Antimicrobial efficacy of biosynthesized silver nanoparticles from different solvent extracts of Waltheria americana root
Background The extensive application of silver compounds especially in nanomedicine, has increased the need to develop environmental friendly and cost effective route to synthesizing silver nanoparticles (AgNPs). Methods Water, diethyl ether, and ethanol were used in the extraction of Waltheria ame...
Ausführliche Beschreibung
Autor*in: |
Deshi, Joseph J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s). 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of analytical science and technology - Taejŏn : SpringerOpen, 2010, 7(2016), 1 vom: 11. Nov. |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2016 ; number:1 ; day:11 ; month:11 |
Links: |
---|
DOI / URN: |
10.1186/s40543-016-0104-7 |
---|
Katalog-ID: |
SPR03663655X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR03663655X | ||
003 | DE-627 | ||
005 | 20230519122049.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40543-016-0104-7 |2 doi | |
035 | |a (DE-627)SPR03663655X | ||
035 | |a (SPR)s40543-016-0104-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Deshi, Joseph J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Antimicrobial efficacy of biosynthesized silver nanoparticles from different solvent extracts of Waltheria americana root |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s). 2016 | ||
520 | |a Background The extensive application of silver compounds especially in nanomedicine, has increased the need to develop environmental friendly and cost effective route to synthesizing silver nanoparticles (AgNPs). Methods Water, diethyl ether, and ethanol were used in the extraction of Waltheria americana root. Silver nanoparticles (AgNPs) were synthesized by reacting 0.001 M $ AgNO_{3} $ solution with the different crude extracts of W. americana root in the ratio of 10:1. The synthesized AgNPs were analyzed using UV–visible spectrophotometer, X–ray diffraction (XRD), scanning electron microscope (SEM), and FTIR techniques. The different crude extracts and their synthesized colloidal AgNPs were tested against Proteus species, Streptococcus species, Klebsiella species, Staphylococcus aureus, and ciprofloxacin (control). Results UV–vis results showed surface plasmon resonance (SPR) at 415, 435, and 425 nm for synthesized colloidal AgNPs from water, diethyl ether, and ethanol extracts, respectively. When screened against all test organisms, the synthesized colloidal AgNPs from diethyl ether extract of W. americana root (WARDEEP) showed more improved antimicrobial efficacy than other crude extracts and their synthesized AgNPs. The strongest antimicrobial activity of WARDEEP against all test organisms were at 400, 100, and 200 mg/mL concentrations for Proteus species and Staphylococcus aureus, Klebsiella species, and Streptococcus species, respectively. From minimum inhibitory concentration (MIC) results, it was observed that WARDEEP exhibited a strong antibiotic activity against Proteus and Streptococcus species at a least value of 12.5 mg/mL concentration. Minimum bactericidal concentration (MBC) results showed that WARDEEP exhibited a minimum antibiotic activity at 25 mg/mL concentration against Proteus and Streptococcus species. Conclusions Therefore, silver nanoparticles were sucessfully synthesized from all the crude extracts. The synthesized silver nanoparticles could comparatively provide better alternative treatment to both gram–positive and gram–negative bacteria than the crude plant extracts. | ||
650 | 4 | |a Antimicrobial efficacy |7 (dpeaa)DE-He213 | |
650 | 4 | |a Silver nanoparticles |7 (dpeaa)DE-He213 | |
650 | 4 | |a Biosynthesis |7 (dpeaa)DE-He213 | |
700 | 1 | |a Barminas, Jeffrey T. |4 aut | |
700 | 1 | |a Onwuka, Jude C. |4 aut | |
700 | 1 | |a Dass, Peter M. |4 aut | |
700 | 1 | |a Maitera, Oliver N. |4 aut | |
700 | 1 | |a Muazu, Ibrahim |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of analytical science and technology |d Taejŏn : SpringerOpen, 2010 |g 7(2016), 1 vom: 11. Nov. |w (DE-627)669832553 |w (DE-600)2632347-3 |x 2093-3371 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2016 |g number:1 |g day:11 |g month:11 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40543-016-0104-7 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2016 |e 1 |b 11 |c 11 |
author_variant |
j j d jj jjd j t b jt jtb j c o jc jco p m d pm pmd o n m on onm i m im |
---|---|
matchkey_str |
