On the sustainability of smart and smarter cities in the era of big data: an interdisciplinary and transdisciplinary literature review
Abstract There has recently been a conscious push for cities across the globe to be smart and even smarter and thus more sustainable by developing and implementing big data technologies and their applications across various urban domains in the hopes of reaching the required level of sustainability...
Ausführliche Beschreibung
Autor*in: |
Bibri, Simon Elias [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of Big Data - Berlin : SpringerOpen, 2014, 6(2019), 1 vom: 15. März |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2019 ; number:1 ; day:15 ; month:03 |
Links: |
---|
DOI / URN: |
10.1186/s40537-019-0182-7 |
---|
Katalog-ID: |
SPR036631922 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR036631922 | ||
003 | DE-627 | ||
005 | 20230328191354.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40537-019-0182-7 |2 doi | |
035 | |a (DE-627)SPR036631922 | ||
035 | |a (SPR)s40537-019-0182-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Bibri, Simon Elias |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the sustainability of smart and smarter cities in the era of big data: an interdisciplinary and transdisciplinary literature review |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2019 | ||
520 | |a Abstract There has recently been a conscious push for cities across the globe to be smart and even smarter and thus more sustainable by developing and implementing big data technologies and their applications across various urban domains in the hopes of reaching the required level of sustainability and improving the living standard of citizens. Having gained momentum and traction as a promising response to the needed transition towards sustainability and to the challenges of urbanisation, smart and smarter cities as approaches to data-driven urbanism are increasingly adopting the advanced forms of ICT to improve their performance in line with the goals of sustainable development and the requirements of urban growth. One of such forms that has tremendous potential to enhance urban operations, functions, services, designs, strategies, and policies in this direction is big data analytics and its application. This is due to the kind of well-informed decision-making and enhanced insights enabled by big data computing in the form of applied intelligence. However, topical studies on big data technologies and their applications in the context of smart and smarter cities tend to deal largely with economic growth and the quality of life in terms of service efficiency and betterment while overlooking and barely exploring the untapped potential of such applications for advancing sustainability. In fact, smart and smarter cities raise several issues and involve significant challenges when it comes to their development and implementation in the context of sustainability. With that in regard, this paper provides a comprehensive, state-of-the-art review and synthesis of the field of smart and smarter cities in relation to sustainability and related big data analytics and its application in terms of the underlying foundations and assumptions, research issues and debates, opportunities and benefits, technological developments, emerging trends, future practices, and challenges and open issues. This study shows that smart and smarter cities are associated with misunderstanding and deficiencies as regards their incorporation of, and contribution to, sustainability. Nevertheless, as also revealed by this study, tremendous opportunities are available for utilising big data analytics and its application in smart cities of the future to improve their contribution to the goals of sustainable development by optimising and enhancing urban operations, functions, services, designs, strategies, and policies, as well as by finding answers to challenging analytical questions and thereby advancing knowledge forms. However, just as there are immense opportunities ahead to embrace and exploit, there are enormous challenges and open issues ahead to address and overcome in order to achieve a successful implementation of big data technology and its novel applications in such cities. | ||
650 | 4 | |a Smart cities |7 (dpeaa)DE-He213 | |
650 | 4 | |a Smarter cities |7 (dpeaa)DE-He213 | |
650 | 4 | |a ICT of pervasive computing |7 (dpeaa)DE-He213 | |
650 | 4 | |a Big data analytics |7 (dpeaa)DE-He213 | |
650 | 4 | |a Big data applications |7 (dpeaa)DE-He213 | |
650 | 4 | |a Urban intelligence functions |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sustainability |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sustainable development |7 (dpeaa)DE-He213 | |
650 | 4 | |a Urban systems and domains |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t Journal of Big Data |d Berlin : SpringerOpen, 2014 |g 6(2019), 1 vom: 15. März |w (DE-627)79213219X |w (DE-600)2780218-8 |x 2196-1115 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2019 |g number:1 |g day:15 |g month:03 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40537-019-0182-7 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2019 |e 1 |b 15 |c 03 |
author_variant |
s e b se seb |
---|---|
matchkey_str |
