Milk yield and composition, body condition, rumen characteristics, and blood metabolites of dairy cows fed diet supplemented with palm oil
Background An addition of rumen-protected fat to the diet of cows may limit negative energy balance and/or shorten its duration, leading to increased milk production with reduced risk of metabolic disorders in dairy cows. The aim of the study was to test the effect of rumen-inert fat supplement of p...
Ausführliche Beschreibung
Autor*in: |
Kirovski, Danijela [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Kirovski et al.; licensee Springer. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
---|
Übergeordnetes Werk: |
Enthalten in: Chemical and Biological Technologies for Agriculture - Berlin : SpringerOpen, 2014, 2(2015), 1 vom: 24. Feb. |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2015 ; number:1 ; day:24 ; month:02 |
Links: |
---|
DOI / URN: |
10.1186/s40538-014-0029-6 |
---|
Katalog-ID: |
SPR036633402 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR036633402 | ||
003 | DE-627 | ||
005 | 20230519122040.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40538-014-0029-6 |2 doi | |
035 | |a (DE-627)SPR036633402 | ||
035 | |a (SPR)s40538-014-0029-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Kirovski, Danijela |e verfasserin |4 aut | |
245 | 1 | 0 | |a Milk yield and composition, body condition, rumen characteristics, and blood metabolites of dairy cows fed diet supplemented with palm oil |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Kirovski et al.; licensee Springer. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( | ||
520 | |a Background An addition of rumen-protected fat to the diet of cows may limit negative energy balance and/or shorten its duration, leading to increased milk production with reduced risk of metabolic disorders in dairy cows. The aim of the study was to test the effect of rumen-inert fat supplement of palm oil on milk production, milk composition, rumen characteristics, and metabolic variables of early lactating dairy cows. For this purpose, 24 Holstein-Friesian cows were divided into two equal groups and fed a corn silage-based diet, without palm oil supplementation (control) or with 300 g palm oil (Palm Fat 99, Noack & Co. GmbH, Vienna, Austria) per cow for 8 weeks starting from day 30 after parturition. Milk, rumen, and blood samples were taken three times during experiment at days 30, 58, and 86 of lactation. Body condition scores of cows were determined in the same time periods. Milk yields were measured at the morning and evening milking ($ 6^{00} $ and $ 18^{00} $). Milk samples were analyzed for milk fat and milk protein content. Rumen content was tested for electrochemical reaction. A native slide was prepared for microscopical examination of the rumen protozoa motility that was numerically estimated. Protozoa were counted in whole rumen contents by light microscopy. Blood samples were tested for total protein, albumin, urea, tryglicerides, cholesterol, total bilirubin, beta-hydroxybutyrate, Ca, and P. Results Compared with the control, palm oil supplementation resulted in an increase of the average milk yield and milk fat content. The loss in body condition was significantly lower in the group fed palm oil than in the control group. Rumen pH, total number, and motility of protozoa in the group fed palm oil were significantly higher than those in the control group. Palm oil supplementation did not influence blood metabolite concentrations except for urea and glucose which were significantly lower and Ca and cholesterol which were significantly higher in the palm oil-supplemented group. Conclusions Our results indicate that supplementation with palm oil in weeks 4 to 12 postpartum spared postpartum body weight loss, increased milk yield and milk fat content, and had positive effects on rumen characteristics. | ||
650 | 4 | |a Palm oil |7 (dpeaa)DE-He213 | |
650 | 4 | |a Rumen-protected fat |7 (dpeaa)DE-He213 | |
650 | 4 | |a Dairy cows |7 (dpeaa)DE-He213 | |
700 | 1 | |a Blond, Bojan |4 aut | |
700 | 1 | |a Katić, Marko |4 aut | |
700 | 1 | |a Marković, Radmila |4 aut | |
700 | 1 | |a Šefer, Dragan |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Chemical and Biological Technologies for Agriculture |d Berlin : SpringerOpen, 2014 |g 2(2015), 1 vom: 24. Feb. |w (DE-627)78156820X |w (DE-600)2762782-2 |x 2196-5641 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2015 |g number:1 |g day:24 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40538-014-0029-6 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2015 |e 1 |b 24 |c 02 |
author_variant |
d k dk b b bb m k mk r m rm d š dš |
---|---|
matchkey_str |