article:20933371:2016----::niirbaefccoboyteieslennprilsrmifrnsletxr |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1186/s40543-016-0104-7 doi (DE-627)SPR03663655X (SPR)s40543-016-0104-7-e DE-627 ger DE-627 rakwb eng Deshi, Joseph J. verfasserin aut Antimicrobial efficacy of biosynthesized silver nanoparticles from different solvent extracts of Waltheria americana root 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2016 Background The extensive application of silver compounds especially in nanomedicine, has increased the need to develop environmental friendly and cost effective route to synthesizing silver nanoparticles (AgNPs). Methods Water, diethyl ether, and ethanol were used in the extraction of Waltheria americana root. Silver nanoparticles (AgNPs) were synthesized by reacting 0.001 M $ AgNO_{3} $ solution with the different crude extracts of W. americana root in the ratio of 10:1. The synthesized AgNPs were analyzed using UV–visible spectrophotometer, X–ray diffraction (XRD), scanning electron microscope (SEM), and FTIR techniques. The different crude extracts and their synthesized colloidal AgNPs were tested against Proteus species, Streptococcus species, Klebsiella species, Staphylococcus aureus, and ciprofloxacin (control). Results UV–vis results showed surface plasmon resonance (SPR) at 415, 435, and 425 nm for synthesized colloidal AgNPs from water, diethyl ether, and ethanol extracts, respectively. When screened against all test organisms, the synthesized colloidal AgNPs from diethyl ether extract of W. americana root (WARDEEP) showed more improved antimicrobial efficacy than other crude extracts and their synthesized AgNPs. The strongest antimicrobial activity of WARDEEP against all test organisms were at 400, 100, and 200 mg/mL concentrations for Proteus species and Staphylococcus aureus, Klebsiella species, and Streptococcus species, respectively. From minimum inhibitory concentration (MIC) results, it was observed that WARDEEP exhibited a strong antibiotic activity against Proteus and Streptococcus species at a least value of 12.5 mg/mL concentration. Minimum bactericidal concentration (MBC) results showed that WARDEEP exhibited a minimum antibiotic activity at 25 mg/mL concentration against Proteus and Streptococcus species. Conclusions Therefore, silver nanoparticles were sucessfully synthesized from all the crude extracts. The synthesized silver nanoparticles could comparatively provide better alternative treatment to both gram–positive and gram–negative bacteria than the crude plant extracts. Antimicrobial efficacy (dpeaa)DE-He213 Silver nanoparticles (dpeaa)DE-He213 Biosynthesis (dpeaa)DE-He213 Barminas, Jeffrey T. aut Onwuka, Jude C. aut Dass, Peter M. aut Maitera, Oliver N. aut Muazu, Ibrahim aut Enthalten in Journal of analytical science and technology Taejŏn : SpringerOpen, 2010 7(2016), 1 vom: 11. Nov. (DE-627)669832553 (DE-600)2632347-3 2093-3371 nnns volume:7 year:2016 number:1 day:11 month:11 https://dx.doi.org/10.1186/s40543-016-0104-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2016 1 11 11 |
spelling |
10.1186/s40543-016-0104-7 doi (DE-627)SPR03663655X (SPR)s40543-016-0104-7-e DE-627 ger DE-627 rakwb eng Deshi, Joseph J. verfasserin aut Antimicrobial efficacy of biosynthesized silver nanoparticles from different solvent extracts of Waltheria americana root 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2016 Background The extensive application of silver compounds especially in nanomedicine, has increased the need to develop environmental friendly and cost effective route to synthesizing silver nanoparticles (AgNPs). Methods Water, diethyl ether, and ethanol were used in the extraction of Waltheria americana root. Silver nanoparticles (AgNPs) were synthesized by reacting 0.001 M $ AgNO_{3} $ solution with the different crude extracts of W. americana root in the ratio of 10:1. The synthesized AgNPs were analyzed using UV–visible spectrophotometer, X–ray diffraction (XRD), scanning electron microscope (SEM), and FTIR techniques. The different crude extracts and their synthesized colloidal AgNPs were tested against Proteus species, Streptococcus species, Klebsiella species, Staphylococcus aureus, and ciprofloxacin (control). Results UV–vis results showed surface plasmon resonance (SPR) at 415, 435, and 425 nm for synthesized colloidal AgNPs from water, diethyl ether, and ethanol extracts, respectively. When screened against all test organisms, the synthesized colloidal AgNPs from diethyl ether extract of W. americana root (WARDEEP) showed more improved antimicrobial efficacy than other crude extracts and their synthesized AgNPs. The strongest antimicrobial activity of WARDEEP against all test organisms were at 400, 100, and 200 mg/mL concentrations for Proteus species and Staphylococcus aureus, Klebsiella species, and Streptococcus