On the applicability of the moving line source theory to thermal response test under groundwater flow: considerations from real case studies
Abstract The classical methodology to perform and analyze thermal response test (TRT) is unsuccessful when advection contributes to heat transfer in the ground, due to the presence of a groundwater flow. In this study, the applicability, the advantages, and the limitations of the moving line source...
Ausführliche Beschreibung
Autor*in: |
Angelotti, Adriana [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Geothermal Energy - Berlin : SpringerOpen, 2013, 6(2018), 1 vom: 11. Juli |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2018 ; number:1 ; day:11 ; month:07 |
Links: |
---|
DOI / URN: |
10.1186/s40517-018-0098-z |
---|
Katalog-ID: |
SPR036566861 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR036566861 | ||
003 | DE-627 | ||
005 | 20230328191052.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40517-018-0098-z |2 doi | |
035 | |a (DE-627)SPR036566861 | ||
035 | |a (SPR)s40517-018-0098-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Angelotti, Adriana |e verfasserin |0 (orcid)0000-0002-9039-2102 |4 aut | |
245 | 1 | 0 | |a On the applicability of the moving line source theory to thermal response test under groundwater flow: considerations from real case studies |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2018 | ||
520 | |a Abstract The classical methodology to perform and analyze thermal response test (TRT) is unsuccessful when advection contributes to heat transfer in the ground, due to the presence of a groundwater flow. In this study, the applicability, the advantages, and the limitations of the moving line source model to interpret TRT data are discussed. Two real TRT case studies from the Italian Alpine area are reported and analyzed, with both the standard infinite line source approach and the moving line source one. It is shown that the inverse heat transfer problem is ill-posed, leading to multiple solutions. However, besides minimization of the error between measurements and modeling, physical considerations help to discriminate among solutions the most plausible ones. In this regard, the MLS approach proves to be effective in the advection-dominated case. The original time criterion proposed here to disregard initial data from the fitting, based on a resistance–capacitance model of the borehole embedded in a groundwater flow, is validated in terms of convergence of the solution. In turn, in the case when advection and conduction are competitive, the MLS approach results more sensitive to ground thermal conductivity than to Darcy velocity. Although in this case a limited impact of the uncertainty in the groundwater velocity on the boreholes sizing is expected, future studies should focus on the development of a successful TRT methodology for this condition. | ||
650 | 4 | |a Thermal response test |7 (dpeaa)DE-He213 | |
650 | 4 | |a Moving line source |7 (dpeaa)DE-He213 | |
650 | 4 | |a Ground |7 (dpeaa)DE-He213 | |
650 | 4 | |a Thermal conductivity |7 (dpeaa)DE-He213 | |
650 | 4 | |a Groundwater |7 (dpeaa)DE-He213 | |
650 | 4 | |a Darcy velocity |7 (dpeaa)DE-He213 | |
650 | 4 | |a Inverse problem |7 (dpeaa)DE-He213 | |
650 | 4 | |a Ground-source heat pump |7 (dpeaa)DE-He213 | |
700 | 1 | |a Ly, Franco |4 aut | |
700 | 1 | |a Zille, Andrea |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Geothermal Energy |d Berlin : SpringerOpen, 2013 |g 6(2018), 1 vom: 11. Juli |w (DE-627)749499893 |w (DE-600)2718871-1 |x 2195-9706 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2018 |g number:1 |g day:11 |g month:07 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40517-018-0098-z |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2018 |e 1 |b 11 |c 07 |
author_variant |
a a aa f l fl a z az |
---|---|
matchkey_str |
article:21959706:2018----::nhapiaiiyfhmvnlnsucterttemlepneetnegonwtrlw |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1186/s40517-018-0098-z doi (DE-627)SPR036566861 (SPR)s40517-018-0098-z-e DE-627 ger DE-627 rakwb eng Angelotti, Adriana verfasserin (orcid)0000-0002-9039-2102 aut On the applicability of the moving line source theory to thermal response test under groundwater flow: considerations from real case studies 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Abstract The classical methodology to perform and analyze thermal response test (TRT) is unsuccessful when advection contributes to heat transfer in the ground, due to the presence of a groundwater flow. In this study, the applicability, the advantages, and the limitations of the moving line source model to interpret TRT data are discussed. Two real TRT case studies from the Italian Alpine area are reported and analyzed, with both the standard infinite line source approach and the moving line source one. It is shown that the inverse heat transfer problem is ill-posed, leading to multiple solutions. However, besides minimization of the error between measurements and modeling, physical considerations help to discriminate among solutions the most plausible ones. In this regard, the MLS approach proves to be effective in the advection-dominated case. The original time criterion proposed here to