article:21961115:2019----::nhssanbltosatnsatriisnheafidtaitricpiaynta |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1186/s40537-019-0182-7 doi (DE-627)SPR036631922 (SPR)s40537-019-0182-7-e DE-627 ger DE-627 rakwb eng Bibri, Simon Elias verfasserin aut On the sustainability of smart and smarter cities in the era of big data: an interdisciplinary and transdisciplinary literature review 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2019 Abstract There has recently been a conscious push for cities across the globe to be smart and even smarter and thus more sustainable by developing and implementing big data technologies and their applications across various urban domains in the hopes of reaching the required level of sustainability and improving the living standard of citizens. Having gained momentum and traction as a promising response to the needed transition towards sustainability and to the challenges of urbanisation, smart and smarter cities as approaches to data-driven urbanism are increasingly adopting the advanced forms of ICT to improve their performance in line with the goals of sustainable development and the requirements of urban growth. One of such forms that has tremendous potential to enhance urban operations, functions, services, designs, strategies, and policies in this direction is big data analytics and its application. This is due to the kind of well-informed decision-making and enhanced insights enabled by big data computing in the form of applied intelligence. However, topical studies on big data technologies and their applications in the context of smart and smarter cities tend to deal largely with economic growth and the quality of life in terms of service efficiency and betterment while overlooking and barely exploring the untapped potential of such applications for advancing sustainability. In fact, smart and smarter cities raise several issues and involve significant challenges when it comes to their development and implementation in the context of sustainability. With that in regard, this paper provides a comprehensive, state-of-the-art review and synthesis of the field of smart and smarter cities in relation to sustainability and related big data analytics and its application in terms of the underlying foundations and assumptions, research issues and debates, opportunities and benefits, technological developments, emerging trends, future practices, and challenges and open issues. This study shows that smart and smarter cities are associated with misunderstanding and deficiencies as regards their incorporation of, and contribution to, sustainability. Nevertheless, as also revealed by this study, tremendous opportunities are available for utilising big data analytics and its application in smart cities of the future to improve their contribution to the goals of sustainable development by optimising and enhancing urban operations, functions, services, designs, strategies, and policies, as well as by finding answers to challenging analytical questions and thereby advancing knowledge forms. However, just as there are immense opportunities ahead to embrace and exploit, there are enormous challenges and open issues ahead to address and overcome in order to achieve a successful implementation of big data technology and its novel applications in such cities. Smart cities (dpeaa)DE-He213 Smarter cities (dpeaa)DE-He213 ICT of pervasive computing (dpeaa)DE-He213 Big data analytics (dpeaa)DE-He213 Big data applications (dpeaa)DE-He213 Urban intelligence functions (dpeaa)DE-He213 Sustainability (dpeaa)DE-He213 Sustainable development (dpeaa)DE-He213 Urban systems and domains (dpeaa)DE-He213 Enthalten in Journal of Big Data Berlin : SpringerOpen, 2014 6(2019), 1 vom: 15. März (DE-627)79213219X (DE-600)2780218-8 2196-1115 nnns volume:6 year:2019 number:1 day:15 month:03 https://dx.doi.org/10.1186/s40537-019-0182-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2019 1 15 03 |
spelling |
10.1186/s40537-019-0182-7 doi (DE-627)SPR036631922 (SPR)s40537-019-0182-7-e DE-627 ger DE-627 rakwb eng Bibri, Simon Elias verfasserin aut On the sustainability of smart and smarter cities in the era of big data: an interdisciplinary and transdisciplinary literature review 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2019 Abstract There has recently been a conscious push for cities across the globe to be smart and even smarter and thus more sustainable by developing and implementing big data technologies and their applications across various urban domains in the hopes of reaching the required level of sustainability and improving the living standard of citizens. Having gained momentum and traction as a promising response to the needed transition towards sustainability and to the challenges of urbanisation, smart and smarter cities as approaches to data-driven urbanism are increasingly adopting the advanced forms of ICT to improve their performance in line with the goals of sustainable development and the requirements of urban growth. One of such forms that has tremendous potential to enhance urban operations, functions, services, designs, strategies, and policies in this direction is big data analytics and its application. This is due to the kind of well-informed decision-making and enhanced insights enabled by big data computing in the form of applied intelligence. However, topical studies on big data technologies and their applications in the context of smart and smarter cities tend to deal largely with economic growth and the quality of life in terms of service efficiency and betterment while overlooking and barely exploring the untapped potential of such applications for advancing sustainability. In fact, smart and smarter cities raise several issues and involve significant challenges when it comes to their development and implementation in the context of sustainability. With that in regard, this paper provides a comprehensive, state-of-the-art review and synthesis of the field of smart and smarter cities in relation to sustainability and related big data analytics and its application in terms of the underlying foundations and assumptions, research issues and debates, opportunities and benefits, technological developments, emerging trends, future practices, and challenges and open issues. This study shows that smart and smarter cities are associated with misunderstanding and deficiencies as regards