species, respectively. From minimum inhibitory concentration (MIC) results, it was observed that WARDEEP exhibited a strong antibiotic activity against Proteus and Streptococcus species at a least value of 12.5 mg/mL concentration. Minimum bactericidal concentration (MBC) results showed that WARDEEP exhibited a minimum antibiotic activity at 25 mg/mL concentration against Proteus and Streptococcus species. Conclusions Therefore, silver nanoparticles were sucessfully synthesized from all the crude extracts. The synthesized silver nanoparticles could comparatively provide better alternative treatment to both gram–positive and gram–negative bacteria than the crude plant extracts. Antimicrobial efficacy (dpeaa)DE-He213 Silver nanoparticles (dpeaa)DE-He213 Biosynthesis (dpeaa)DE-He213 Barminas, Jeffrey T. aut Onwuka, Jude C. aut Dass, Peter M. aut Maitera, Oliver N. aut Muazu, Ibrahim aut Enthalten in Journal of analytical science and technology Taejŏn : SpringerOpen, 2010 7(2016), 1 vom: 11. Nov. (DE-627)669832553 (DE-600)2632347-3 2093-3371 nnns volume:7 year:2016 number:1 day:11 month:11 https://dx.doi.org/10.1186/s40543-016-0104-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2016 1 11 11 |
allfields_unstemmed |
10.1186/s40543-016-0104-7 doi (DE-627)SPR03663655X (SPR)s40543-016-0104-7-e DE-627 ger DE-627 rakwb eng Deshi, Joseph J. verfasserin aut Antimicrobial efficacy of biosynthesized silver nanoparticles from different solvent extracts of Waltheria americana root 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2016 Background The extensive application of silver compounds especially in nanomedicine, has increased the need to develop environmental friendly and cost effective route to synthesizing silver nanoparticles (AgNPs). Methods Water, diethyl ether, and ethanol were used in the extraction of Waltheria americana root. Silver nanoparticles (AgNPs) were synthesized by reacting 0.001 M $ AgNO_{3} $ solution with the different crude extracts of W. americana root in the ratio of 10:1. The synthesized AgNPs were analyzed using UV–visible spectrophotometer, X–ray diffraction (XRD), scanning electron microscope (SEM), and FTIR techniques. The different crude extracts and their synthesized colloidal AgNPs were tested against Proteus species, Streptococcus species, Klebsiella species, Staphylococcus aureus, and ciprofloxacin (control). Results UV–vis results showed surface plasmon resonance (SPR) at 415, 435, and 425 nm for synthesized colloidal AgNPs from water, diethyl ether, and ethanol extracts, respectively. When screened against all test organisms, the synthesized colloidal AgNPs from diethyl ether extract of W. americana root (WARDEEP) showed more improved antimicrobial efficacy than other crude extracts and their synthesized AgNPs. The strongest antimicrobial activity of WARDEEP against all test organisms were at 400, 100, and 200 mg/mL concentrations for Proteus species and Staphylococcus aureus, Klebsiella species, and Streptococcus species, respectively. From minimum inhibitory concentration (MIC) results, it was observed that WARDEEP exhibited a strong antibiotic activity against Proteus and Streptococcus species at a least value of 12.5 mg/mL concentration. Minimum bactericidal concentration (MBC) results showed that WARDEEP exhibited a minimum antibiotic activity at 25 mg/mL concentration against Proteus and Streptococcus species. Conclusions Therefore, silver nanoparticles were sucessfully synthesized from all the crude extracts. The synthesized silver nanoparticles could comparatively provide better alternative treatment to both gram–positive and gram–negative bacteria than the crude plant extracts. Antimicrobial efficacy (dpeaa)DE-He213 Silver nanoparticles (dpeaa)DE-He213 Biosynthesis (dpeaa)DE-He213 Barminas, Jeffrey T. aut Onwuka, Jude C. aut Dass, Peter M. aut Maitera, Oliver N. aut Muazu, Ibrahim aut Enthalten in Journal of analytical science and technology Taejŏn : SpringerOpen, 2010 7(2016), 1 vom: 11. Nov. (DE-627)669832553 (DE-600)2632347-3 2093-3371 nnns volume:7 year:2016 number:1 day:11 month:11 https://dx.doi.org/10.1186/s40543-016-0104-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2016 1 11 11 |
allfieldsGer |