disregard initial data from the fitting, based on a resistance–capacitance model of the borehole embedded in a groundwater flow, is validated in terms of convergence of the solution. In turn, in the case when advection and conduction are competitive, the MLS approach results more sensitive to ground thermal conductivity than to Darcy velocity. Although in this case a limited impact of the uncertainty in the groundwater velocity on the boreholes sizing is expected, future studies should focus on the development of a successful TRT methodology for this condition. Thermal response test (dpeaa)DE-He213 Moving line source (dpeaa)DE-He213 Ground (dpeaa)DE-He213 Thermal conductivity (dpeaa)DE-He213 Groundwater (dpeaa)DE-He213 Darcy velocity (dpeaa)DE-He213 Inverse problem (dpeaa)DE-He213 Ground-source heat pump (dpeaa)DE-He213 Ly, Franco aut Zille, Andrea aut Enthalten in Geothermal Energy Berlin : SpringerOpen, 2013 6(2018), 1 vom: 11. Juli (DE-627)749499893 (DE-600)2718871-1 2195-9706 nnns volume:6 year:2018 number:1 day:11 month:07 https://dx.doi.org/10.1186/s40517-018-0098-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 1 11 07 |
spelling |
10.1186/s40517-018-0098-z doi (DE-627)SPR036566861 (SPR)s40517-018-0098-z-e DE-627 ger DE-627 rakwb eng Angelotti, Adriana verfasserin (orcid)0000-0002-9039-2102 aut On the applicability of the moving line source theory to thermal response test under groundwater flow: considerations from real case studies 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Abstract The classical methodology to perform and analyze thermal response test (TRT) is unsuccessful when advection contributes to heat transfer in the ground, due to the presence of a groundwater flow. In this study, the applicability, the advantages, and the limitations of the moving line source model to interpret TRT data are discussed. Two real TRT case studies from the Italian Alpine area are reported and analyzed, with both the standard infinite line source approach and the moving line source one. It is shown that the inverse heat transfer problem is ill-posed, leading to multiple solutions. However, besides minimization of the error between measurements and modeling, physical considerations help to discriminate among solutions the most plausible ones. In this regard, the MLS approach proves to be effective in the advection-dominated case. The original time criterion proposed here to disregard initial data from the fitting, based on a resistance–capacitance model of the borehole embedded in a groundwater flow, is validated in terms of convergence of the solution. In turn, in the case when advection and conduction are competitive, the MLS approach results more sensitive to ground thermal conductivity than to Darcy velocity. Although in this case a limited impact of the uncertainty in the groundwater velocity on the boreholes sizing is expected, future studies should focus on the development of a successful TRT methodology for this condition. Thermal response test (dpeaa)DE-He213 Moving line source (dpeaa)DE-He213 Ground (dpeaa)DE-He213 Thermal conductivity (dpeaa)DE-He213 Groundwater (dpeaa)DE-He213 Darcy velocity (dpeaa)DE-He213 Inverse problem (dpeaa)DE-He213 Ground-source heat pump (dpeaa)DE-He213 Ly, Franco aut Zille, Andrea aut Enthalten in Geothermal Energy Berlin : SpringerOpen, 2013 6(2018), 1 vom: 11. Juli (DE-627)749499893 (DE-600)2718871-1 2195-9706 nnns volume:6 year:2018 number:1 day:11 month:07 https://dx.doi.org/10.1186/s40517-018-0098-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 1 11 07 |
allfields_unstemmed |
10.1186/s40517-018-0098-z doi (DE-627)SPR036566861 (SPR)s40517-018-0098-z-e DE-627 ger DE-627 rakwb eng Angelotti, Adriana verfasserin (orcid)0000-0002-9039-2102 aut On the applicability of the moving line source theory to thermal response test under groundwater flow: considerations from real case studies 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Abstract The classical methodology to perform and analyze thermal response test (TRT) is unsuccessful when advection contributes to heat transfer in the ground, due to the presence of a groundwater flow. In this study, the applicability, the advantages, and the limitations of the moving line source model to interpret TRT data are discussed. Two real TRT case studies from the Italian Alpine area are reported and analyzed, with both the standard infinite line source approach and the moving line source one. It is shown that the inverse heat transfer problem is ill-posed, leading to multiple solutions. However, besides minimization of the error between measurements and modeling, physical considerations help to discriminate among solutions the most plausible ones. In this regard, the MLS approach proves to be effective in the advection-dominated case. The original time criterion proposed here to disregard initial data from the fitting, based on a resistance–capacitance model of the borehole embedded in a groundwater flow, is validated in terms of convergence of the solution. In turn, in the case when advection and conduction are competitive, the MLS approach results more sensitive to ground thermal conductivity than to Darcy velocity. Although in this case a limited impact of the uncertainty in the groundwater velocity on the boreholes sizing is expected, future studies should focus on the development of a successful TRT methodology for this condition. Thermal response test (dpeaa)DE-He213 Moving line source (dpeaa)DE-He213 Ground (dpeaa)DE-He213 Thermal conductivity (dpeaa)DE-He213 Groundwater (dpeaa)DE-He213 Darcy velocity (dpeaa)DE-He213 Inverse problem (dpeaa)DE-He213 Ground-source heat pump (dpeaa)DE-He213 Ly, Franco aut Zille, Andrea aut Enthalten in Geothermal Energy Berlin : SpringerOpen, 2013 6(2018), 1 vom: 11. Juli (DE-627)749499893 (DE-600)2718871-1 2195-9706 nnns volume:6 year:2018 number:1 day:11 month:07 https://dx.doi.org/10.1186/s40517-018-0098-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 1 11 07 |