their incorporation of, and contribution to, sustainability. Nevertheless, as also revealed by this study, tremendous opportunities are available for utilising big data analytics and its application in smart cities of the future to improve their contribution to the goals of sustainable development by optimising and enhancing urban operations, functions, services, designs, strategies, and policies, as well as by finding answers to challenging analytical questions and thereby advancing knowledge forms. However, just as there are immense opportunities ahead to embrace and exploit, there are enormous challenges and open issues ahead to address and overcome in order to achieve a successful implementation of big data technology and its novel applications in such cities. Smart cities (dpeaa)DE-He213 Smarter cities (dpeaa)DE-He213 ICT of pervasive computing (dpeaa)DE-He213 Big data analytics (dpeaa)DE-He213 Big data applications (dpeaa)DE-He213 Urban intelligence functions (dpeaa)DE-He213 Sustainability (dpeaa)DE-He213 Sustainable development (dpeaa)DE-He213 Urban systems and domains (dpeaa)DE-He213 Enthalten in Journal of Big Data Berlin : SpringerOpen, 2014 6(2019), 1 vom: 15. März (DE-627)79213219X (DE-600)2780218-8 2196-1115 nnns volume:6 year:2019 number:1 day:15 month:03 https://dx.doi.org/10.1186/s40537-019-0182-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2019 1 15 03 |
allfields_unstemmed |
10.1186/s40537-019-0182-7 doi (DE-627)SPR036631922 (SPR)s40537-019-0182-7-e DE-627 ger DE-627 rakwb eng Bibri, Simon Elias verfasserin aut On the sustainability of smart and smarter cities in the era of big data: an interdisciplinary and transdisciplinary literature review 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2019 Abstract There has recently been a conscious push for cities across the globe to be smart and even smarter and thus more sustainable by developing and implementing big data technologies and their applications across various urban domains in the hopes of reaching the required level of sustainability and improving the living standard of citizens. Having gained momentum and traction as a promising response to the needed transition towards sustainability and to the challenges of urbanisation, smart and smarter cities as approaches to data-driven urbanism are increasingly adopting the advanced forms of ICT to improve their performance in line with the goals of sustainable development and the requirements of urban growth. One of such forms that has tremendous potential to enhance urban operations, functions, services, designs, strategies, and policies in this direction is big data analytics and its application. This is due to the kind of well-informed decision-making and enhanced insights enabled by big data computing in the form of applied intelligence. However, topical studies on big data technologies and their applications in the context of smart and smarter cities tend to deal largely with economic growth and the quality of life in terms of service efficiency and betterment while overlooking and barely exploring the untapped potential of such applications for advancing sustainability. In fact, smart and smarter cities raise several issues and involve significant challenges when it comes to their development and implementation in the context of sustainability. With that in regard, this paper provides a comprehensive, state-of-the-art review and synthesis of the field of smart and smarter cities in relation to sustainability and related big data analytics and its application in terms of the underlying foundations and assumptions, research issues and debates, opportunities and benefits, technological developments, emerging trends, future practices, and challenges and open issues. This study shows that smart and smarter cities are associated with misunderstanding and deficiencies as regards their incorporation of, and contribution to, sustainability. Nevertheless, as also revealed by this study, tremendous opportunities are available for utilising big data analytics and its application in smart cities of the future to improve their contribution to the goals of sustainable development by optimising and enhancing urban operations, functions, services, designs, strategies, and policies, as well as by finding answers to challenging analytical questions and thereby advancing knowledge forms. However, just as there are immense opportunities ahead to embrace and exploit, there are enormous challenges and open issues ahead to address and overcome in order to achieve a successful implementation of big data technology and its novel applications in such cities. Smart cities (dpeaa)DE-He213 Smarter cities (dpeaa)DE-He213 ICT of pervasive computing (dpeaa)DE-He213 Big data analytics (dpeaa)DE-He213 Big data applications (dpeaa)DE-He213 Urban intelligence functions (dpeaa)DE-He213 Sustainability (dpeaa)DE-He213 Sustainable development (dpeaa)DE-He213 Urban systems and domains (dpeaa)DE-He213 Enthalten in Journal of Big Data Berlin : SpringerOpen, 2014 6(2019), 1 vom: 15. März (DE-627)79213219X (DE-600)2780218-8 2196-1115 nnns volume:6 year:2019 number:1 day:15 month:03 https://dx.doi.org/10.1186/s40537-019-0182-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2019 1 15 03 |
allfieldsGer |
