Effect of Grain Orientation and Cooling Rate on Stress Distribution in a Small-scale Silicon Ingot
Abstract Small-scale solidification simulations were carried out in order to study the effect of the grain orientation and cooling rate on the stresses in mono- and bi-crystals. First, a 2D-axisymetric heat-transfer model of the global furnace is established to provide input to the sub-model. The su...
Ausführliche Beschreibung
Autor*in: |
Gouttebroze, Sylvain [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Minerals, Metals & Materials Society and ASM International 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Metallurgical and materials transactions - New York, NY : Springer, 2014, 1(2014), 2 vom: 22. Mai, Seite 180-186 |
---|---|
Übergeordnetes Werk: |
volume:1 ; year:2014 ; number:2 ; day:22 ; month:05 ; pages:180-186 |
Links: |
---|
DOI / URN: |
10.1007/s40553-014-0018-5 |
---|
Katalog-ID: |
SPR03664708X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR03664708X | ||
003 | DE-627 | ||
005 | 20230519231651.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40553-014-0018-5 |2 doi | |
035 | |a (DE-627)SPR03664708X | ||
035 | |a (SPR)s40553-014-0018-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Gouttebroze, Sylvain |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effect of Grain Orientation and Cooling Rate on Stress Distribution in a Small-scale Silicon Ingot |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Minerals, Metals & Materials Society and ASM International 2014 | ||
520 | |a Abstract Small-scale solidification simulations were carried out in order to study the effect of the grain orientation and cooling rate on the stresses in mono- and bi-crystals. First, a 2D-axisymetric heat-transfer model of the global furnace is established to provide input to the sub-model. The sub-model takes into account only the crucible and silicon ingot. The flux histories are transferred from the global model. A finite element crystal plasticity model solves the mechanical deformation in the ingot. Ingots were grown in the small-scale Bridgman furnace with different pulling rates ranging from 0.2 to 50 mm/min. The results show the asymmetric effect of the crystal orientation and the stress build-up at the grain boundary due to different orientations. The change in pulling rate affects strongly the solidification front shape and the residual stresses. The 3D mechanical model illustrates also the limitations of the 2D-axisymmetric approach when silicon crystal anisotropy is taken into account. | ||
650 | 4 | |a Coincidence Site Lattice |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mueller Matrix |7 (dpeaa)DE-He213 | |
650 | 4 | |a Crystal Plasticity Model |7 (dpeaa)DE-He213 | |
650 | 4 | |a Multicrystalline Silicon |7 (dpeaa)DE-He213 | |
650 | 4 | |a Silicon Ingot |7 (dpeaa)DE-He213 | |
700 | 1 | |a Autruffe, Antoine |4 aut | |
700 | 1 | |a Aas, Lars Martin Sandvik |4 aut | |
700 | 1 | |a Kildemo, Morten |4 aut | |
700 | 1 | |a Ma, Xiang |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Metallurgical and materials transactions |d New York, NY : Springer, 2014 |g 1(2014), 2 vom: 22. Mai, Seite 180-186 |w (DE-627)776853015 |w (DE-600)2750815-8 |x 2196-2944 |7 nnns |
773 | 1 | 8 | |g volume:1 |g year:2014 |g number:2 |g day:22 |g month:05 |g pages:180-186 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40553-014-0018-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
951 | |a AR | ||
952 | |d 1 |j 2014 |e 2 |b 22 |c 05 |h 180-186 |
author_variant |
s g sg a a aa l m s a lms lmsa m k mk x m xm |
---|---|
matchkey_str |
article:21962944:2014----::fetfrioinainncoigaentesitiuinn |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s40553-014-0018-5 doi (DE-627)SPR03664708X (SPR)s40553-014-0018-5-e DE-627 ger DE-627 rakwb eng Gouttebroze, Sylvain verfasserin aut Effect of Grain Orientation and Cooling Rate on Stress Distribution in a Small-scale Silicon Ingot 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Minerals, Metals & Materials Society and ASM International 2014 Abstract Small-scale solidification simulations were carried out in order to study the effect of the grain orientation and cooling rate on the stresses in mono- and bi-crystals. First, a 2D-axisymetric heat-transfer model of the global furnace is established to provide input to the sub-model. The sub-model takes into account only the crucible and silicon ingot. The flux histories are transferred from the global model. A finite element crystal plasticity model solves the mechanical deformation in the ingot. Ingots were grown in the small-scale Bridgman furnace with different pulling rates ranging from 0.2 to 50 mm/min. The results show the asymmetric effect of the crystal orientation and