10.1186/s40543-016-0104-7 doi (DE-627)SPR03663655X (SPR)s40543-016-0104-7-e DE-627 ger DE-627 rakwb eng Deshi, Joseph J. verfasserin aut Antimicrobial efficacy of biosynthesized silver nanoparticles from different solvent extracts of Waltheria americana root 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2016 Background The extensive application of silver compounds especially in nanomedicine, has increased the need to develop environmental friendly and cost effective route to synthesizing silver nanoparticles (AgNPs). Methods Water, diethyl ether, and ethanol were used in the extraction of Waltheria americana root. Silver nanoparticles (AgNPs) were synthesized by reacting 0.001 M $ AgNO_{3} $ solution with the different crude extracts of W. americana root in the ratio of 10:1. The synthesized AgNPs were analyzed using UV–visible spectrophotometer, X–ray diffraction (XRD), scanning electron microscope (SEM), and FTIR techniques. The different crude extracts and their synthesized colloidal AgNPs were tested against Proteus species, Streptococcus species, Klebsiella species, Staphylococcus aureus, and ciprofloxacin (control). Results UV–vis results showed surface plasmon resonance (SPR) at 415, 435, and 425 nm for synthesized colloidal AgNPs from water, diethyl ether, and ethanol extracts, respectively. When screened against all test organisms, the synthesized colloidal AgNPs from diethyl ether extract of W. americana root (WARDEEP) showed more improved antimicrobial efficacy than other crude extracts and their synthesized AgNPs. The strongest antimicrobial activity of WARDEEP against all test organisms were at 400, 100, and 200 mg/mL concentrations for Proteus species and Staphylococcus aureus, Klebsiella species, and Streptococcus species, respectively. From minimum inhibitory concentration (MIC) results, it was observed that WARDEEP exhibited a strong antibiotic activity against Proteus and Streptococcus species at a least value of 12.5 mg/mL concentration. Minimum bactericidal concentration (MBC) results showed that WARDEEP exhibited a minimum antibiotic activity at 25 mg/mL concentration against Proteus and Streptococcus species. Conclusions Therefore, silver nanoparticles were sucessfully synthesized from all the crude extracts. The synthesized silver nanoparticles could comparatively provide better alternative treatment to both gram–positive and gram–negative bacteria than the crude plant extracts. Antimicrobial efficacy (dpeaa)DE-He213 Silver nanoparticles (dpeaa)DE-He213 Biosynthesis (dpeaa)DE-He213 Barminas, Jeffrey T. aut Onwuka, Jude C. aut Dass, Peter M. aut Maitera, Oliver N. aut Muazu, Ibrahim aut Enthalten in Journal of analytical science and technology Taejŏn : SpringerOpen, 2010 7(2016), 1 vom: 11. Nov. (DE-627)669832553 (DE-600)2632347-3 2093-3371 nnns volume:7 year:2016 number:1 day:11 month:11 https://dx.doi.org/10.1186/s40543-016-0104-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2016 1 11 11 |
allfieldsSound |
10.1186/s40543-016-0104-7 doi (DE-627)SPR03663655X (SPR)s40543-016-0104-7-e DE-627 ger DE-627 rakwb eng Deshi, Joseph J. verfasserin aut Antimicrobial efficacy of biosynthesized silver nanoparticles from different solvent extracts of Waltheria americana root 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2016 Background The extensive application of silver compounds especially in nanomedicine, has increased the need to develop environmental friendly and cost effective route to synthesizing silver nanoparticles (AgNPs). Methods Water, diethyl ether, and ethanol were used in the extraction of Waltheria americana root. Silver nanoparticles (AgNPs) were synthesized by reacting 0.001 M $ AgNO_{3} $ solution with the different crude extracts of W. americana root in the ratio of 10:1. The synthesized AgNPs were analyzed using UV–visible spectrophotometer, X–ray diffraction (XRD), scanning electron microscope (SEM), and FTIR techniques. The different crude extracts and their synthesized colloidal AgNPs were tested against Proteus species, Streptococcus species, Klebsiella species, Staphylococcus aureus, and ciprofloxacin (control). Results UV–vis results showed surface plasmon resonance (SPR) at 415, 435, and 425 nm for synthesized colloidal AgNPs from water, diethyl ether, and ethanol extracts, respectively. When screened against all test organisms, the synthesized colloidal AgNPs from diethyl ether extract of W. americana root (WARDEEP) showed more improved antimicrobial efficacy than other crude extracts and their synthesized AgNPs. The strongest antimicrobial activity of WARDEEP against all test organisms were at 400, 100, and 200 mg/mL concentrations for Proteus species and Staphylococcus aureus, Klebsiella species, and Streptococcus species, respectively. From minimum inhibitory concentration (MIC) results, it was observed that WARDEEP exhibited a strong antibiotic activity against Proteus and Streptococcus species at a least value of 12.5 mg/mL concentration. Minimum bactericidal concentration (MBC) results showed that WARDEEP exhibited a minimum antibiotic activity at 25 mg/mL concentration against