Effect of surface topography with different groove angles on tribological behavior of the wheel/rail contact using alternative machine
Abstract The objective of this study was to investigate the influence of the surface topography on the tribological behavior of the wheel/rail contact. Four different groove orientations forming the surface topographies—smooth surface, 0°, 45° and 90°—were manufactured by grinding and compared. All...
Ausführliche Beschreibung
Autor*in: |
Khalladi, A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The author(s) 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Friction - Berlin : Springer, 2013, 4(2016), 3 vom: Sept., Seite 238-248 |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2016 ; number:3 ; month:09 ; pages:238-248 |
Links: |
---|
DOI / URN: |
10.1007/s40544-016-0121-y |
---|
Katalog-ID: |
SPR036639230 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR036639230 | ||
003 | DE-627 | ||
005 | 20230519122058.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40544-016-0121-y |2 doi | |
035 | |a (DE-627)SPR036639230 | ||
035 | |a (SPR)s40544-016-0121-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Khalladi, A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effect of surface topography with different groove angles on tribological behavior of the wheel/rail contact using alternative machine |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The author(s) 2016 | ||
520 | |a Abstract The objective of this study was to investigate the influence of the surface topography on the tribological behavior of the wheel/rail contact. Four different groove orientations forming the surface topographies—smooth surface, 0°, 45° and 90°—were manufactured by grinding and compared. All friction tests with different surface topographies were conducted using an alternative tribometer simulating the pure sliding process in the wheel-rail contact. The Hertzian pressure was maintained at 1,000 MPa with two levels of sliding velocity (20 mm/s and 80 mm/s). This study resulted in five main findings. First, the initial surface topographies seemed to have a significant effect on the friction coefficient independently of the speed. Second, the increase of the sliding velocity would decrease the friction coefficient. Third, especially when accompanied with a high sliding velocity, an initial rough surface would have a significant effect on the wear of the wheel. Fourth, the highest wear values were observed at groove orientations of 45° when accompanied with a high sliding velocity. Finally, the break-in duration seemed to depend on the initial surface topographies of the rail and the sliding velocity. | ||
650 | 4 | |a wheel/rail contact |7 (dpeaa)DE-He213 | |
650 | 4 | |a groove |7 (dpeaa)DE-He213 | |
650 | 4 | |a friction |7 (dpeaa)DE-He213 | |
650 | 4 | |a wear |7 (dpeaa)DE-He213 | |
650 | 4 | |a break-in |7 (dpeaa)DE-He213 | |
700 | 1 | |a Elleuch, K. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Friction |d Berlin : Springer, 2013 |g 4(2016), 3 vom: Sept., Seite 238-248 |w (DE-627)798560061 |w (DE-600)2787589-1 |x 2223-7704 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2016 |g number:3 |g month:09 |g pages:238-248 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40544-016-0121-y |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 2016 |e 3 |c 09 |h 238-248 |
author_variant |
a k ak k e ke |
---|---|
matchkey_str |
article:22237704:2016----::fetfufctpgahwtdfeetroenlsnrblgcleairfhwelal |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s40544-016-0121-y doi (DE-627)SPR036639230 (SPR)s40544-016-0121-y-e DE-627 ger DE-627 rakwb eng Khalladi, A. verfasserin aut Effect of surface topography with different groove angles on tribological behavior of the wheel/rail contact using alternative machine 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The author(s) 2016 Abstract The objective of this study was to investigate the influence of the surface topography on the tribological behavior of the wheel/rail contact. Four different groove orientations forming the surface topographies—smooth surface, 0°, 45° and 90°—were manufactured by grinding and compared. All friction tests with different surface topographies were conducted using an alternative tribometer simulating the pure sliding process in the wheel-rail contact. The Hertzian pressure was maintained at 1,000 MPa with two levels of sliding velocity (20 mm/s and 80 mm/s). This study resulted in five main findings. First, the initial surface topographies seemed to have a significant effect on the friction coefficient independently of the speed. Second, the increase of the sliding velocity would decrease the friction coefficient. Third, especially when accompanied with a high sliding velocity, an initial rough surface would have a significant effect on the wear of the wheel. Fourth, the highest wear values were observed at groove orientations of 45° when accompanied with a high sliding velocity. Finally, the break-in duration seemed to depend on the initial surface topographies of the rail and the sliding velocity. wheel/rail contact (dpeaa)DE-He213 groove (dpeaa)DE-He213 friction (dpeaa)DE-He213 wear (dpeaa)DE-He213 break-in (dpeaa)DE-He213 Elleuch, K. aut Enthalten in Friction Berlin : Springer, 2013 4(2016), 3 vom: Sept., Seite 238-248 (DE-627)798560061 (DE-600)2787589-1 2223-7704 nnns volume:4 year:2016 number:3 month:09 pages:238-248 https://dx.doi.org/10.1007/s40544-016-0121-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2016 3 09 238-248 |
