeaa)DE-He213 |
topic |
misc Wood Density misc Ring Width misc Annual Ring misc Wood Property misc Basic Density |
topic_unstemmed |
misc Wood Density misc Ring Width misc Annual Ring misc Wood Property misc Basic Density |
topic_browse |
misc Wood Density misc Ring Width misc Annual Ring misc Wood Property misc Basic Density |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
New Zealand journal of forestry science |
hierarchy_parent_id |
593140486 |
hierarchy_top_title |
New Zealand journal of forestry science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)593140486 (DE-600)2482291-7 |
title |
Modelling variation in wood density within and among trees in stands of New Zealand-grown radiata pine |
ctrlnum |
(DE-627)SPR036527637 (SPR)s40490-015-0053-8-e |
title_full |
Modelling variation in wood density within and among trees in stands of New Zealand-grown radiata pine |
author_sort |
Kimberley, Mark O. |
journal |
New Zealand journal of forestry science |
journalStr |
New Zealand journal of forestry science |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
author_browse |
Kimberley, Mark O. Cown, Dave J. McKinley, Russell B. Moore, John R. Dowling, Leslie J. |
container_volume |
45 |
format_se |
Elektronische Aufsätze |
author-letter |
Kimberley, Mark O. |
doi_str_mv |
10.1186/s40490-015-0053-8 |
title_sort |
modelling variation in wood density within and among trees in stands of new zealand-grown radiata pine |
title_auth |
Modelling variation in wood density within and among trees in stands of New Zealand-grown radiata pine |
abstract |
Background Density is an important wood property due to its correlation with other wood properties such as stiffness and pulp yield, as well as being central to the accounting of carbon sequestration in forests. It is influenced by site, silviculture, and genetics, and models that predict the variation in wood density within and among trees are required by forest managers so that they can develop strategies to achieve certain wood density targets. The aim of the study presented here was to develop a wood density model for radiata pine (Pinus radiata D. Don) growing in New Zealand. Methods The model was developed using an extensive historical dataset containing wood density values from increment cores and stem discs that were obtained from almost 10,000 trees at over 300 sites. The model consists of two sub-models: (1) a sub-model for predicting the radial variation in breast-height wood density and (2) a sub-model for predicting the distribution of density vertically within the stem. Results The radial variation in breast-height wood density was predicted as a function of either ring number or both ring number and ring width, with the latter model better accounting for the effects of stand spacing. Additional model components were also developed in order to convert from annual ring density values to a whole-disc density, predict log density from disc densities, and account for the variation in wood density among individual trees within in a stand. The model can be used to predict the density of discs or logs cut from any position within a tree and can utilise measured outerwood density values to predict the density by log height for a particular stand. It can be used in conjunction with outerwood density to predict wood density distributions by logs for stands of any specified geographic location and management regime and is designed to be able to incorporate genetic adjustments at a later stage. Conclusions The analysis has confirmed and quantified much of the previous knowledge on the factors that affect the variation in wood density in radiata pine, particularly the influences of site factors and silviculture. It has also quantified the extent and patterns of variation in wood density within and among trees. © Kimberley et al. 2015 |
abstractGer |
Background Density is an important wood property due to its correlation with other wood properties such as stiffness and pulp yield, as well as being central to the accounting of carbon sequestration in forests. It is influenced by site, silviculture, and genetics, and models that predict the variation in wood density within and among trees are required by forest managers so that they can develop strategies to achieve certain wood density targets. The aim of the study presented here was to develop a wood density model for radiata pine (Pinus radiata D. Don) growing in New Zealand. Methods The model was developed using an extensive historical dataset containing wood density values from increment cores and stem discs that were obtained from almost 10,000 trees at over 300 sites. The model consists of two sub-models: (1) a sub-model for predicting the radial variation in breast-height wood density and (2) a sub-model for predicting the distribution of density vertically within the stem. Results The radial variation in breast-height wood density was predicted as a function of either ring number or both ring number and ring width, with the latter model better accounting for the effects of stand spacing. Additional model components were also developed in order to convert from annual ring density values to a whole-disc density, predict log density from disc densities, and account for the variation in wood density among individual trees within in a stand. The model can be used to predict the density of discs or logs cut from any position within a tree and can utilise measured outerwood density values to predict the density by log height for a particular stand. It can be used in conjunction with outerwood density to predict wood density distributions by logs for stands of any specified geographic location and management regime and is designed to be able to incorporate genetic adjustments at a later stage. Conclusions The analysis has confirmed and quantified much of the previous knowledge on the factors that affect the variation in wood density in radiata pine, particularly the influences of site factors and silviculture. It has also quantified the extent and patterns of variation in wood density within and among trees. © Kimberley et al. 2015 |
abstract_unstemmed |