the stress build-up at the grain boundary due to different orientations. The change in pulling rate affects strongly the solidification front shape and the residual stresses. The 3D mechanical model illustrates also the limitations of the 2D-axisymmetric approach when silicon crystal anisotropy is taken into account. Coincidence Site Lattice (dpeaa)DE-He213 Mueller Matrix (dpeaa)DE-He213 Crystal Plasticity Model (dpeaa)DE-He213 Multicrystalline Silicon (dpeaa)DE-He213 Silicon Ingot (dpeaa)DE-He213 Autruffe, Antoine aut Aas, Lars Martin Sandvik aut Kildemo, Morten aut Ma, Xiang aut Enthalten in Metallurgical and materials transactions New York, NY : Springer, 2014 1(2014), 2 vom: 22. Mai, Seite 180-186 (DE-627)776853015 (DE-600)2750815-8 2196-2944 nnns volume:1 year:2014 number:2 day:22 month:05 pages:180-186 https://dx.doi.org/10.1007/s40553-014-0018-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 AR 1 2014 2 22 05 180-186 |
spelling |
10.1007/s40553-014-0018-5 doi (DE-627)SPR03664708X (SPR)s40553-014-0018-5-e DE-627 ger DE-627 rakwb eng Gouttebroze, Sylvain verfasserin aut Effect of Grain Orientation and Cooling Rate on Stress Distribution in a Small-scale Silicon Ingot 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Minerals, Metals & Materials Society and ASM International 2014 Abstract Small-scale solidification simulations were carried out in order to study the effect of the grain orientation and cooling rate on the stresses in mono- and bi-crystals. First, a 2D-axisymetric heat-transfer model of the global furnace is established to provide input to the sub-model. The sub-model takes into account only the crucible and silicon ingot. The flux histories are transferred from the global model. A finite element crystal plasticity model solves the mechanical deformation in the ingot. Ingots were grown in the small-scale Bridgman furnace with different pulling rates ranging from 0.2 to 50 mm/min. The results show the asymmetric effect of the crystal orientation and the stress build-up at the grain boundary due to different orientations. The change in pulling rate affects strongly the solidification front shape and the residual stresses. The 3D mechanical model illustrates also the limitations of the 2D-axisymmetric approach when silicon crystal anisotropy is taken into account. Coincidence Site Lattice (dpeaa)DE-He213 Mueller Matrix (dpeaa)DE-He213 Crystal Plasticity Model (dpeaa)DE-He213 Multicrystalline Silicon (dpeaa)DE-He213 Silicon Ingot (dpeaa)DE-He213 Autruffe, Antoine aut Aas, Lars Martin Sandvik aut Kildemo, Morten aut Ma, Xiang aut Enthalten in Metallurgical and materials transactions New York, NY : Springer, 2014 1(2014), 2 vom: 22. Mai, Seite 180-186 (DE-627)776853015 (DE-600)2750815-8 2196-2944 nnns volume:1 year:2014 number:2 day:22 month:05 pages:180-186 https://dx.doi.org/10.1007/s40553-014-0018-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 AR 1 2014 2 22 05 180-186 |
allfields_unstemmed |
10.1007/s40553-014-0018-5 doi (DE-627)SPR03664708X (SPR)s40553-014-0018-5-e DE-627 ger DE-627 rakwb eng Gouttebroze, Sylvain verfasserin aut Effect of Grain Orientation and Cooling Rate on Stress Distribution in a Small-scale Silicon Ingot 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Minerals, Metals & Materials Society and ASM International 2014 Abstract Small-scale solidification simulations were carried out in order to study the effect of the grain orientation and cooling rate on the stresses in mono- and bi-crystals. First, a 2D-axisymetric heat-transfer model of the global furnace is established to provide input to the sub-model. The sub-model takes into account only the crucible and silicon ingot. The flux histories are transferred from the global model. A finite element crystal plasticity model solves the mechanical deformation in the ingot. Ingots were grown in the small-scale Bridgman furnace with different pulling rates ranging from 0.2 to 50 mm/min. The results show the asymmetric effect of the crystal orientation and the stress build-up at the grain boundary due to different orientations. The change in pulling rate affects strongly the solidification front shape and the residual stresses. The 3D mechanical model illustrates also the limitations of the 2D-axisymmetric approach when silicon crystal anisotropy is taken into account. Coincidence Site Lattice (dpeaa)DE-He213 Mueller Matrix (dpeaa)DE-He213 Crystal Plasticity Model (dpeaa)DE-He213 Multicrystalline Silicon (dpeaa)DE-He213 Silicon Ingot (dpeaa)DE-He213 Autruffe, Antoine aut Aas, Lars Martin Sandvik aut Kildemo, Morten aut Ma, Xiang aut Enthalten in Metallurgical and materials transactions New York, NY : Springer, 2014 1(2014), 2 vom: 22. Mai, Seite 180-186 (DE-627)776853015 (DE-600)2750815-8 2196-2944 nnns volume:1 year:2014 number:2 day:22 month:05 pages:180-186 https://dx.doi.org/10.1007/s40553-014-0018-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 AR 1 2014 2 22 05 180-186 |