10.1186/s40537-019-0182-7 doi (DE-627)SPR036631922 (SPR)s40537-019-0182-7-e DE-627 ger DE-627 rakwb eng Bibri, Simon Elias verfasserin aut On the sustainability of smart and smarter cities in the era of big data: an interdisciplinary and transdisciplinary literature review 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2019 Abstract There has recently been a conscious push for cities across the globe to be smart and even smarter and thus more sustainable by developing and implementing big data technologies and their applications across various urban domains in the hopes of reaching the required level of sustainability and improving the living standard of citizens. Having gained momentum and traction as a promising response to the needed transition towards sustainability and to the challenges of urbanisation, smart and smarter cities as approaches to data-driven urbanism are increasingly adopting the advanced forms of ICT to improve their performance in line with the goals of sustainable development and the requirements of urban growth. One of such forms that has tremendous potential to enhance urban operations, functions, services, designs, strategies, and policies in this direction is big data analytics and its application. This is due to the kind of well-informed decision-making and enhanced insights enabled by big data computing in the form of applied intelligence. However, topical studies on big data technologies and their applications in the context of smart and smarter cities tend to deal largely with economic growth and the quality of life in terms of service efficiency and betterment while overlooking and barely exploring the untapped potential of such applications for advancing sustainability. In fact, smart and smarter cities raise several issues and involve significant challenges when it comes to their development and implementation in the context of sustainability. With that in regard, this paper provides a comprehensive, state-of-the-art review and synthesis of the field of smart and smarter cities in relation to sustainability and related big data analytics and its application in terms of the underlying foundations and assumptions, research issues and debates, opportunities and benefits, technological developments, emerging trends, future practices, and challenges and open issues. This study shows that smart and smarter cities are associated with misunderstanding and deficiencies as regards their incorporation of, and contribution to, sustainability. Nevertheless, as also revealed by this study, tremendous opportunities are available for utilising big data analytics and its application in smart cities of the future to improve their contribution to the goals of sustainable development by optimising and enhancing urban operations, functions, services, designs, strategies, and policies, as well as by finding answers to challenging analytical questions and thereby advancing knowledge forms. However, just as there are immense opportunities ahead to embrace and exploit, there are enormous challenges and open issues ahead to address and overcome in order to achieve a successful implementation of big data technology and its novel applications in such cities. Smart cities (dpeaa)DE-He213 Smarter cities (dpeaa)DE-He213 ICT of pervasive computing (dpeaa)DE-He213 Big data analytics (dpeaa)DE-He213 Big data applications (dpeaa)DE-He213 Urban intelligence functions (dpeaa)DE-He213 Sustainability (dpeaa)DE-He213 Sustainable development (dpeaa)DE-He213 Urban systems and domains (dpeaa)DE-He213 Enthalten in Journal of Big Data Berlin : SpringerOpen, 2014 6(2019), 1 vom: 15. März (DE-627)79213219X (DE-600)2780218-8 2196-1115 nnns volume:6 year:2019 number:1 day:15 month:03 https://dx.doi.org/10.1186/s40537-019-0182-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2019 1 15 03 |
allfieldsSound |
10.1186/s40537-019-0182-7 doi (DE-627)SPR036631922 (SPR)s40537-019-0182-7-e DE-627 ger DE-627 rakwb eng Bibri, Simon Elias verfasserin aut On the sustainability of smart and smarter cities in the era of big data: an interdisciplinary and transdisciplinary literature review 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2019 Abstract There has recently been a conscious push for cities across the globe to be smart and even smarter and thus more sustainable by developing and implementing big data technologies and their applications across various urban domains in the hopes of reaching the required level of sustainability and improving the living standard of citizens. Having gained momentum and traction as a promising response to the needed transition towards sustainability and to the challenges of urbanisation, smart and smarter cities as approaches to data-driven urbanism are increasingly adopting the advanced forms of ICT to improve their performance in line with the goals of sustainable development and the requirements of urban growth. One of such forms that has tremendous potential to enhance urban operations, functions, services, designs, strategies, and policies in this direction is big data analytics and its application. This is due to the kind of well-informed decision-making and enhanced insights enabled by big data computing in the form of applied intelligence. However, topical studies on big data technologies and their applications in the context of smart and smarter cities tend to deal largely with economic growth and the quality of life in terms of service efficiency and betterment while overlooking and barely exploring the untapped potential of such applications for advancing sustainability. In fact, smart and smarter cities raise several issues and involve significant challenges when it comes to their development and implementation in the context of sustainability. With that in regard, this paper provides a comprehensive, state-of-the-art review and synthesis of the field of smart and smarter cities in relation to sustainability and related big data analytics and its application in terms of the underlying foundations and assumptions, research issues and debates, opportunities and benefits, technological developments, emerging trends, future practices, and challenges and open issues. This study shows that smart and smarter cities are associated with misunderstanding and deficiencies as regards their incorporation of, and contribution to, sustainability. Nevertheless, as also revealed by this study, tremendous