allfieldsGer |
10.1186/s40517-018-0098-z doi (DE-627)SPR036566861 (SPR)s40517-018-0098-z-e DE-627 ger DE-627 rakwb eng Angelotti, Adriana verfasserin (orcid)0000-0002-9039-2102 aut On the applicability of the moving line source theory to thermal response test under groundwater flow: considerations from real case studies 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Abstract The classical methodology to perform and analyze thermal response test (TRT) is unsuccessful when advection contributes to heat transfer in the ground, due to the presence of a groundwater flow. In this study, the applicability, the advantages, and the limitations of the moving line source model to interpret TRT data are discussed. Two real TRT case studies from the Italian Alpine area are reported and analyzed, with both the standard infinite line source approach and the moving line source one. It is shown that the inverse heat transfer problem is ill-posed, leading to multiple solutions. However, besides minimization of the error between measurements and modeling, physical considerations help to discriminate among solutions the most plausible ones. In this regard, the MLS approach proves to be effective in the advection-dominated case. The original time criterion proposed here to disregard initial data from the fitting, based on a resistance–capacitance model of the borehole embedded in a groundwater flow, is validated in terms of convergence of the solution. In turn, in the case when advection and conduction are competitive, the MLS approach results more sensitive to ground thermal conductivity than to Darcy velocity. Although in this case a limited impact of the uncertainty in the groundwater velocity on the boreholes sizing is expected, future studies should focus on the development of a successful TRT methodology for this condition. Thermal response test (dpeaa)DE-He213 Moving line source (dpeaa)DE-He213 Ground (dpeaa)DE-He213 Thermal conductivity (dpeaa)DE-He213 Groundwater (dpeaa)DE-He213 Darcy velocity (dpeaa)DE-He213 Inverse problem (dpeaa)DE-He213 Ground-source heat pump (dpeaa)DE-He213 Ly, Franco aut Zille, Andrea aut Enthalten in Geothermal Energy Berlin : SpringerOpen, 2013 6(2018), 1 vom: 11. Juli (DE-627)749499893 (DE-600)2718871-1 2195-9706 nnns volume:6 year:2018 number:1 day:11 month:07 https://dx.doi.org/10.1186/s40517-018-0098-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 1 11 07 |
allfieldsSound |
10.1186/s40517-018-0098-z doi (DE-627)SPR036566861 (SPR)s40517-018-0098-z-e DE-627 ger DE-627 rakwb eng Angelotti, Adriana verfasserin (orcid)0000-0002-9039-2102 aut On the applicability of the moving line source theory to thermal response test under groundwater flow: considerations from real case studies 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Abstract The classical methodology to perform and analyze thermal response test (TRT) is unsuccessful when advection contributes to heat transfer in the ground, due to the presence of a groundwater flow. In this study, the applicability, the advantages, and the limitations of the moving line source model to interpret TRT data are discussed. Two real TRT case studies from the Italian Alpine area are reported and analyzed, with both the standard infinite line source approach and the moving line source one. It is shown that the inverse heat transfer problem is ill-posed, leading to multiple solutions. However, besides minimization of the error between measurements and modeling, physical considerations help to discriminate among solutions the most plausible ones. In this regard, the MLS approach proves to be effective in the advection-dominated case. The original time criterion proposed here to disregard initial data from the fitting, based on a resistance–capacitance model of the borehole embedded in a groundwater flow, is validated in terms of convergence of the solution. In turn, in the case when advection and conduction are competitive, the MLS approach results more sensitive to ground thermal conductivity than to Darcy velocity. Although in this case a limited impact of the uncertainty in the groundwater velocity on the boreholes sizing is expected, future studies should focus on the development of a successful TRT methodology for this condition. Thermal response test (dpeaa)DE-He213 Moving line source (dpeaa)DE-He213 Ground (dpeaa)DE-He213 Thermal conductivity (dpeaa)DE-He213 Groundwater (dpeaa)DE-He213 Darcy velocity (dpeaa)DE-He213 Inverse problem (dpeaa)DE-He213 Ground-source heat pump (dpeaa)DE-He213 Ly, Franco aut Zille, Andrea aut Enthalten in Geothermal Energy Berlin : SpringerOpen, 2013 6(2018), 1 vom: 11. Juli (DE-627)749499893 (DE-600)2718871-1 2195-9706 nnns volume:6 year:2018 number:1 day:11 month:07 https://dx.doi.org/10.1186/s40517-018-0098-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 1 11 07 |