Proteus and Streptococcus species. Conclusions Therefore, silver nanoparticles were sucessfully synthesized from all the crude extracts. The synthesized silver nanoparticles could comparatively provide better alternative treatment to both gram–positive and gram–negative bacteria than the crude plant extracts. Antimicrobial efficacy (dpeaa)DE-He213 Silver nanoparticles (dpeaa)DE-He213 Biosynthesis (dpeaa)DE-He213 Barminas, Jeffrey T. aut Onwuka, Jude C. aut Dass, Peter M. aut Maitera, Oliver N. aut Muazu, Ibrahim aut Enthalten in Journal of analytical science and technology Taejŏn : SpringerOpen, 2010 7(2016), 1 vom: 11. Nov. (DE-627)669832553 (DE-600)2632347-3 2093-3371 nnns volume:7 year:2016 number:1 day:11 month:11 https://dx.doi.org/10.1186/s40543-016-0104-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2016 1 11 11 |
language |
English |
source |
Enthalten in Journal of analytical science and technology 7(2016), 1 vom: 11. Nov. volume:7 year:2016 number:1 day:11 month:11 |
sourceStr |
Enthalten in Journal of analytical science and technology 7(2016), 1 vom: 11. Nov. volume:7 year:2016 number:1 day:11 month:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Antimicrobial efficacy Silver nanoparticles Biosynthesis |
isfreeaccess_bool |
true |
container_title |
Journal of analytical science and technology |
authorswithroles_txt_mv |
Deshi, Joseph J. @@aut@@ Barminas, Jeffrey T. @@aut@@ Onwuka, Jude C. @@aut@@ Dass, Peter M. @@aut@@ Maitera, Oliver N. @@aut@@ Muazu, Ibrahim @@aut@@ |
publishDateDaySort_date |
2016-11-11T00:00:00Z |
hierarchy_top_id |
669832553 |
id |
SPR03663655X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR03663655X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519122049.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40543-016-0104-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR03663655X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40543-016-0104-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deshi, Joseph J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Antimicrobial efficacy of biosynthesized silver nanoparticles from different solvent extracts of Waltheria americana root</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The extensive application of silver compounds especially in nanomedicine, has increased the need to develop environmental friendly and cost effective route to synthesizing silver nanoparticles (AgNPs). Methods Water, diethyl ether, and ethanol were used in the extraction of Waltheria americana root. Silver nanoparticles (AgNPs) were synthesized by reacting 0.001 M $ AgNO_{3} $ solution with the different crude extracts of W. americana root in the ratio of 10:1. The synthesized AgNPs were analyzed using UV–visible spectrophotometer, X–ray diffraction (XRD), scanning electron microscope (SEM), and FTIR techniques. The different crude extracts and their synthesized colloidal AgNPs were tested against Proteus species, Streptococcus species, Klebsiella species, Staphylococcus aureus, and ciprofloxacin (control). Results UV–vis results showed surface plasmon resonance (SPR) at 415, 435, and 425 nm for synthesized colloidal AgNPs from water, diethyl ether, and ethanol extracts, respectively. When screened against all test organisms, the synthesized colloidal AgNPs from diethyl ether extract of W. americana root (WARDEEP) showed more improved antimicrobial efficacy than other crude extracts and their synthesized AgNPs. The strongest antimicrobial activity of WARDEEP against all test organisms were at 400, 100, and 200 mg/mL concentrations for Proteus species and Staphylococcus aureus, Klebsiella species, and Streptococcus species, respectively. From minimum inhibitory concentration (MIC) results, it was observed that WARDEEP exhibited a strong antibiotic activity against Proteus and Streptococcus species at a least value of 12.5 mg/mL concentration. Minimum bactericidal concentration (MBC) results showed that WARDEEP exhibited a minimum antibiotic activity at 25 mg/mL concentration against Proteus and Streptococcus species. Conclusions Therefore, silver nanoparticles were sucessfully synthesized from all the crude extracts. The synthesized silver nanoparticles could comparatively provide better alternative treatment to both gram–positive and gram–negative bacteria than the crude plant extracts.