spelling |
10.1007/s40544-016-0121-y doi (DE-627)SPR036639230 (SPR)s40544-016-0121-y-e DE-627 ger DE-627 rakwb eng Khalladi, A. verfasserin aut Effect of surface topography with different groove angles on tribological behavior of the wheel/rail contact using alternative machine 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The author(s) 2016 Abstract The objective of this study was to investigate the influence of the surface topography on the tribological behavior of the wheel/rail contact. Four different groove orientations forming the surface topographies—smooth surface, 0°, 45° and 90°—were manufactured by grinding and compared. All friction tests with different surface topographies were conducted using an alternative tribometer simulating the pure sliding process in the wheel-rail contact. The Hertzian pressure was maintained at 1,000 MPa with two levels of sliding velocity (20 mm/s and 80 mm/s). This study resulted in five main findings. First, the initial surface topographies seemed to have a significant effect on the friction coefficient independently of the speed. Second, the increase of the sliding velocity would decrease the friction coefficient. Third, especially when accompanied with a high sliding velocity, an initial rough surface would have a significant effect on the wear of the wheel. Fourth, the highest wear values were observed at groove orientations of 45° when accompanied with a high sliding velocity. Finally, the break-in duration seemed to depend on the initial surface topographies of the rail and the sliding velocity. wheel/rail contact (dpeaa)DE-He213 groove (dpeaa)DE-He213 friction (dpeaa)DE-He213 wear (dpeaa)DE-He213 break-in (dpeaa)DE-He213 Elleuch, K. aut Enthalten in Friction Berlin : Springer, 2013 4(2016), 3 vom: Sept., Seite 238-248 (DE-627)798560061 (DE-600)2787589-1 2223-7704 nnns volume:4 year:2016 number:3 month:09 pages:238-248 https://dx.doi.org/10.1007/s40544-016-0121-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2016 3 09 238-248 |
allfields_unstemmed |
10.1007/s40544-016-0121-y doi (DE-627)SPR036639230 (SPR)s40544-016-0121-y-e DE-627 ger DE-627 rakwb eng Khalladi, A. verfasserin aut Effect of surface topography with different groove angles on tribological behavior of the wheel/rail contact using alternative machine 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The author(s) 2016 Abstract The objective of this study was to investigate the influence of the surface topography on the tribological behavior of the wheel/rail contact. Four different groove orientations forming the surface topographies—smooth surface, 0°, 45° and 90°—were manufactured by grinding and compared. All friction tests with different surface topographies were conducted using an alternative tribometer simulating the pure sliding process in the wheel-rail contact. The Hertzian pressure was maintained at 1,000 MPa with two levels of sliding velocity (20 mm/s and 80 mm/s). This study resulted in five main findings. First, the initial surface topographies seemed to have a significant effect on the friction coefficient independently of the speed. Second, the increase of the sliding velocity would decrease the friction coefficient. Third, especially when accompanied with a high sliding velocity, an initial rough surface would have a significant effect on the wear of the wheel. Fourth, the highest wear values were observed at groove orientations of 45° when accompanied with a high sliding velocity. Finally, the break-in duration seemed to depend on the initial surface topographies of the rail and the sliding velocity. wheel/rail contact (dpeaa)DE-He213 groove (dpeaa)DE-He213 friction (dpeaa)DE-He213 wear (dpeaa)DE-He213 break-in (dpeaa)DE-He213 Elleuch, K. aut Enthalten in Friction Berlin : Springer, 2013 4(2016), 3 vom: Sept., Seite 238-248 (DE-627)798560061 (DE-600)2787589-1 2223-7704 nnns volume:4 year:2016 number:3 month:09 pages:238-248 https://dx.doi.org/10.1007/s40544-016-0121-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2016 3 09 238-248 |
allfieldsGer |
10.1007/s40544-016-0121-y doi (DE-627)SPR036639230 (SPR)s40544-016-0121-y-e DE-627 ger DE-627 rakwb eng Khalladi, A. verfasserin aut Effect of surface topography with different groove angles on tribological behavior of the wheel/rail contact using alternative machine 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The author(s) 2016 Abstract The objective of this study was to investigate the influence of the surface topography on the tribological behavior of the wheel/rail contact. Four different groove orientations forming the surface topographies—smooth surface, 0°, 45° and 90°—were manufactured by grinding and compared. All friction tests with different surface topographies were conducted using an alternative tribometer simulating the pure sliding process in the wheel-rail contact. The Hertzian pressure was maintained at 1,000 MPa with two levels of sliding velocity (20 mm/s and 80 mm/s). This study resulted in five main