language |
English |
source |
Enthalten in Geothermal Energy 6(2018), 1 vom: 11. Juli volume:6 year:2018 number:1 day:11 month:07 |
sourceStr |
Enthalten in Geothermal Energy 6(2018), 1 vom: 11. Juli volume:6 year:2018 number:1 day:11 month:07 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Thermal response test Moving line source Ground Thermal conductivity Groundwater Darcy velocity Inverse problem Ground-source heat pump |
isfreeaccess_bool |
true |
container_title |
Geothermal Energy |
authorswithroles_txt_mv |
Angelotti, Adriana @@aut@@ Ly, Franco @@aut@@ Zille, Andrea @@aut@@ |
publishDateDaySort_date |
2018-07-11T00:00:00Z |
hierarchy_top_id |
749499893 |
id |
SPR036566861 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036566861</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328191052.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40517-018-0098-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036566861</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40517-018-0098-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Angelotti, Adriana</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9039-2102</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the applicability of the moving line source theory to thermal response test under groundwater flow: considerations from real case studies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The classical methodology to perform and analyze thermal response test (TRT) is unsuccessful when advection contributes to heat transfer in the ground, due to the presence of a groundwater flow. In this study, the applicability, the advantages, and the limitations of the moving line source model to interpret TRT data are discussed. Two real TRT case studies from the Italian Alpine area are reported and analyzed, with both the standard infinite line source approach and the moving line source one. It is shown that the inverse heat transfer problem is ill-posed, leading to multiple solutions. However, besides minimization of the error between measurements and modeling, physical considerations help to discriminate among solutions the most plausible ones. In this regard, the MLS approach proves to be effective in the advection-dominated case. The original time criterion proposed here to disregard initial data from the fitting, based on a resistance–capacitance model of the borehole embedded in a groundwater flow, is validated in terms of convergence of the solution. In turn, in the case when advection and conduction are competitive, the MLS approach results more sensitive to ground thermal conductivity than to Darcy velocity. Although in this case a limited impact of the uncertainty in the groundwater velocity on the boreholes sizing is expected, future studies should focus on the development of a successful TRT methodology for this condition.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal response test</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moving line source</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ground</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal conductivity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groundwater</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Darcy velocity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverse problem</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ground-source heat pump</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ly, Franco</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zille, Andrea</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geothermal Energy</subfield><subfield code="d">Berlin : SpringerOpen, 2013</subfield><subfield code="g">6(2018), 1 vom: 11. Juli</subfield><subfield code="w">(DE-627)749499893</subfield><subfield code="w">(DE-600)2718871-1</subfield><subfield code="x">2195-9706</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:11</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40517-018-0098-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">11</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
author |
Angelotti, Adriana |
spellingShingle |
Angelotti, Adriana misc Thermal response test misc Moving line source misc Ground misc Thermal conductivity misc Groundwater misc Darcy velocity misc Inverse problem misc Ground-source heat pump On the applicability of the moving line source theory to thermal response test under groundwater flow: considerations from real case studies |
authorStr |
Angelotti, Adriana |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)749499893 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2195-9706 |
topic_title |
On the applicability of the moving line source theory to thermal response test under groundwater flow: considerations from real case studies Thermal response test (dpeaa)DE-He213 Moving line source (dpeaa)DE-He213 Ground (dpeaa)DE-He213 Thermal conductivity (dpeaa)DE-He213 Groundwater (dpeaa)DE-He213 Darcy velocity (dpeaa)DE-He213 Inverse problem (dpeaa)DE-He213 Ground-source heat pump (dpeaa)DE-He213 |