article:21965641:2015----::ikiladopstobdcniinuecaatrsisnbodeaoieodiyos |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1186/s40538-014-0029-6 doi (DE-627)SPR036633402 (SPR)s40538-014-0029-6-e DE-627 ger DE-627 rakwb eng Kirovski, Danijela verfasserin aut Milk yield and composition, body condition, rumen characteristics, and blood metabolites of dairy cows fed diet supplemented with palm oil 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Kirovski et al.; licensee Springer. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background An addition of rumen-protected fat to the diet of cows may limit negative energy balance and/or shorten its duration, leading to increased milk production with reduced risk of metabolic disorders in dairy cows. The aim of the study was to test the effect of rumen-inert fat supplement of palm oil on milk production, milk composition, rumen characteristics, and metabolic variables of early lactating dairy cows. For this purpose, 24 Holstein-Friesian cows were divided into two equal groups and fed a corn silage-based diet, without palm oil supplementation (control) or with 300 g palm oil (Palm Fat 99, Noack & Co. GmbH, Vienna, Austria) per cow for 8 weeks starting from day 30 after parturition. Milk, rumen, and blood samples were taken three times during experiment at days 30, 58, and 86 of lactation. Body condition scores of cows were determined in the same time periods. Milk yields were measured at the morning and evening milking ($ 6^{00} $ and $ 18^{00} $). Milk samples were analyzed for milk fat and milk protein content. Rumen content was tested for electrochemical reaction. A native slide was prepared for microscopical examination of the rumen protozoa motility that was numerically estimated. Protozoa were counted in whole rumen contents by light microscopy. Blood samples were tested for total protein, albumin, urea, tryglicerides, cholesterol, total bilirubin, beta-hydroxybutyrate, Ca, and P. Results Compared with the control, palm oil supplementation resulted in an increase of the average milk yield and milk fat content. The loss in body condition was significantly lower in the group fed palm oil than in the control group. Rumen pH, total number, and motility of protozoa in the group fed palm oil were significantly higher than those in the control group. Palm oil supplementation did not influence blood metabolite concentrations except for urea and glucose which were significantly lower and Ca and cholesterol which were significantly higher in the palm oil-supplemented group. Conclusions Our results indicate that supplementation with palm oil in weeks 4 to 12 postpartum spared postpartum body weight loss, increased milk yield and milk fat content, and had positive effects on rumen characteristics. Palm oil (dpeaa)DE-He213 Rumen-protected fat (dpeaa)DE-He213 Dairy cows (dpeaa)DE-He213 Blond, Bojan aut Katić, Marko aut Marković, Radmila aut Šefer, Dragan aut Enthalten in Chemical and Biological Technologies for Agriculture Berlin : SpringerOpen, 2014 2(2015), 1 vom: 24. Feb. (DE-627)78156820X (DE-600)2762782-2 2196-5641 nnns volume:2 year:2015 number:1 day:24 month:02 https://dx.doi.org/10.1186/s40538-014-0029-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2015 1 24 02 |
spelling |
10.1186/s40538-014-0029-6 doi (DE-627)SPR036633402 (SPR)s40538-014-0029-6-e DE-627 ger DE-627 rakwb eng Kirovski, Danijela verfasserin aut Milk yield and composition, body condition, rumen characteristics, and blood metabolites of dairy cows fed diet supplemented with palm oil 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Kirovski et al.; licensee Springer. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background An addition of rumen-protected fat to the diet of cows may limit negative energy balance and/or shorten its duration, leading to increased milk production with reduced risk of metabolic disorders in dairy cows. The aim of the study was to test the effect of rumen-inert fat supplement of palm oil on milk production, milk composition, rumen characteristics, and metabolic variables of early lactating dairy cows. For this purpose, 24 Holstein-Friesian cows were divided into two equal groups and fed a corn silage-based diet, without palm oil supplementation (control) or with 300 g palm oil (Palm Fat 99, Noack & Co. GmbH, Vienna, Austria) per cow for 8 weeks starting from day 30 after parturition. Milk, rumen, and blood samples were taken three times during experiment at days 30, 58, and 86 of lactation. Body condition scores of cows were determined in the same time periods. Milk yields were measured at the morning and evening milking ($ 6^{00} $ and $ 18^{00} $). Milk samples were analyzed for milk fat and milk protein content. Rumen content was tested for electrochemical reaction. A native slide was prepared for microscopical examination of the rumen protozoa motility that was numerically estimated. Protozoa were counted in whole rumen contents by light microscopy. Blood samples were tested for total protein, albumin, urea, tryglicerides, cholesterol, total bilirubin, beta-hydroxybutyrate, Ca, and