allfieldsGer |
10.1007/s40553-014-0018-5 doi (DE-627)SPR03664708X (SPR)s40553-014-0018-5-e DE-627 ger DE-627 rakwb eng Gouttebroze, Sylvain verfasserin aut Effect of Grain Orientation and Cooling Rate on Stress Distribution in a Small-scale Silicon Ingot 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Minerals, Metals & Materials Society and ASM International 2014 Abstract Small-scale solidification simulations were carried out in order to study the effect of the grain orientation and cooling rate on the stresses in mono- and bi-crystals. First, a 2D-axisymetric heat-transfer model of the global furnace is established to provide input to the sub-model. The sub-model takes into account only the crucible and silicon ingot. The flux histories are transferred from the global model. A finite element crystal plasticity model solves the mechanical deformation in the ingot. Ingots were grown in the small-scale Bridgman furnace with different pulling rates ranging from 0.2 to 50 mm/min. The results show the asymmetric effect of the crystal orientation and the stress build-up at the grain boundary due to different orientations. The change in pulling rate affects strongly the solidification front shape and the residual stresses. The 3D mechanical model illustrates also the limitations of the 2D-axisymmetric approach when silicon crystal anisotropy is taken into account. Coincidence Site Lattice (dpeaa)DE-He213 Mueller Matrix (dpeaa)DE-He213 Crystal Plasticity Model (dpeaa)DE-He213 Multicrystalline Silicon (dpeaa)DE-He213 Silicon Ingot (dpeaa)DE-He213 Autruffe, Antoine aut Aas, Lars Martin Sandvik aut Kildemo, Morten aut Ma, Xiang aut Enthalten in Metallurgical and materials transactions New York, NY : Springer, 2014 1(2014), 2 vom: 22. Mai, Seite 180-186 (DE-627)776853015 (DE-600)2750815-8 2196-2944 nnns volume:1 year:2014 number:2 day:22 month:05 pages:180-186 https://dx.doi.org/10.1007/s40553-014-0018-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 AR 1 2014 2 22 05 180-186 |
allfieldsSound |
10.1007/s40553-014-0018-5 doi (DE-627)SPR03664708X (SPR)s40553-014-0018-5-e DE-627 ger DE-627 rakwb eng Gouttebroze, Sylvain verfasserin aut Effect of Grain Orientation and Cooling Rate on Stress Distribution in a Small-scale Silicon Ingot 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Minerals, Metals & Materials Society and ASM International 2014 Abstract Small-scale solidification simulations were carried out in order to study the effect of the grain orientation and cooling rate on the stresses in mono- and bi-crystals. First, a 2D-axisymetric heat-transfer model of the global furnace is established to provide input to the sub-model. The sub-model takes into account only the crucible and silicon ingot. The flux histories are transferred from the global model. A finite element crystal plasticity model solves the mechanical deformation in the ingot. Ingots were grown in the small-scale Bridgman furnace with different pulling rates ranging from 0.2 to 50 mm/min. The results show the asymmetric effect of the crystal orientation and the stress build-up at the grain boundary due to different orientations. The change in pulling rate affects strongly the solidification front shape and the residual stresses. The 3D mechanical model illustrates also the limitations of the 2D-axisymmetric approach when silicon crystal anisotropy is taken into account. Coincidence Site Lattice (dpeaa)DE-He213 Mueller Matrix (dpeaa)DE-He213 Crystal Plasticity Model (dpeaa)DE-He213 Multicrystalline Silicon (dpeaa)DE-He213 Silicon Ingot (dpeaa)DE-He213 Autruffe, Antoine aut Aas, Lars Martin Sandvik aut Kildemo, Morten aut Ma, Xiang aut Enthalten in Metallurgical and materials transactions New York, NY : Springer, 2014 1(2014), 2 vom: 22. Mai, Seite 180-186 (DE-627)776853015 (DE-600)2750815-8 2196-2944 nnns volume:1 year:2014 number:2 day:22 month:05 pages:180-186 https://dx.doi.org/10.1007/s40553-014-0018-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 AR 1 2014 2 22 05 180-186 |
language |
English |
source |
Enthalten in Metallurgical and materials transactions 1(2014), 2 vom: 22. Mai, Seite 180-186 volume:1 year:2014 number:2 day:22 month:05 pages:180-186 |
sourceStr |
Enthalten in Metallurgical and materials transactions 1(2014), 2 vom: 22. Mai, Seite 180-186 volume:1 year:2014 number:2 day:22 month:05 pages:180-186 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Coincidence Site Lattice Mueller Matrix Crystal Plasticity Model Multicrystalline Silicon Silicon Ingot |
isfreeaccess_bool |
false |
container_title |