Background Density is an important wood property due to its correlation with other wood properties such as stiffness and pulp yield, as well as being central to the accounting of carbon sequestration in forests. It is influenced by site, silviculture, and genetics, and models that predict the variation in wood density within and among trees are required by forest managers so that they can develop strategies to achieve certain wood density targets. The aim of the study presented here was to develop a wood density model for radiata pine (Pinus radiata D. Don) growing in New Zealand. Methods The model was developed using an extensive historical dataset containing wood density values from increment cores and stem discs that were obtained from almost 10,000 trees at over 300 sites. The model consists of two sub-models: (1) a sub-model for predicting the radial variation in breast-height wood density and (2) a sub-model for predicting the distribution of density vertically within the stem. Results The radial variation in breast-height wood density was predicted as a function of either ring number or both ring number and ring width, with the latter model better accounting for the effects of stand spacing. Additional model components were also developed in order to convert from annual ring density values to a whole-disc density, predict log density from disc densities, and account for the variation in wood density among individual trees within in a stand. The model can be used to predict the density of discs or logs cut from any position within a tree and can utilise measured outerwood density values to predict the density by log height for a particular stand. It can be used in conjunction with outerwood density to predict wood density distributions by logs for stands of any specified geographic location and management regime and is designed to be able to incorporate genetic adjustments at a later stage. Conclusions The analysis has confirmed and quantified much of the previous knowledge on the factors that affect the variation in wood density in radiata pine, particularly the influences of site factors and silviculture. It has also quantified the extent and patterns of variation in wood density within and among trees. © Kimberley et al. 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Modelling variation in wood density within and among trees in stands of New Zealand-grown radiata pine |
url |
https://dx.doi.org/10.1186/s40490-015-0053-8 |
remote_bool |
true |
author2 |
Cown, Dave J. McKinley, Russell B. Moore, John R. Dowling, Leslie J. |
author2Str |
Cown, Dave J. McKinley, Russell B. Moore, John R. Dowling, Leslie J. |
ppnlink |
593140486 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40490-015-0053-8 |
up_date |
2024-07-03T18:10:11.022Z |
_version_ |
1803582398555750400 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036527637</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328190859.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40490-015-0053-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036527637</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40490-015-0053-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kimberley, Mark O.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modelling variation in wood density within and among trees in stands of New Zealand-grown radiata pine</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kimberley et al. 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Density is an important wood property due to its correlation with other wood properties such as stiffness and pulp yield, as well as being central to the accounting of carbon sequestration in forests. It is influenced by site, silviculture, and genetics, and models that predict the variation in wood density within and among trees are required by forest managers so that they can develop strategies to achieve certain wood density targets. The aim of the study presented here was to develop a wood density model for radiata pine (Pinus radiata D. Don) growing in New Zealand. Methods The model was developed using an extensive historical dataset containing wood density values from increment cores and stem discs that were obtained from almost 10,000 trees at over 300 sites. The model consists of two sub-models: (1) a sub-model for predicting the radial variation in breast-height wood density and (2) a sub-model for predicting the distribution of density vertically within the stem. Results The radial variation in breast-height wood density was predicted as a function of either ring number or both ring number and ring width, with the latter model better accounting for the effects of stand spacing. Additional model components were also developed in order to convert from annual ring density values to a whole-disc density, predict log density from disc densities, and account for the variation in wood density among individual trees within in a stand. The model can be used to predict the density of discs or logs cut from any position within a tree and can utilise measured outerwood density values to predict the density by log height for a particular stand. It can be used in conjunction with outerwood density to predict wood density distributions by logs for stands of any specified geographic location and management regime and is designed to be able to incorporate genetic adjustments at a later stage. Conclusions The analysis has confirmed and quantified much of the previous knowledge on the factors that affect the variation in wood density in radiata pine, particularly the influences of site factors and silviculture. It has also quantified the extent and patterns of variation in wood density within and among trees.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wood Density</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ring Width</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Annual Ring</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wood Property</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Basic Density</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cown, Dave J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McKinley, Russell B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moore, John R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dowling, Leslie J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">New Zealand journal of forestry science</subfield><subfield code="d">Berlin : SpringerOpen, 1971</subfield><subfield code="g">45(2015), 1 vom: 12. Nov.</subfield><subfield code="w">(DE-627)593140486</subfield><subfield code="w">(DE-600)2482291-7</subfield><subfield code="x">1179-5395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:12</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40490-015-0053-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">12</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
score |
7.401434 |