P. Results Compared with the control, palm oil supplementation resulted in an increase of the average milk yield and milk fat content. The loss in body condition was significantly lower in the group fed palm oil than in the control group. Rumen pH, total number, and motility of protozoa in the group fed palm oil were significantly higher than those in the control group. Palm oil supplementation did not influence blood metabolite concentrations except for urea and glucose which were significantly lower and Ca and cholesterol which were significantly higher in the palm oil-supplemented group. Conclusions Our results indicate that supplementation with palm oil in weeks 4 to 12 postpartum spared postpartum body weight loss, increased milk yield and milk fat content, and had positive effects on rumen characteristics. Palm oil (dpeaa)DE-He213 Rumen-protected fat (dpeaa)DE-He213 Dairy cows (dpeaa)DE-He213 Blond, Bojan aut Katić, Marko aut Marković, Radmila aut Šefer, Dragan aut Enthalten in Chemical and Biological Technologies for Agriculture Berlin : SpringerOpen, 2014 2(2015), 1 vom: 24. Feb. (DE-627)78156820X (DE-600)2762782-2 2196-5641 nnns volume:2 year:2015 number:1 day:24 month:02 https://dx.doi.org/10.1186/s40538-014-0029-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2015 1 24 02 |
allfields_unstemmed |
10.1186/s40538-014-0029-6 doi (DE-627)SPR036633402 (SPR)s40538-014-0029-6-e DE-627 ger DE-627 rakwb eng Kirovski, Danijela verfasserin aut Milk yield and composition, body condition, rumen characteristics, and blood metabolites of dairy cows fed diet supplemented with palm oil 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Kirovski et al.; licensee Springer. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background An addition of rumen-protected fat to the diet of cows may limit negative energy balance and/or shorten its duration, leading to increased milk production with reduced risk of metabolic disorders in dairy cows. The aim of the study was to test the effect of rumen-inert fat supplement of palm oil on milk production, milk composition, rumen characteristics, and metabolic variables of early lactating dairy cows. For this purpose, 24 Holstein-Friesian cows were divided into two equal groups and fed a corn silage-based diet, without palm oil supplementation (control) or with 300 g palm oil (Palm Fat 99, Noack & Co. GmbH, Vienna, Austria) per cow for 8 weeks starting from day 30 after parturition. Milk, rumen, and blood samples were taken three times during experiment at days 30, 58, and 86 of lactation. Body condition scores of cows were determined in the same time periods. Milk yields were measured at the morning and evening milking ($ 6^{00} $ and $ 18^{00} $). Milk samples were analyzed for milk fat and milk protein content. Rumen content was tested for electrochemical reaction. A native slide was prepared for microscopical examination of the rumen protozoa motility that was numerically estimated. Protozoa were counted in whole rumen contents by light microscopy. Blood samples were tested for total protein, albumin, urea, tryglicerides, cholesterol, total bilirubin, beta-hydroxybutyrate, Ca, and P. Results Compared with the control, palm oil supplementation resulted in an increase of the average milk yield and milk fat content. The loss in body condition was significantly lower in the group fed palm oil than in the control group. Rumen pH, total number, and motility of protozoa in the group fed palm oil were significantly higher than those in the control group. Palm oil supplementation did not influence blood metabolite concentrations except for urea and glucose which were significantly lower and Ca and cholesterol which were significantly higher in the palm oil-supplemented group. Conclusions Our results indicate that supplementation with palm oil in weeks 4 to 12 postpartum spared postpartum body weight loss, increased milk yield and milk fat content, and had positive effects on rumen characteristics. Palm oil (dpeaa)DE-He213 Rumen-protected fat (dpeaa)DE-He213 Dairy cows (dpeaa)DE-He213 Blond, Bojan aut Katić, Marko aut Marković, Radmila aut Šefer, Dragan aut Enthalten in Chemical and Biological Technologies for Agriculture Berlin : SpringerOpen, 2014 2(2015), 1 vom: 24. Feb. (DE-627)78156820X (DE-600)2762782-2 2196-5641 nnns volume:2 year:2015 number:1 day:24 month:02 https://dx.doi.org/10.1186/s40538-014-0029-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2015 1 24 02 |
allfieldsGer |