Metallurgical and materials transactions |
authorswithroles_txt_mv |
Gouttebroze, Sylvain @@aut@@ Autruffe, Antoine @@aut@@ Aas, Lars Martin Sandvik @@aut@@ Kildemo, Morten @@aut@@ Ma, Xiang @@aut@@ |
publishDateDaySort_date |
2014-05-22T00:00:00Z |
hierarchy_top_id |
776853015 |
id |
SPR03664708X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR03664708X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519231651.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40553-014-0018-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR03664708X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40553-014-0018-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gouttebroze, Sylvain</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effect of Grain Orientation and Cooling Rate on Stress Distribution in a Small-scale Silicon Ingot</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Minerals, Metals & Materials Society and ASM International 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Small-scale solidification simulations were carried out in order to study the effect of the grain orientation and cooling rate on the stresses in mono- and bi-crystals. First, a 2D-axisymetric heat-transfer model of the global furnace is established to provide input to the sub-model. The sub-model takes into account only the crucible and silicon ingot. The flux histories are transferred from the global model. A finite element crystal plasticity model solves the mechanical deformation in the ingot. Ingots were grown in the small-scale Bridgman furnace with different pulling rates ranging from 0.2 to 50 mm/min. The results show the asymmetric effect of the crystal orientation and the stress build-up at the grain boundary due to different orientations. The change in pulling rate affects strongly the solidification front shape and the residual stresses. The 3D mechanical model illustrates also the limitations of the 2D-axisymmetric approach when silicon crystal anisotropy is taken into account.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coincidence Site Lattice</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mueller Matrix</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystal Plasticity Model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multicrystalline Silicon</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon Ingot</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Autruffe, Antoine</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aas, Lars Martin Sandvik</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kildemo, Morten</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Xiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metallurgical and materials transactions</subfield><subfield code="d">New York, NY : Springer, 2014</subfield><subfield code="g">1(2014), 2 vom: 22. Mai, Seite 180-186</subfield><subfield code="w">(DE-627)776853015</subfield><subfield code="w">(DE-600)2750815-8</subfield><subfield code="x">2196-2944</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:2</subfield><subfield code="g">day:22</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:180-186</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40553-014-0018-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2014</subfield><subfield code="e">2</subfield><subfield code="b">22</subfield><subfield code="c">05</subfield><subfield code="h">180-186</subfield></datafield></record></collection>
|
author |
Gouttebroze, Sylvain |
spellingShingle |
Gouttebroze, Sylvain misc Coincidence Site Lattice misc Mueller Matrix misc Crystal Plasticity Model misc Multicrystalline Silicon misc Silicon Ingot Effect of Grain Orientation and Cooling Rate on Stress Distribution in a Small-scale Silicon Ingot |
authorStr |
Gouttebroze, Sylvain |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)776853015 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2196-2944 |
topic_title |
Effect of Grain Orientation and Cooling Rate on Stress Distribution in a Small-scale Silicon Ingot Coincidence Site Lattice (dpeaa)DE-He213 Mueller Matrix (dpeaa)DE-He213 Crystal Plasticity Model (dpeaa)DE-He213 Multicrystalline Silicon (dpeaa)DE-He213 Silicon Ingot (dpeaa)DE-He213 |
topic |
misc Coincidence Site Lattice misc Mueller Matrix misc Crystal Plasticity Model misc Multicrystalline Silicon misc Silicon Ingot |
topic_unstemmed |
misc Coincidence Site Lattice misc Mueller Matrix misc Crystal Plasticity Model misc Multicrystalline Silicon misc Silicon Ingot |
topic_browse |
misc Coincidence Site Lattice misc Mueller Matrix misc Crystal Plasticity Model misc Multicrystalline Silicon misc Silicon Ingot |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Metallurgical and materials transactions |