opportunities are available for utilising big data analytics and its application in smart cities of the future to improve their contribution to the goals of sustainable development by optimising and enhancing urban operations, functions, services, designs, strategies, and policies, as well as by finding answers to challenging analytical questions and thereby advancing knowledge forms. However, just as there are immense opportunities ahead to embrace and exploit, there are enormous challenges and open issues ahead to address and overcome in order to achieve a successful implementation of big data technology and its novel applications in such cities. Smart cities (dpeaa)DE-He213 Smarter cities (dpeaa)DE-He213 ICT of pervasive computing (dpeaa)DE-He213 Big data analytics (dpeaa)DE-He213 Big data applications (dpeaa)DE-He213 Urban intelligence functions (dpeaa)DE-He213 Sustainability (dpeaa)DE-He213 Sustainable development (dpeaa)DE-He213 Urban systems and domains (dpeaa)DE-He213 Enthalten in Journal of Big Data Berlin : SpringerOpen, 2014 6(2019), 1 vom: 15. März (DE-627)79213219X (DE-600)2780218-8 2196-1115 nnns volume:6 year:2019 number:1 day:15 month:03 https://dx.doi.org/10.1186/s40537-019-0182-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2019 1 15 03 |
language |
English |
source |
Enthalten in Journal of Big Data 6(2019), 1 vom: 15. März volume:6 year:2019 number:1 day:15 month:03 |
sourceStr |
Enthalten in Journal of Big Data 6(2019), 1 vom: 15. März volume:6 year:2019 number:1 day:15 month:03 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Smart cities Smarter cities ICT of pervasive computing Big data analytics Big data applications Urban intelligence functions Sustainability Sustainable development Urban systems and domains |
isfreeaccess_bool |
true |
container_title |
Journal of Big Data |
authorswithroles_txt_mv |
Bibri, Simon Elias @@aut@@ |
publishDateDaySort_date |
2019-03-15T00:00:00Z |
hierarchy_top_id |
79213219X |
id |
SPR036631922 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036631922</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328191354.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40537-019-0182-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036631922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40537-019-0182-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bibri, Simon Elias</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the sustainability of smart and smarter cities in the era of big data: an interdisciplinary and transdisciplinary literature review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract There has recently been a conscious push for cities across the globe to be smart and even smarter and thus more sustainable by developing and implementing big data technologies and their applications across various urban domains in the hopes of reaching the required level of sustainability and improving the living standard of citizens. Having gained momentum and traction as a promising response to the needed transition towards sustainability and to the challenges of urbanisation, smart and smarter cities as approaches to data-driven urbanism are increasingly adopting the advanced forms of ICT to improve their performance in line with the goals of sustainable development and the requirements of urban growth. One of such forms that has tremendous potential to enhance urban operations, functions, services, designs, strategies, and policies in this direction is big data analytics and its application. This is due to the kind of well-informed decision-making and enhanced insights enabled by big data computing in the form of applied intelligence. However, topical studies on big data technologies and their applications in the context of smart and smarter cities tend to deal largely with economic growth and the quality of life in terms of service efficiency and betterment while overlooking and barely exploring the untapped potential of such applications for advancing sustainability. In fact, smart and smarter cities raise several issues and involve significant challenges when it comes to their development and implementation in the context of sustainability. With that in regard, this paper provides a comprehensive, state-of-the-art review and synthesis of the field of smart and smarter cities in relation to sustainability and related big data analytics and its application in terms of the underlying foundations and assumptions, research issues and debates, opportunities and benefits, technological developments, emerging trends, future practices, and challenges and open issues. This study shows that smart and smarter cities are associated with misunderstanding and deficiencies as regards their incorporation of, and contribution to, sustainability. Nevertheless, as also revealed by this study, tremendous opportunities are available for utilising big data analytics and its application in smart cities of the future to improve their contribution to the goals of sustainable development by optimising and enhancing urban operations, functions, services, designs, strategies, and policies, as well as by finding answers to challenging analytical questions and thereby advancing knowledge forms. However, just as there are immense opportunities ahead to embrace and exploit, there are enormous challenges and open issues ahead to address and overcome in order to achieve a successful implementation of big data technology and its novel applications in such cities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smart cities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smarter cities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ICT of pervasive computing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data analytics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data applications</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urban intelligence functions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable development</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urban systems and domains</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of Big Data</subfield><subfield code="d">Berlin : SpringerOpen, 2014</subfield><subfield code="g">6(2019), 1 vom: 15. März</subfield><subfield code="w">(DE-627)79213219X</subfield><subfield code="w">(DE-600)2780218-8</subfield><subfield code="x">2196-1115</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40537-019-0182-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">15</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