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antimicrobial efficacy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silver nanoparticles</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biosynthesis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barminas, Jeffrey T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Onwuka, Jude C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dass, Peter M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maitera, Oliver N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muazu, Ibrahim</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of analytical science and technology</subfield><subfield code="d">Taejŏn : SpringerOpen, 2010</subfield><subfield code="g">7(2016), 1 vom: 11. Nov.</subfield><subfield code="w">(DE-627)669832553</subfield><subfield code="w">(DE-600)2632347-3</subfield><subfield code="x">2093-3371</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:11</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40543-016-0104-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">11</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
author |
Deshi, Joseph J. |
spellingShingle |
Deshi, Joseph J. misc Antimicrobial efficacy misc Silver nanoparticles misc Biosynthesis Antimicrobial efficacy of biosynthesized silver nanoparticles from different solvent extracts of Waltheria americana root |
authorStr |
Deshi, Joseph J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)669832553 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2093-3371 |
topic_title |
Antimicrobial efficacy of biosynthesized silver nanoparticles from different solvent extracts of Waltheria americana root Antimicrobial efficacy (dpeaa)DE-He213 Silver nanoparticles (dpeaa)DE-He213 Biosynthesis (dpeaa)DE-He213 |
topic |
misc Antimicrobial efficacy misc Silver nanoparticles misc Biosynthesis |
topic_unstemmed |
misc Antimicrobial efficacy misc Silver nanoparticles misc Biosynthesis |
topic_browse |
misc Antimicrobial efficacy misc Silver nanoparticles misc Biosynthesis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of analytical science and technology |
hierarchy_parent_id |
669832553 |
hierarchy_top_title |
Journal of analytical science and technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)669832553 (DE-600)2632347-3 |
title |
Antimicrobial efficacy of biosynthesized silver nanoparticles from different solvent extracts of Waltheria americana root |
ctrlnum |
(DE-627)SPR03663655X (SPR)s40543-016-0104-7-e |
title_full |
Antimicrobial efficacy of biosynthesized silver nanoparticles from different solvent extracts of Waltheria americana root |
author_sort |
Deshi, Joseph J. |
journal |
Journal of analytical science and technology |
journalStr |
Journal of analytical science and technology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Deshi, Joseph J. Barminas, Jeffrey T. Onwuka, Jude C. Dass, Peter M. Maitera, Oliver N. Muazu, Ibrahim |
container_volume |
7 |
format_se |
Elektronische Aufsätze |
author-letter |
Deshi, Joseph J. |
doi_str_mv |
10.1186/s40543-016-0104-7 |
title_sort |
antimicrobial efficacy of biosynthesized silver nanoparticles from different solvent extracts of waltheria americana root |
title_auth |
Antimicrobial efficacy of biosynthesized silver nanoparticles from different solvent extracts of Waltheria americana root |
abstract |
Background The extensive application of silver compounds especially in nanomedicine, has increased the need to develop environmental friendly and cost effective route to synthesizing silver nanoparticles (AgNPs). Methods Water, diethyl ether, and ethanol were used in the extraction of Waltheria americana root. Silver nanoparticles (AgNPs) were synthesized by reacting 0.001 M $ AgNO_{3} $ solution with the different crude extracts of W. americana root in the ratio of 10:1. The synthesized AgNPs were analyzed using UV–visible spectrophotometer, X–ray diffraction (XRD), scanning electron microscope (SEM), and FTIR techniques. The different crude extracts and their synthesized colloidal AgNPs were tested against Proteus species, Streptococcus species, Klebsiella species, Staphylococcus aureus, and ciprofloxacin (control). Results UV–vis results showed surface plasmon resonance (SPR) at 415, 435, and 425 nm for synthesized colloidal AgNPs from water, diethyl ether, and ethanol extracts, respectively. When screened against all test organisms, the synthesized colloidal AgNPs from diethyl ether extract of W. americana root (WARDEEP) showed more improved antimicrobial efficacy than other crude extracts and their synthesized AgNPs. The strongest antimicrobial activity of WARDEEP against all test organisms were at 400, 100, and 200 mg/mL concentrations for Proteus species and Staphylococcus aureus, Klebsiella species, and Streptococcus species, respectively. From minimum inhibitory concentration (MIC) results, it was observed that WARDEEP exhibited a strong antibiotic activity against Proteus and Streptococcus species at a least value of 12.5 mg/mL concentration. Minimum bactericidal concentration (MBC) results showed that WARDEEP exhibited a minimum antibiotic activity at 25 mg/mL concentration against Proteus and Streptococcus species. Conclusions Therefore, silver nanoparticles were sucessfully synthesized from all the crude extracts. The synthesized silver nanoparticles could comparatively provide better alternative treatment to both gram–positive and gram–negative bacteria than the crude plant extracts. © The Author(s). 2016 |