10.1186/s40538-014-0029-6 doi (DE-627)SPR036633402 (SPR)s40538-014-0029-6-e DE-627 ger DE-627 rakwb eng Kirovski, Danijela verfasserin aut Milk yield and composition, body condition, rumen characteristics, and blood metabolites of dairy cows fed diet supplemented with palm oil 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Kirovski et al.; licensee Springer. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background An addition of rumen-protected fat to the diet of cows may limit negative energy balance and/or shorten its duration, leading to increased milk production with reduced risk of metabolic disorders in dairy cows. The aim of the study was to test the effect of rumen-inert fat supplement of palm oil on milk production, milk composition, rumen characteristics, and metabolic variables of early lactating dairy cows. For this purpose, 24 Holstein-Friesian cows were divided into two equal groups and fed a corn silage-based diet, without palm oil supplementation (control) or with 300 g palm oil (Palm Fat 99, Noack & Co. GmbH, Vienna, Austria) per cow for 8 weeks starting from day 30 after parturition. Milk, rumen, and blood samples were taken three times during experiment at days 30, 58, and 86 of lactation. Body condition scores of cows were determined in the same time periods. Milk yields were measured at the morning and evening milking ($ 6^{00} $ and $ 18^{00} $). Milk samples were analyzed for milk fat and milk protein content. Rumen content was tested for electrochemical reaction. A native slide was prepared for microscopical examination of the rumen protozoa motility that was numerically estimated. Protozoa were counted in whole rumen contents by light microscopy. Blood samples were tested for total protein, albumin, urea, tryglicerides, cholesterol, total bilirubin, beta-hydroxybutyrate, Ca, and P. Results Compared with the control, palm oil supplementation resulted in an increase of the average milk yield and milk fat content. The loss in body condition was significantly lower in the group fed palm oil than in the control group. Rumen pH, total number, and motility of protozoa in the group fed palm oil were significantly higher than those in the control group. Palm oil supplementation did not influence blood metabolite concentrations except for urea and glucose which were significantly lower and Ca and cholesterol which were significantly higher in the palm oil-supplemented group. Conclusions Our results indicate that supplementation with palm oil in weeks 4 to 12 postpartum spared postpartum body weight loss, increased milk yield and milk fat content, and had positive effects on rumen characteristics. Palm oil (dpeaa)DE-He213 Rumen-protected fat (dpeaa)DE-He213 Dairy cows (dpeaa)DE-He213 Blond, Bojan aut Katić, Marko aut Marković, Radmila aut Šefer, Dragan aut Enthalten in Chemical and Biological Technologies for Agriculture Berlin : SpringerOpen, 2014 2(2015), 1 vom: 24. Feb. (DE-627)78156820X (DE-600)2762782-2 2196-5641 nnns volume:2 year:2015 number:1 day:24 month:02 https://dx.doi.org/10.1186/s40538-014-0029-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2015 1 24 02 |
allfieldsSound |
10.1186/s40538-014-0029-6 doi (DE-627)SPR036633402 (SPR)s40538-014-0029-6-e DE-627 ger DE-627 rakwb eng Kirovski, Danijela verfasserin aut Milk yield and composition, body condition, rumen characteristics, and blood metabolites of dairy cows fed diet supplemented with palm oil 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Kirovski et al.; licensee Springer. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background An addition of rumen-protected fat to the diet of cows may limit negative energy balance and/or shorten its duration, leading to increased milk production with reduced risk of metabolic disorders in dairy cows. The aim of the study was to test the effect of rumen-inert fat supplement of palm oil on milk production, milk composition, rumen characteristics, and metabolic variables of early lactating dairy cows. For this purpose, 24 Holstein-Friesian cows were divided into two equal groups and fed a corn silage-based diet, without palm oil supplementation (control) or with 300 g palm oil (Palm Fat 99, Noack & Co. GmbH, Vienna, Austria) per cow for 8 weeks starting from day 30 after parturition. Milk, rumen, and blood samples were taken three times during experiment at days 30, 58, and 86 of lactation. Body condition scores of cows were determined in the same time periods. Milk yields were measured at the morning and evening milking ($ 6^{00} $ and $ 18^{00} $). Milk samples were analyzed for milk fat and milk protein content. Rumen content was tested for electrochemical reaction. A native slide was prepared for microscopical examination of the rumen protozoa motility that was numerically estimated. Protozoa were counted in whole rumen contents by light microscopy. Blood samples were tested for total protein, albumin, urea, tryglicerides, cholesterol, total bilirubin, beta-hydroxybutyrate, Ca, and P. Results Compared with the control, palm oil supplementation resulted in an increase of the average milk yield and milk fat content. The loss in body condition was significantly lower in the group fed palm oil than in the control group. Rumen pH, total number, and motility of protozoa in the group fed palm oil were