author |
Bibri, Simon Elias |
spellingShingle |
Bibri, Simon Elias misc Smart cities misc Smarter cities misc ICT of pervasive computing misc Big data analytics misc Big data applications misc Urban intelligence functions misc Sustainability misc Sustainable development misc Urban systems and domains On the sustainability of smart and smarter cities in the era of big data: an interdisciplinary and transdisciplinary literature review |
authorStr |
Bibri, Simon Elias |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)79213219X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2196-1115 |
topic_title |
On the sustainability of smart and smarter cities in the era of big data: an interdisciplinary and transdisciplinary literature review Smart cities (dpeaa)DE-He213 Smarter cities (dpeaa)DE-He213 ICT of pervasive computing (dpeaa)DE-He213 Big data analytics (dpeaa)DE-He213 Big data applications (dpeaa)DE-He213 Urban intelligence functions (dpeaa)DE-He213 Sustainability (dpeaa)DE-He213 Sustainable development (dpeaa)DE-He213 Urban systems and domains (dpeaa)DE-He213 |
topic |
misc Smart cities misc Smarter cities misc ICT of pervasive computing misc Big data analytics misc Big data applications misc Urban intelligence functions misc Sustainability misc Sustainable development misc Urban systems and domains |
topic_unstemmed |
misc Smart cities misc Smarter cities misc ICT of pervasive computing misc Big data analytics misc Big data applications misc Urban intelligence functions misc Sustainability misc Sustainable development misc Urban systems and domains |
topic_browse |
misc Smart cities misc Smarter cities misc ICT of pervasive computing misc Big data analytics misc Big data applications misc Urban intelligence functions misc Sustainability misc Sustainable development misc Urban systems and domains |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Big Data |
hierarchy_parent_id |
79213219X |
hierarchy_top_title |
Journal of Big Data |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)79213219X (DE-600)2780218-8 |
title |
On the sustainability of smart and smarter cities in the era of big data: an interdisciplinary and transdisciplinary literature review |
ctrlnum |
(DE-627)SPR036631922 (SPR)s40537-019-0182-7-e |
title_full |
On the sustainability of smart and smarter cities in the era of big data: an interdisciplinary and transdisciplinary literature review |
author_sort |
Bibri, Simon Elias |
journal |
Journal of Big Data |
journalStr |
Journal of Big Data |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Bibri, Simon Elias |
container_volume |
6 |
format_se |
Elektronische Aufsätze |
author-letter |
Bibri, Simon Elias |
doi_str_mv |
10.1186/s40537-019-0182-7 |
title_sort |
on the sustainability of smart and smarter cities in the era of big data: an interdisciplinary and transdisciplinary literature review |
title_auth |
On the sustainability of smart and smarter cities in the era of big data: an interdisciplinary and transdisciplinary literature review |
abstract |
Abstract There has recently been a conscious push for cities across the globe to be smart and even smarter and thus more sustainable by developing and implementing big data technologies and their applications across various urban domains in the hopes of reaching the required level of sustainability and improving the living standard of citizens. Having gained momentum and traction as a promising response to the needed transition towards sustainability and to the challenges of urbanisation, smart and smarter cities as approaches to data-driven urbanism are increasingly adopting the advanced forms of ICT to improve their performance in line with the goals of sustainable development and the requirements of urban growth. One of such forms that has tremendous potential to enhance urban operations, functions, services, designs, strategies, and policies in this direction is big data analytics and its application. This is due to the kind of well-informed decision-making and enhanced insights enabled by big data computing in the form of applied intelligence. However, topical studies on big data technologies and their applications in the context of smart and smarter cities tend to deal largely with economic growth and the quality of life in terms of service efficiency and betterment while overlooking and barely exploring the untapped potential of such applications for advancing sustainability. In fact, smart and smarter cities raise several issues and involve significant challenges when it comes to their development and implementation in the context of sustainability. With that in regard, this paper provides a comprehensive, state-of-the-art review and synthesis of the field of smart and smarter cities in relation to sustainability and related big data analytics and its application in terms of the underlying foundations and assumptions, research issues and debates, opportunities and benefits, technological developments, emerging trends, future practices, and challenges and open issues. This study shows that smart and smarter cities are associated with misunderstanding and deficiencies as regards their incorporation of, and contribution to, sustainability. Nevertheless, as also revealed by this study, tremendous opportunities are available for utilising big data analytics and its application in smart cities of the future to improve their contribution to the goals of sustainable development by optimising and enhancing urban operations, functions, services, designs, strategies, and policies, as well as by finding answers to challenging analytical questions and thereby advancing knowledge forms. However, just as there are immense opportunities ahead to embrace and exploit, there are enormous challenges and open issues ahead to address and overcome in order to achieve a successful implementation of big data technology and its novel applications in such cities. © The Author(s) 2019 |