abstractGer |
Background The extensive application of silver compounds especially in nanomedicine, has increased the need to develop environmental friendly and cost effective route to synthesizing silver nanoparticles (AgNPs). Methods Water, diethyl ether, and ethanol were used in the extraction of Waltheria americana root. Silver nanoparticles (AgNPs) were synthesized by reacting 0.001 M $ AgNO_{3} $ solution with the different crude extracts of W. americana root in the ratio of 10:1. The synthesized AgNPs were analyzed using UV–visible spectrophotometer, X–ray diffraction (XRD), scanning electron microscope (SEM), and FTIR techniques. The different crude extracts and their synthesized colloidal AgNPs were tested against Proteus species, Streptococcus species, Klebsiella species, Staphylococcus aureus, and ciprofloxacin (control). Results UV–vis results showed surface plasmon resonance (SPR) at 415, 435, and 425 nm for synthesized colloidal AgNPs from water, diethyl ether, and ethanol extracts, respectively. When screened against all test organisms, the synthesized colloidal AgNPs from diethyl ether extract of W. americana root (WARDEEP) showed more improved antimicrobial efficacy than other crude extracts and their synthesized AgNPs. The strongest antimicrobial activity of WARDEEP against all test organisms were at 400, 100, and 200 mg/mL concentrations for Proteus species and Staphylococcus aureus, Klebsiella species, and Streptococcus species, respectively. From minimum inhibitory concentration (MIC) results, it was observed that WARDEEP exhibited a strong antibiotic activity against Proteus and Streptococcus species at a least value of 12.5 mg/mL concentration. Minimum bactericidal concentration (MBC) results showed that WARDEEP exhibited a minimum antibiotic activity at 25 mg/mL concentration against Proteus and Streptococcus species. Conclusions Therefore, silver nanoparticles were sucessfully synthesized from all the crude extracts. The synthesized silver nanoparticles could comparatively provide better alternative treatment to both gram–positive and gram–negative bacteria than the crude plant extracts. © The Author(s). 2016 |
abstract_unstemmed |
Background The extensive application of silver compounds especially in nanomedicine, has increased the need to develop environmental friendly and cost effective route to synthesizing silver nanoparticles (AgNPs). Methods Water, diethyl ether, and ethanol were used in the extraction of Waltheria americana root. Silver nanoparticles (AgNPs) were synthesized by reacting 0.001 M $ AgNO_{3} $ solution with the different crude extracts of W. americana root in the ratio of 10:1. The synthesized AgNPs were analyzed using UV–visible spectrophotometer, X–ray diffraction (XRD), scanning electron microscope (SEM), and FTIR techniques. The different crude extracts and their synthesized colloidal AgNPs were tested against Proteus species, Streptococcus species, Klebsiella species, Staphylococcus aureus, and ciprofloxacin (control). Results UV–vis results showed surface plasmon resonance (SPR) at 415, 435, and 425 nm for synthesized colloidal AgNPs from water, diethyl ether, and ethanol extracts, respectively. When screened against all test organisms, the synthesized colloidal AgNPs from diethyl ether extract of W. americana root (WARDEEP) showed more improved antimicrobial efficacy than other crude extracts and their synthesized AgNPs. The strongest antimicrobial activity of WARDEEP against all test organisms were at 400, 100, and 200 mg/mL concentrations for Proteus species and Staphylococcus aureus, Klebsiella species, and Streptococcus species, respectively. From minimum inhibitory concentration (MIC) results, it was observed that WARDEEP exhibited a strong antibiotic activity against Proteus and Streptococcus species at a least value of 12.5 mg/mL concentration. Minimum bactericidal concentration (MBC) results showed that WARDEEP exhibited a minimum antibiotic activity at 25 mg/mL concentration against Proteus and Streptococcus species. Conclusions Therefore, silver nanoparticles were sucessfully synthesized from all the crude extracts. The synthesized silver nanoparticles could comparatively provide better alternative treatment to both gram–positive and gram–negative bacteria than the crude plant extracts. © The Author(s). 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Antimicrobial efficacy of biosynthesized silver nanoparticles from different solvent extracts of Waltheria americana root |