findings. First, the initial surface topographies seemed to have a significant effect on the friction coefficient independently of the speed. Second, the increase of the sliding velocity would decrease the friction coefficient. Third, especially when accompanied with a high sliding velocity, an initial rough surface would have a significant effect on the wear of the wheel. Fourth, the highest wear values were observed at groove orientations of 45° when accompanied with a high sliding velocity. Finally, the break-in duration seemed to depend on the initial surface topographies of the rail and the sliding velocity. wheel/rail contact (dpeaa)DE-He213 groove (dpeaa)DE-He213 friction (dpeaa)DE-He213 wear (dpeaa)DE-He213 break-in (dpeaa)DE-He213 Elleuch, K. aut Enthalten in Friction Berlin : Springer, 2013 4(2016), 3 vom: Sept., Seite 238-248 (DE-627)798560061 (DE-600)2787589-1 2223-7704 nnns volume:4 year:2016 number:3 month:09 pages:238-248 https://dx.doi.org/10.1007/s40544-016-0121-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2016 3 09 238-248 |
allfieldsSound |
10.1007/s40544-016-0121-y doi (DE-627)SPR036639230 (SPR)s40544-016-0121-y-e DE-627 ger DE-627 rakwb eng Khalladi, A. verfasserin aut Effect of surface topography with different groove angles on tribological behavior of the wheel/rail contact using alternative machine 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The author(s) 2016 Abstract The objective of this study was to investigate the influence of the surface topography on the tribological behavior of the wheel/rail contact. Four different groove orientations forming the surface topographies—smooth surface, 0°, 45° and 90°—were manufactured by grinding and compared. All friction tests with different surface topographies were conducted using an alternative tribometer simulating the pure sliding process in the wheel-rail contact. The Hertzian pressure was maintained at 1,000 MPa with two levels of sliding velocity (20 mm/s and 80 mm/s). This study resulted in five main findings. First, the initial surface topographies seemed to have a significant effect on the friction coefficient independently of the speed. Second, the increase of the sliding velocity would decrease the friction coefficient. Third, especially when accompanied with a high sliding velocity, an initial rough surface would have a significant effect on the wear of the wheel. Fourth, the highest wear values were observed at groove orientations of 45° when accompanied with a high sliding velocity. Finally, the break-in duration seemed to depend on the initial surface topographies of the rail and the sliding velocity. wheel/rail contact (dpeaa)DE-He213 groove (dpeaa)DE-He213 friction (dpeaa)DE-He213 wear (dpeaa)DE-He213 break-in (dpeaa)DE-He213 Elleuch, K. aut Enthalten in Friction Berlin : Springer, 2013 4(2016), 3 vom: Sept., Seite 238-248 (DE-627)798560061 (DE-600)2787589-1 2223-7704 nnns volume:4 year:2016 number:3 month:09 pages:238-248 https://dx.doi.org/10.1007/s40544-016-0121-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2016 3 09 238-248 |
language |
English |
source |
Enthalten in Friction 4(2016), 3 vom: Sept., Seite 238-248 volume:4 year:2016 number:3 month:09 pages:238-248 |
sourceStr |
Enthalten in Friction 4(2016), 3 vom: Sept., Seite 238-248 volume:4 year:2016 number:3 month:09 pages:238-248 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
wheel/rail contact groove friction wear break-in |
isfreeaccess_bool |
true |
container_title |
Friction |
authorswithroles_txt_mv |
Khalladi, A. @@aut@@ Elleuch, K. @@aut@@ |
publishDateDaySort_date |
2016-09-01T00:00:00Z |
hierarchy_top_id |
798560061 |
id |
SPR036639230 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036639230</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519122058.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40544-016-0121-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036639230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40544-016-0121-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khalladi, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effect of surface topography with different groove angles on tribological behavior of the wheel/rail contact using alternative machine</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The author(s) 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The objective of this study was to investigate the influence of the surface topography on the tribological behavior of the wheel/rail contact. Four different groove orientations forming the surface topographies—smooth surface, 0°, 45° and 90°—were manufactured by grinding and compared. All friction tests with different surface topographies were conducted using an alternative tribometer simulating the pure sliding process in the wheel-rail contact. The Hertzian pressure was maintained at 1,000 MPa with two levels of sliding velocity (20 mm/s and 80 mm/s). This study resulted in five main findings. First, the initial surface topographies seemed to have a significant effect on the friction coefficient independently of the speed. Second, the increase of the sliding velocity would decrease the friction coefficient. Third, especially when accompanied with a high sliding velocity, an initial rough surface