abstractGer |
Abstract There has recently been a conscious push for cities across the globe to be smart and even smarter and thus more sustainable by developing and implementing big data technologies and their applications across various urban domains in the hopes of reaching the required level of sustainability and improving the living standard of citizens. Having gained momentum and traction as a promising response to the needed transition towards sustainability and to the challenges of urbanisation, smart and smarter cities as approaches to data-driven urbanism are increasingly adopting the advanced forms of ICT to improve their performance in line with the goals of sustainable development and the requirements of urban growth. One of such forms that has tremendous potential to enhance urban operations, functions, services, designs, strategies, and policies in this direction is big data analytics and its application. This is due to the kind of well-informed decision-making and enhanced insights enabled by big data computing in the form of applied intelligence. However, topical studies on big data technologies and their applications in the context of smart and smarter cities tend to deal largely with economic growth and the quality of life in terms of service efficiency and betterment while overlooking and barely exploring the untapped potential of such applications for advancing sustainability. In fact, smart and smarter cities raise several issues and involve significant challenges when it comes to their development and implementation in the context of sustainability. With that in regard, this paper provides a comprehensive, state-of-the-art review and synthesis of the field of smart and smarter cities in relation to sustainability and related big data analytics and its application in terms of the underlying foundations and assumptions, research issues and debates, opportunities and benefits, technological developments, emerging trends, future practices, and challenges and open issues. This study shows that smart and smarter cities are associated with misunderstanding and deficiencies as regards their incorporation of, and contribution to, sustainability. Nevertheless, as also revealed by this study, tremendous opportunities are available for utilising big data analytics and its application in smart cities of the future to improve their contribution to the goals of sustainable development by optimising and enhancing urban operations, functions, services, designs, strategies, and policies, as well as by finding answers to challenging analytical questions and thereby advancing knowledge forms. However, just as there are immense opportunities ahead to embrace and exploit, there are enormous challenges and open issues ahead to address and overcome in order to achieve a successful implementation of big data technology and its novel applications in such cities. © The Author(s) 2019 |
abstract_unstemmed |
Abstract There has recently been a conscious push for cities across the globe to be smart and even smarter and thus more sustainable by developing and implementing big data technologies and their applications across various urban domains in the hopes of reaching the required level of sustainability and improving the living standard of citizens. Having gained momentum and traction as a promising response to the needed transition towards sustainability and to the challenges of urbanisation, smart and smarter cities as approaches to data-driven urbanism are increasingly adopting the advanced forms of ICT to improve their performance in line with the goals of sustainable development and the requirements of urban growth. One of such forms that has tremendous potential to enhance urban operations, functions, services, designs, strategies, and policies in this direction is big data analytics and its application. This is due to the kind of well-informed decision-making and enhanced insights enabled by big data computing in the form of applied intelligence. However, topical studies on big data technologies and their applications in the context of smart and smarter cities tend to deal largely with economic growth and the quality of life in terms of service efficiency and betterment while overlooking and barely exploring the untapped potential of such applications for advancing sustainability. In fact, smart and smarter cities raise several issues and involve significant challenges when it comes to their development and implementation in the context of sustainability. With that in regard, this paper provides a comprehensive, state-of-the-art review and synthesis of the field of smart and smarter cities in relation to sustainability and related big data analytics and its application in terms of the underlying foundations and assumptions, research issues and debates, opportunities and benefits, technological developments, emerging trends, future practices, and challenges and open issues. This study shows that smart and smarter cities are associated with misunderstanding and deficiencies as regards their incorporation of, and contribution to, sustainability. Nevertheless, as also revealed by this study, tremendous opportunities are available for utilising big data analytics and its application in smart cities of the future to improve their contribution to the goals of sustainable development by optimising and enhancing urban operations, functions, services, designs, strategies, and policies, as well as by finding answers to challenging analytical questions and thereby advancing knowledge forms. However, just as there are immense opportunities ahead to embrace and exploit, there are enormous challenges and open issues ahead to address and overcome in order to achieve a successful implementation of big data technology and its novel applications in such cities. © The Author(s) 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