topic |
misc Thermal response test misc Moving line source misc Ground misc Thermal conductivity misc Groundwater misc Darcy velocity misc Inverse problem misc Ground-source heat pump |
topic_unstemmed |
misc Thermal response test misc Moving line source misc Ground misc Thermal conductivity misc Groundwater misc Darcy velocity misc Inverse problem misc Ground-source heat pump |
topic_browse |
misc Thermal response test misc Moving line source misc Ground misc Thermal conductivity misc Groundwater misc Darcy velocity misc Inverse problem misc Ground-source heat pump |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Geothermal Energy |
hierarchy_parent_id |
749499893 |
hierarchy_top_title |
Geothermal Energy |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)749499893 (DE-600)2718871-1 |
title |
On the applicability of the moving line source theory to thermal response test under groundwater flow: considerations from real case studies |
ctrlnum |
(DE-627)SPR036566861 (SPR)s40517-018-0098-z-e |
title_full |
On the applicability of the moving line source theory to thermal response test under groundwater flow: considerations from real case studies |
author_sort |
Angelotti, Adriana |
journal |
Geothermal Energy |
journalStr |
Geothermal Energy |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Angelotti, Adriana Ly, Franco Zille, Andrea |
container_volume |
6 |
format_se |
Elektronische Aufsätze |
author-letter |
Angelotti, Adriana |
doi_str_mv |
10.1186/s40517-018-0098-z |
normlink |
(ORCID)0000-0002-9039-2102 |
normlink_prefix_str_mv |
(orcid)0000-0002-9039-2102 |
title_sort |
on the applicability of the moving line source theory to thermal response test under groundwater flow: considerations from real case studies |
title_auth |
On the applicability of the moving line source theory to thermal response test under groundwater flow: considerations from real case studies |
abstract |
Abstract The classical methodology to perform and analyze thermal response test (TRT) is unsuccessful when advection contributes to heat transfer in the ground, due to the presence of a groundwater flow. In this study, the applicability, the advantages, and the limitations of the moving line source model to interpret TRT data are discussed. Two real TRT case studies from the Italian Alpine area are reported and analyzed, with both the standard infinite line source approach and the moving line source one. It is shown that the inverse heat transfer problem is ill-posed, leading to multiple solutions. However, besides minimization of the error between measurements and modeling, physical considerations help to discriminate among solutions the most plausible ones. In this regard, the MLS approach proves to be effective in the advection-dominated case. The original time criterion proposed here to disregard initial data from the fitting, based on a resistance–capacitance model of the borehole embedded in a groundwater flow, is validated in terms of convergence of the solution. In turn, in the case when advection and conduction are competitive, the MLS approach results more sensitive to ground thermal conductivity than to Darcy velocity. Although in this case a limited impact of the uncertainty in the groundwater velocity on the boreholes sizing is expected, future studies should focus on the development of a successful TRT methodology for this condition. © The Author(s) 2018 |
abstractGer |
Abstract The classical methodology to perform and analyze thermal response test (TRT) is unsuccessful when advection contributes to heat transfer in the ground, due to the presence of a groundwater flow. In this study, the applicability, the advantages, and the limitations of the moving line source model to interpret TRT data are discussed. Two real TRT case studies from the Italian Alpine area are reported and analyzed, with both the standard infinite line source approach and the moving line source one. It is shown that the inverse heat transfer problem is ill-posed, leading to multiple solutions. However, besides minimization of the error between measurements and modeling, physical considerations help to discriminate among solutions the most plausible ones. In this regard, the MLS approach proves to be effective in the advection-dominated case. The original time criterion proposed here to disregard initial data from the fitting, based on a resistance–capacitance model of the borehole embedded in a groundwater flow, is validated in terms of convergence of the solution. In turn, in the case when advection and conduction are competitive, the MLS approach results more sensitive to ground thermal conductivity than to Darcy velocity. Although in this case a limited impact of the uncertainty in the groundwater velocity on the boreholes sizing is expected, future studies should focus on the development of a successful TRT methodology for this condition. © The Author(s) 2018 |
abstract_unstemmed |