would have a significant effect on the wear of the wheel. Fourth, the highest wear values were observed at groove orientations of 45° when accompanied with a high sliding velocity. Finally, the break-in duration seemed to depend on the initial surface topographies of the rail and the sliding velocity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wheel/rail contact</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">groove</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">friction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wear</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">break-in</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elleuch, K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Friction</subfield><subfield code="d">Berlin : Springer, 2013</subfield><subfield code="g">4(2016), 3 vom: Sept., Seite 238-248</subfield><subfield code="w">(DE-627)798560061</subfield><subfield code="w">(DE-600)2787589-1</subfield><subfield code="x">2223-7704</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:238-248</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40544-016-0121-y</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="c">09</subfield><subfield code="h">238-248</subfield></datafield></record></collection>
|
author |
Khalladi, A. |
spellingShingle |
Khalladi, A. misc wheel/rail contact misc groove misc friction misc wear misc break-in Effect of surface topography with different groove angles on tribological behavior of the wheel/rail contact using alternative machine |
authorStr |
Khalladi, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)798560061 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2223-7704 |
topic_title |
Effect of surface topography with different groove angles on tribological behavior of the wheel/rail contact using alternative machine wheel/rail contact (dpeaa)DE-He213 groove (dpeaa)DE-He213 friction (dpeaa)DE-He213 wear (dpeaa)DE-He213 break-in (dpeaa)DE-He213 |
topic |
misc wheel/rail contact misc groove misc friction misc wear misc break-in |
topic_unstemmed |
misc wheel/rail contact misc groove misc friction misc wear misc break-in |
topic_browse |
misc wheel/rail contact misc groove misc friction misc wear misc break-in |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Friction |
hierarchy_parent_id |
798560061 |
hierarchy_top_title |
Friction |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)798560061 (DE-600)2787589-1 |
title |
Effect of surface topography with different groove angles on tribological behavior of the wheel/rail contact using alternative machine |
ctrlnum |
(DE-627)SPR036639230 (SPR)s40544-016-0121-y-e |
title_full |
Effect of surface topography with different groove angles on tribological behavior of the wheel/rail contact using alternative machine |
author_sort |
Khalladi, A. |
journal |
Friction |
journalStr |
Friction |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
238 |
author_browse |
Khalladi, A. Elleuch, K. |
container_volume |
4 |
format_se |
Elektronische Aufsätze |
author-letter |
Khalladi, A. |
doi_str_mv |
10.1007/s40544-016-0121-y |
title_sort |
effect of surface topography with different groove angles on tribological behavior of the wheel/rail contact using alternative machine |
title_auth |
Effect of surface topography with different groove angles on tribological behavior of the wheel/rail contact using alternative machine |
abstract |
Abstract The objective of this study was to investigate the influence of the surface topography on the tribological behavior of the wheel/rail contact. Four different groove orientations forming the surface topographies—smooth surface, 0°, 45° and 90°—were manufactured by grinding and compared. All friction tests with different surface topographies were conducted using an alternative tribometer simulating the pure sliding process in the wheel-rail contact. The Hertzian pressure was maintained at 1,000 MPa with two levels of sliding velocity (20 mm/s and 80 mm/s). This study resulted in five main findings. First, the initial surface topographies seemed to have a significant effect on the friction coefficient independently of the speed. Second, the increase of the sliding velocity would decrease the friction coefficient. Third, especially when accompanied with a high sliding velocity, an initial rough surface would have a significant effect on the wear of the wheel. Fourth, the highest wear values were observed at groove orientations of 45° when accompanied with a high sliding velocity. Finally, the break-in duration seemed to depend on the initial surface topographies of the rail and the sliding velocity. © The author(s) 2016 |
abstractGer |