significantly higher than those in the control group. Palm oil supplementation did not influence blood metabolite concentrations except for urea and glucose which were significantly lower and Ca and cholesterol which were significantly higher in the palm oil-supplemented group. Conclusions Our results indicate that supplementation with palm oil in weeks 4 to 12 postpartum spared postpartum body weight loss, increased milk yield and milk fat content, and had positive effects on rumen characteristics. Palm oil (dpeaa)DE-He213 Rumen-protected fat (dpeaa)DE-He213 Dairy cows (dpeaa)DE-He213 Blond, Bojan aut Katić, Marko aut Marković, Radmila aut Šefer, Dragan aut Enthalten in Chemical and Biological Technologies for Agriculture Berlin : SpringerOpen, 2014 2(2015), 1 vom: 24. Feb. (DE-627)78156820X (DE-600)2762782-2 2196-5641 nnns volume:2 year:2015 number:1 day:24 month:02 https://dx.doi.org/10.1186/s40538-014-0029-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2015 1 24 02 |
language |
English |
source |
Enthalten in Chemical and Biological Technologies for Agriculture 2(2015), 1 vom: 24. Feb. volume:2 year:2015 number:1 day:24 month:02 |
sourceStr |
Enthalten in Chemical and Biological Technologies for Agriculture 2(2015), 1 vom: 24. Feb. volume:2 year:2015 number:1 day:24 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Palm oil Rumen-protected fat Dairy cows |
isfreeaccess_bool |
true |
container_title |
Chemical and Biological Technologies for Agriculture |
authorswithroles_txt_mv |
Kirovski, Danijela @@aut@@ Blond, Bojan @@aut@@ Katić, Marko @@aut@@ Marković, Radmila @@aut@@ Šefer, Dragan @@aut@@ |
publishDateDaySort_date |
2015-02-24T00:00:00Z |
hierarchy_top_id |
78156820X |
id |
SPR036633402 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036633402</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519122040.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40538-014-0029-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036633402</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40538-014-0029-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kirovski, Danijela</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Milk yield and composition, body condition, rumen characteristics, and blood metabolites of dairy cows fed diet supplemented with palm oil</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kirovski et al.; licensee Springer. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background An addition of rumen-protected fat to the diet of cows may limit negative energy balance and/or shorten its duration, leading to increased milk production with reduced risk of metabolic disorders in dairy cows. The aim of the study was to test the effect of rumen-inert fat supplement of palm oil on milk production, milk composition, rumen characteristics, and metabolic variables of early lactating dairy cows. For this purpose, 24 Holstein-Friesian cows were divided into two equal groups and fed a corn silage-based diet, without palm oil supplementation (control) or with 300 g palm oil (Palm Fat 99, Noack & Co. GmbH, Vienna, Austria) per cow for 8 weeks starting from day 30 after parturition. Milk, rumen, and blood samples were taken three times during experiment at days 30, 58, and 86 of lactation. Body condition scores of cows were determined in the same time periods. Milk yields were measured at the morning and evening milking ($ 6^{00} $ and $ 18^{00} $). Milk samples were analyzed for milk fat and milk protein content. Rumen content was tested for electrochemical reaction. A native slide was prepared for microscopical examination of the rumen protozoa motility that was numerically estimated. Protozoa were counted in whole rumen contents by light microscopy. Blood samples were tested for total protein, albumin, urea, tryglicerides, cholesterol, total bilirubin, beta-hydroxybutyrate, Ca, and P. Results Compared with the control, palm oil supplementation resulted in an increase of the average milk yield and milk fat content. The loss in body condition was significantly lower in the group fed palm oil than in the control group. Rumen pH, total number, and motility of protozoa in the group fed palm oil were significantly higher than those in the control group. Palm oil supplementation did not influence blood metabolite concentrations except for urea and glucose which were significantly lower and Ca and cholesterol which were significantly higher in the palm oil-supplemented group. Conclusions Our results indicate that supplementation with palm oil in weeks 4 to 12 postpartum spared postpartum body weight loss, increased milk yield and milk fat content, and had positive effects on rumen characteristics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Palm oil</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rumen-protected fat</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dairy cows</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blond, Bojan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Katić, Marko</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marković, Radmila</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Šefer, Dragan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemical and Biological Technologies for Agriculture</subfield><subfield code="d">Berlin : SpringerOpen, 2014</subfield><subfield code="g">2(2015), 1 vom: 24. Feb.