Abstract The classical methodology to perform and analyze thermal response test (TRT) is unsuccessful when advection contributes to heat transfer in the ground, due to the presence of a groundwater flow. In this study, the applicability, the advantages, and the limitations of the moving line source model to interpret TRT data are discussed. Two real TRT case studies from the Italian Alpine area are reported and analyzed, with both the standard infinite line source approach and the moving line source one. It is shown that the inverse heat transfer problem is ill-posed, leading to multiple solutions. However, besides minimization of the error between measurements and modeling, physical considerations help to discriminate among solutions the most plausible ones. In this regard, the MLS approach proves to be effective in the advection-dominated case. The original time criterion proposed here to disregard initial data from the fitting, based on a resistance–capacitance model of the borehole embedded in a groundwater flow, is validated in terms of convergence of the solution. In turn, in the case when advection and conduction are competitive, the MLS approach results more sensitive to ground thermal conductivity than to Darcy velocity. Although in this case a limited impact of the uncertainty in the groundwater velocity on the boreholes sizing is expected, future studies should focus on the development of a successful TRT methodology for this condition. © The Author(s) 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
On the applicability of the moving line source theory to thermal response test under groundwater flow: considerations from real case studies |
url |
https://dx.doi.org/10.1186/s40517-018-0098-z |
remote_bool |
true |
author2 |
Ly, Franco Zille, Andrea |
author2Str |
Ly, Franco Zille, Andrea |
ppnlink |
749499893 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40517-018-0098-z |
up_date |
2024-07-03T18:24:01.283Z |
_version_ |
1803583269148557313 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036566861</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328191052.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40517-018-0098-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036566861</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40517-018-0098-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Angelotti, Adriana</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9039-2102</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the applicability of the moving line source theory to thermal response test under groundwater flow: considerations from real case studies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The classical methodology to perform and analyze thermal response test (TRT) is unsuccessful when advection contributes to heat transfer in the ground, due to the presence of a groundwater flow. In this study, the applicability, the advantages, and the limitations of the moving line source model to interpret TRT data are discussed. Two real TRT case studies from the Italian Alpine area are reported and analyzed, with both the standard infinite line source approach and the moving line source one. It is shown that the inverse heat transfer problem is ill-posed, leading to multiple solutions. However, besides minimization of the error between measurements and modeling, physical considerations help to discriminate among solutions the most plausible ones. In this regard, the MLS approach proves to be effective in the advection-dominated case. The original time criterion proposed here to disregard initial data from the fitting, based on a resistance–capacitance model of the borehole embedded in a groundwater flow, is validated in terms of convergence of the solution. In turn, in the case when advection and conduction are competitive, the MLS approach results more sensitive to ground thermal conductivity than to Darcy velocity. Although in this case a limited impact of the uncertainty in the groundwater velocity on the boreholes sizing is expected, future studies should focus on the development of a successful TRT methodology for this condition.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal response test</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moving line source</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ground</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal conductivity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groundwater</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Darcy velocity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inverse problem</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ground-source heat pump</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ly, Franco</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zille, Andrea</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geothermal Energy</subfield><subfield code="d">Berlin : SpringerOpen, 2013</subfield><subfield code="g">6(2018), 1 vom: 11. Juli</subfield><subfield code="w">(DE-627)749499893</subfield><subfield code="w">(DE-600)2718871-1</subfield><subfield code="x">2195-9706</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:11</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40517-018-0098-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">11</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
score |
7.399617 |