Abstract The objective of this study was to investigate the influence of the surface topography on the tribological behavior of the wheel/rail contact. Four different groove orientations forming the surface topographies—smooth surface, 0°, 45° and 90°—were manufactured by grinding and compared. All friction tests with different surface topographies were conducted using an alternative tribometer simulating the pure sliding process in the wheel-rail contact. The Hertzian pressure was maintained at 1,000 MPa with two levels of sliding velocity (20 mm/s and 80 mm/s). This study resulted in five main findings. First, the initial surface topographies seemed to have a significant effect on the friction coefficient independently of the speed. Second, the increase of the sliding velocity would decrease the friction coefficient. Third, especially when accompanied with a high sliding velocity, an initial rough surface would have a significant effect on the wear of the wheel. Fourth, the highest wear values were observed at groove orientations of 45° when accompanied with a high sliding velocity. Finally, the break-in duration seemed to depend on the initial surface topographies of the rail and the sliding velocity. © The author(s) 2016 |
abstract_unstemmed |
Abstract The objective of this study was to investigate the influence of the surface topography on the tribological behavior of the wheel/rail contact. Four different groove orientations forming the surface topographies—smooth surface, 0°, 45° and 90°—were manufactured by grinding and compared. All friction tests with different surface topographies were conducted using an alternative tribometer simulating the pure sliding process in the wheel-rail contact. The Hertzian pressure was maintained at 1,000 MPa with two levels of sliding velocity (20 mm/s and 80 mm/s). This study resulted in five main findings. First, the initial surface topographies seemed to have a significant effect on the friction coefficient independently of the speed. Second, the increase of the sliding velocity would decrease the friction coefficient. Third, especially when accompanied with a high sliding velocity, an initial rough surface would have a significant effect on the wear of the wheel. Fourth, the highest wear values were observed at groove orientations of 45° when accompanied with a high sliding velocity. Finally, the break-in duration seemed to depend on the initial surface topographies of the rail and the sliding velocity. © The author(s) 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Effect of surface topography with different groove angles on tribological behavior of the wheel/rail contact using alternative machine |
url |
https://dx.doi.org/10.1007/s40544-016-0121-y |
remote_bool |
true |
author2 |
Elleuch, K. |
author2Str |
Elleuch, K. |
ppnlink |
798560061 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40544-016-0121-y |
up_date |
2024-07-03T18:49:34.367Z |
_version_ |
1803584876701548544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036639230</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519122058.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40544-016-0121-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036639230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40544-016-0121-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khalladi, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effect of surface topography with different groove angles on tribological behavior of the wheel/rail contact using alternative machine</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The author(s) 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The objective of this study was to investigate the influence of the surface topography on the tribological behavior of the wheel/rail contact. Four different groove orientations forming the surface topographies—smooth surface, 0°, 45° and 90°—were manufactured by grinding and compared. All friction tests with different surface topographies were conducted using an alternative tribometer simulating the pure sliding process in the wheel-rail contact. The Hertzian pressure was maintained at 1,000 MPa with two levels of sliding velocity (20 mm/s and 80 mm/s). This study resulted in five main findings. First, the initial surface topographies seemed to have a significant effect on the friction coefficient independently of the speed. Second, the increase of the sliding velocity would decrease the friction coefficient. Third, especially when accompanied with a high sliding velocity, an initial rough surface would have a significant effect on the wear of the wheel. Fourth, the highest wear values were observed at groove orientations of 45° when accompanied with a high sliding velocity. Finally, the break-in duration seemed to depend on the initial surface topographies of the rail and the sliding velocity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wheel/rail contact</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">groove</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">friction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wear</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">break-in</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elleuch, K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Friction</subfield><subfield code="d">Berlin : Springer, 2013</subfield><subfield code="g">4(2016), 3 vom: Sept., Seite 238-248</subfield><subfield code="w">(DE-627)798560061</subfield><subfield code="w">(DE-600)2787589-1</subfield><subfield code="x">2223-7704</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:238-248</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40544-016-0121-y</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="c">09</subfield><subfield code="h">238-248</subfield></datafield></record></collection>
|
score |
7.399584 |