</subfield><subfield code="w">(DE-627)78156820X</subfield><subfield code="w">(DE-600)2762782-2</subfield><subfield code="x">2196-5641</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:24</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40538-014-0029-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">24</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Kirovski, Danijela |
spellingShingle |
Kirovski, Danijela misc Palm oil misc Rumen-protected fat misc Dairy cows Milk yield and composition, body condition, rumen characteristics, and blood metabolites of dairy cows fed diet supplemented with palm oil |
authorStr |
Kirovski, Danijela |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)78156820X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2196-5641 |
topic_title |
Milk yield and composition, body condition, rumen characteristics, and blood metabolites of dairy cows fed diet supplemented with palm oil Palm oil (dpeaa)DE-He213 Rumen-protected fat (dpeaa)DE-He213 Dairy cows (dpeaa)DE-He213 |
topic |
misc Palm oil misc Rumen-protected fat misc Dairy cows |
topic_unstemmed |
misc Palm oil misc Rumen-protected fat misc Dairy cows |
topic_browse |
misc Palm oil misc Rumen-protected fat misc Dairy cows |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Chemical and Biological Technologies for Agriculture |
hierarchy_parent_id |
78156820X |
hierarchy_top_title |
Chemical and Biological Technologies for Agriculture |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)78156820X (DE-600)2762782-2 |
title |
Milk yield and composition, body condition, rumen characteristics, and blood metabolites of dairy cows fed diet supplemented with palm oil |
ctrlnum |
(DE-627)SPR036633402 (SPR)s40538-014-0029-6-e |
title_full |
Milk yield and composition, body condition, rumen characteristics, and blood metabolites of dairy cows fed diet supplemented with palm oil |
author_sort |
Kirovski, Danijela |
journal |
Chemical and Biological Technologies for Agriculture |
journalStr |
Chemical and Biological Technologies for Agriculture |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
author_browse |
Kirovski, Danijela Blond, Bojan Katić, Marko Marković, Radmila Šefer, Dragan |
container_volume |
2 |
format_se |
Elektronische Aufsätze |
author-letter |
Kirovski, Danijela |
doi_str_mv |
10.1186/s40538-014-0029-6 |
title_sort |
milk yield and composition, body condition, rumen characteristics, and blood metabolites of dairy cows fed diet supplemented with palm oil |
title_auth |
Milk yield and composition, body condition, rumen characteristics, and blood metabolites of dairy cows fed diet supplemented with palm oil |
abstract |
Background An addition of rumen-protected fat to the diet of cows may limit negative energy balance and/or shorten its duration, leading to increased milk production with reduced risk of metabolic disorders in dairy cows. The aim of the study was to test the effect of rumen-inert fat supplement of palm oil on milk production, milk composition, rumen characteristics, and metabolic variables of early lactating dairy cows. For this purpose, 24 Holstein-Friesian cows were divided into two equal groups and fed a corn silage-based diet, without palm oil supplementation (control) or with 300 g palm oil (Palm Fat 99, Noack & Co. GmbH, Vienna, Austria) per cow for 8 weeks starting from day 30 after parturition. Milk, rumen, and blood samples were taken three times during experiment at days 30, 58, and 86 of lactation. Body condition scores of cows were determined in the same time periods. Milk yields were measured at the morning and evening milking ($ 6^{00} $ and $ 18^{00} $). Milk samples were analyzed for milk fat and milk protein content. Rumen content was tested for electrochemical reaction. A native slide was prepared for microscopical examination of the rumen protozoa motility that was numerically estimated. Protozoa were counted in whole rumen contents by light microscopy. Blood samples were tested for total protein, albumin, urea, tryglicerides, cholesterol, total bilirubin, beta-hydroxybutyrate, Ca, and P. Results Compared with the control, palm oil supplementation resulted in an increase of the average milk yield and milk fat content. The loss in body condition was significantly lower in the group fed palm oil than in the control group. Rumen pH, total number, and motility of protozoa in the group fed palm oil were significantly higher than those in the control group. Palm oil supplementation did not influence blood metabolite concentrations except for urea and glucose which were significantly lower and Ca and cholesterol which were significantly higher in the palm oil-supplemented group. Conclusions Our results indicate that supplementation with palm oil in weeks 4 to 12 postpartum spared postpartum body weight loss, increased milk yield and milk fat content, and had positive effects on rumen characteristics. © Kirovski et al.; licensee Springer. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstractGer |
Background An addition of rumen-protected fat to the diet of cows may limit negative energy balance and/or shorten its duration, leading to increased milk production with reduced risk of metabolic disorders in dairy cows. The aim of the study was to test the effect of rumen-inert fat supplement of palm oil on milk production, milk composition, rumen characteristics, and metabolic variables of early lactating dairy cows. For this purpose, 24 Holstein-Friesian cows were divided into two equal groups and fed a corn silage-based diet, without palm oil supplementation (control) or with 300 g palm oil (Palm Fat 99, Noack & Co. GmbH, Vienna, Austria) per cow for 8 weeks starting from day 30 after parturition. Milk, rumen, and blood samples were taken three times during experiment at days 30, 58, and 86 of lactation. Body condition scores of cows were determined in the same time periods. Milk yields were measured at the morning and evening milking ($ 6^{00} $ and $ 18^{00} $). Milk samples were analyzed for milk fat and milk protein content. Rumen content was tested for electrochemical reaction. A native slide was prepared for microscopical examination of the rumen protozoa motility that was numerically estimated. Protozoa were counted in whole rumen contents by light microscopy. Blood samples were tested for total protein, albumin, urea, tryglicerides, cholesterol, total bilirubin, beta-hydroxybutyrate, Ca, and P. Results Compared with the control, palm oil supplementation resulted in an increase of the average milk yield and milk fat content. The loss in body condition was significantly lower in the group fed palm oil than in the control group. Rumen pH, total number, and motility of protozoa in the group fed palm oil were significantly higher than those in the control group. Palm oil supplementation did not influence blood metabolite concentrations except for urea and glucose which were significantly lower and Ca and cholesterol which were significantly higher in the palm oil-supplemented group. Conclusions Our results indicate that supplementation with palm oil in weeks 4 to 12 postpartum spared postpartum body weight loss, increased milk yield and milk fat content, and had positive effects on rumen characteristics. © Kirovski et al.; licensee Springer. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstract_unstemmed |
Background An addition of rumen-protected fat to the diet of cows may limit negative energy balance and/or shorten its duration, leading to increased milk production with reduced risk of metabolic disorders in dairy cows. The aim of the study was to test the effect of rumen-inert fat supplement of palm oil on milk production, milk composition, rumen characteristics, and metabolic variables of early lactating dairy cows. For this purpose, 24 Holstein-Friesian cows were divided into two equal groups and fed a corn silage-based diet, without palm oil supplementation (control) or with 300 g palm oil (Palm Fat 99, Noack & Co. GmbH, Vienna, Austria) per cow for 8 weeks starting from day 30 after parturition. Milk, rumen, and blood samples were taken three times during experiment at days 30, 58, and 86 of lactation. Body condition scores of cows were determined in the same time periods. Milk yields were measured at the morning and evening milking ($ 6^{00} $ and $ 18^{00} $). Milk samples were analyzed for milk fat and milk protein content. Rumen content was tested for electrochemical reaction. A native slide was prepared for microscopical examination of the rumen protozoa motility that was numerically estimated. Protozoa were counted in whole rumen contents by light microscopy. Blood samples were tested for total protein, albumin, urea, tryglicerides, cholesterol, total bilirubin, beta-hydroxybutyrate, Ca, and P. Results Compared with the control, palm oil supplementation resulted in an increase of the average milk yield and milk fat content. The loss in body condition was significantly lower in the group fed palm oil than in the control group. Rumen pH, total number, and motility of protozoa in the group fed palm oil were significantly higher than those in the control group. Palm oil supplementation did not influence blood metabolite concentrations except for urea and glucose which were significantly lower and Ca and cholesterol which were significantly higher in the palm oil-supplemented group. Conclusions Our results indicate that supplementation with palm oil in weeks 4 to 12 postpartum spared postpartum body weight loss, increased milk yield and milk fat content, and had positive effects on rumen characteristics. © Kirovski et al.; licensee Springer. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Milk yield and composition, body condition, rumen characteristics, and blood metabolites of dairy cows fed diet supplemented with palm oil |