On the sustainability of smart and smarter cities in the era of big data: an interdisciplinary and transdisciplinary literature review |
url |
https://dx.doi.org/10.1186/s40537-019-0182-7 |
remote_bool |
true |
ppnlink |
79213219X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40537-019-0182-7 |
up_date |
2024-07-03T18:47:18.917Z |
_version_ |
1803584734670880768 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036631922</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328191354.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40537-019-0182-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036631922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40537-019-0182-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bibri, Simon Elias</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the sustainability of smart and smarter cities in the era of big data: an interdisciplinary and transdisciplinary literature review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract There has recently been a conscious push for cities across the globe to be smart and even smarter and thus more sustainable by developing and implementing big data technologies and their applications across various urban domains in the hopes of reaching the required level of sustainability and improving the living standard of citizens. Having gained momentum and traction as a promising response to the needed transition towards sustainability and to the challenges of urbanisation, smart and smarter cities as approaches to data-driven urbanism are increasingly adopting the advanced forms of ICT to improve their performance in line with the goals of sustainable development and the requirements of urban growth. One of such forms that has tremendous potential to enhance urban operations, functions, services, designs, strategies, and policies in this direction is big data analytics and its application. This is due to the kind of well-informed decision-making and enhanced insights enabled by big data computing in the form of applied intelligence. However, topical studies on big data technologies and their applications in the context of smart and smarter cities tend to deal largely with economic growth and the quality of life in terms of service efficiency and betterment while overlooking and barely exploring the untapped potential of such applications for advancing sustainability. In fact, smart and smarter cities raise several issues and involve significant challenges when it comes to their development and implementation in the context of sustainability. With that in regard, this paper provides a comprehensive, state-of-the-art review and synthesis of the field of smart and smarter cities in relation to sustainability and related big data analytics and its application in terms of the underlying foundations and assumptions, research issues and debates, opportunities and benefits, technological developments, emerging trends, future practices, and challenges and open issues. This study shows that smart and smarter cities are associated with misunderstanding and deficiencies as regards their incorporation of, and contribution to, sustainability. Nevertheless, as also revealed by this study, tremendous opportunities are available for utilising big data analytics and its application in smart cities of the future to improve their contribution to the goals of sustainable development by optimising and enhancing urban operations, functions, services, designs, strategies, and policies, as well as by finding answers to challenging analytical questions and thereby advancing knowledge forms. However, just as there are immense opportunities ahead to embrace and exploit, there are enormous challenges and open issues ahead to address and overcome in order to achieve a successful implementation of big data technology and its novel applications in such cities.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smart cities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Smarter cities</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ICT of pervasive computing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data analytics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data applications</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urban intelligence functions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable development</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urban systems and domains</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of Big Data</subfield><subfield code="d">Berlin : SpringerOpen, 2014</subfield><subfield code="g">6(2019), 1 vom: 15. März</subfield><subfield code="w">(DE-627)79213219X</subfield><subfield code="w">(DE-600)2780218-8</subfield><subfield code="x">2196-1115</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40537-019-0182-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">15</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
score |
7.398264 |