url |
https://dx.doi.org/10.1186/s40543-016-0104-7 |
remote_bool |
true |
author2 |
Barminas, Jeffrey T. Onwuka, Jude C. Dass, Peter M. Maitera, Oliver N. Muazu, Ibrahim |
author2Str |
Barminas, Jeffrey T. Onwuka, Jude C. Dass, Peter M. Maitera, Oliver N. Muazu, Ibrahim |
ppnlink |
669832553 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40543-016-0104-7 |
up_date |
2024-07-03T18:48:45.441Z |
_version_ |
1803584825405210624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR03663655X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519122049.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40543-016-0104-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR03663655X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40543-016-0104-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deshi, Joseph J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Antimicrobial efficacy of biosynthesized silver nanoparticles from different solvent extracts of Waltheria americana root</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The extensive application of silver compounds especially in nanomedicine, has increased the need to develop environmental friendly and cost effective route to synthesizing silver nanoparticles (AgNPs). Methods Water, diethyl ether, and ethanol were used in the extraction of Waltheria americana root. Silver nanoparticles (AgNPs) were synthesized by reacting 0.001 M $ AgNO_{3} $ solution with the different crude extracts of W. americana root in the ratio of 10:1. The synthesized AgNPs were analyzed using UV–visible spectrophotometer, X–ray diffraction (XRD), scanning electron microscope (SEM), and FTIR techniques. The different crude extracts and their synthesized colloidal AgNPs were tested against Proteus species, Streptococcus species, Klebsiella species, Staphylococcus aureus, and ciprofloxacin (control). Results UV–vis results showed surface plasmon resonance (SPR) at 415, 435, and 425 nm for synthesized colloidal AgNPs from water, diethyl ether, and ethanol extracts, respectively. When screened against all test organisms, the synthesized colloidal AgNPs from diethyl ether extract of W. americana root (WARDEEP) showed more improved antimicrobial efficacy than other crude extracts and their synthesized AgNPs. The strongest antimicrobial activity of WARDEEP against all test organisms were at 400, 100, and 200 mg/mL concentrations for Proteus species and Staphylococcus aureus, Klebsiella species, and Streptococcus species, respectively. From minimum inhibitory concentration (MIC) results, it was observed that WARDEEP exhibited a strong antibiotic activity against Proteus and Streptococcus species at a least value of 12.5 mg/mL concentration. Minimum bactericidal concentration (MBC) results showed that WARDEEP exhibited a minimum antibiotic activity at 25 mg/mL concentration against Proteus and Streptococcus species. Conclusions Therefore, silver nanoparticles were sucessfully synthesized from all the crude extracts. The synthesized silver nanoparticles could comparatively provide better alternative treatment to both gram–positive and gram–negative bacteria than the crude plant extracts.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antimicrobial efficacy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silver nanoparticles</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biosynthesis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barminas, Jeffrey T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Onwuka, Jude C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dass, Peter M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maitera, Oliver N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muazu, Ibrahim</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of analytical science and technology</subfield><subfield code="d">Taejŏn : SpringerOpen, 2010</subfield><subfield code="g">7(2016), 1 vom: 11. Nov.</subfield><subfield code="w">(DE-627)669832553</subfield><subfield code="w">(DE-600)2632347-3</subfield><subfield code="x">2093-3371</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:11</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40543-016-0104-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">11</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
score |
7.400568 |