url |
https://dx.doi.org/10.1186/s40538-014-0029-6 |
remote_bool |
true |
author2 |
Blond, Bojan Katić, Marko Marković, Radmila Šefer, Dragan |
author2Str |
Blond, Bojan Katić, Marko Marković, Radmila Šefer, Dragan |
ppnlink |
78156820X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40538-014-0029-6 |
up_date |
2024-07-03T18:47:46.741Z |
_version_ |
1803584763845410816 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036633402</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519122040.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40538-014-0029-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036633402</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40538-014-0029-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kirovski, Danijela</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Milk yield and composition, body condition, rumen characteristics, and blood metabolites of dairy cows fed diet supplemented with palm oil</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kirovski et al.; licensee Springer. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background An addition of rumen-protected fat to the diet of cows may limit negative energy balance and/or shorten its duration, leading to increased milk production with reduced risk of metabolic disorders in dairy cows. The aim of the study was to test the effect of rumen-inert fat supplement of palm oil on milk production, milk composition, rumen characteristics, and metabolic variables of early lactating dairy cows. For this purpose, 24 Holstein-Friesian cows were divided into two equal groups and fed a corn silage-based diet, without palm oil supplementation (control) or with 300 g palm oil (Palm Fat 99, Noack & Co. GmbH, Vienna, Austria) per cow for 8 weeks starting from day 30 after parturition. Milk, rumen, and blood samples were taken three times during experiment at days 30, 58, and 86 of lactation. Body condition scores of cows were determined in the same time periods. Milk yields were measured at the morning and evening milking ($ 6^{00} $ and $ 18^{00} $). Milk samples were analyzed for milk fat and milk protein content. Rumen content was tested for electrochemical reaction. A native slide was prepared for microscopical examination of the rumen protozoa motility that was numerically estimated. Protozoa were counted in whole rumen contents by light microscopy. Blood samples were tested for total protein, albumin, urea, tryglicerides, cholesterol, total bilirubin, beta-hydroxybutyrate, Ca, and P. Results Compared with the control, palm oil supplementation resulted in an increase of the average milk yield and milk fat content. The loss in body condition was significantly lower in the group fed palm oil than in the control group. Rumen pH, total number, and motility of protozoa in the group fed palm oil were significantly higher than those in the control group. Palm oil supplementation did not influence blood metabolite concentrations except for urea and glucose which were significantly lower and Ca and cholesterol which were significantly higher in the palm oil-supplemented group. Conclusions Our results indicate that supplementation with palm oil in weeks 4 to 12 postpartum spared postpartum body weight loss, increased milk yield and milk fat content, and had positive effects on rumen characteristics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Palm oil</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rumen-protected fat</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dairy cows</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blond, Bojan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Katić, Marko</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marković, Radmila</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Šefer, Dragan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemical and Biological Technologies for Agriculture</subfield><subfield code="d">Berlin : SpringerOpen, 2014</subfield><subfield code="g">2(2015), 1 vom: 24. Feb.</subfield><subfield code="w">(DE-627)78156820X</subfield><subfield code="w">(DE-600)2762782-2</subfield><subfield code="x">2196-5641</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:24</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40538-014-0029-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">24</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.399967 |