hierarchy_parent_id |
776853015 |
hierarchy_top_title |
Metallurgical and materials transactions |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)776853015 (DE-600)2750815-8 |
title |
Effect of Grain Orientation and Cooling Rate on Stress Distribution in a Small-scale Silicon Ingot |
ctrlnum |
(DE-627)SPR03664708X (SPR)s40553-014-0018-5-e |
title_full |
Effect of Grain Orientation and Cooling Rate on Stress Distribution in a Small-scale Silicon Ingot |
author_sort |
Gouttebroze, Sylvain |
journal |
Metallurgical and materials transactions |
journalStr |
Metallurgical and materials transactions |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
180 |
author_browse |
Gouttebroze, Sylvain Autruffe, Antoine Aas, Lars Martin Sandvik Kildemo, Morten Ma, Xiang |
container_volume |
1 |
format_se |
Elektronische Aufsätze |
author-letter |
Gouttebroze, Sylvain |
doi_str_mv |
10.1007/s40553-014-0018-5 |
title_sort |
effect of grain orientation and cooling rate on stress distribution in a small-scale silicon ingot |
title_auth |
Effect of Grain Orientation and Cooling Rate on Stress Distribution in a Small-scale Silicon Ingot |
abstract |
Abstract Small-scale solidification simulations were carried out in order to study the effect of the grain orientation and cooling rate on the stresses in mono- and bi-crystals. First, a 2D-axisymetric heat-transfer model of the global furnace is established to provide input to the sub-model. The sub-model takes into account only the crucible and silicon ingot. The flux histories are transferred from the global model. A finite element crystal plasticity model solves the mechanical deformation in the ingot. Ingots were grown in the small-scale Bridgman furnace with different pulling rates ranging from 0.2 to 50 mm/min. The results show the asymmetric effect of the crystal orientation and the stress build-up at the grain boundary due to different orientations. The change in pulling rate affects strongly the solidification front shape and the residual stresses. The 3D mechanical model illustrates also the limitations of the 2D-axisymmetric approach when silicon crystal anisotropy is taken into account. © The Minerals, Metals & Materials Society and ASM International 2014 |
abstractGer |
Abstract Small-scale solidification simulations were carried out in order to study the effect of the grain orientation and cooling rate on the stresses in mono- and bi-crystals. First, a 2D-axisymetric heat-transfer model of the global furnace is established to provide input to the sub-model. The sub-model takes into account only the crucible and silicon ingot. The flux histories are transferred from the global model. A finite element crystal plasticity model solves the mechanical deformation in the ingot. Ingots were grown in the small-scale Bridgman furnace with different pulling rates ranging from 0.2 to 50 mm/min. The results show the asymmetric effect of the crystal orientation and the stress build-up at the grain boundary due to different orientations. The change in pulling rate affects strongly the solidification front shape and the residual stresses. The 3D mechanical model illustrates also the limitations of the 2D-axisymmetric approach when silicon crystal anisotropy is taken into account. © The Minerals, Metals & Materials Society and ASM International 2014 |
abstract_unstemmed |
Abstract Small-scale solidification simulations were carried out in order to study the effect of the grain orientation and cooling rate on the stresses in mono- and bi-crystals. First, a 2D-axisymetric heat-transfer model of the global furnace is established to provide input to the sub-model. The sub-model takes into account only the crucible and silicon ingot. The flux histories are transferred from the global model. A finite element crystal plasticity model solves the mechanical deformation in the ingot. Ingots were grown in the small-scale Bridgman furnace with different pulling rates ranging from 0.2 to 50 mm/min. The results show the asymmetric effect of the crystal orientation and the stress build-up at the grain boundary due to different orientations. The change in pulling rate affects strongly the solidification front shape and the residual stresses. The 3D mechanical model illustrates also the limitations of the 2D-axisymmetric approach when silicon crystal anisotropy is taken into account. © The Minerals, Metals & Materials Society and ASM International 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 |
container_issue |
2 |
title_short |
Effect of Grain Orientation and Cooling Rate on Stress Distribution in a Small-scale Silicon Ingot |
url |
https://dx.doi.org/10.1007/s40553-014-0018-5 |
remote_bool |
true |
author2 |
Autruffe, Antoine Aas, Lars Martin Sandvik Kildemo, Morten Ma, Xiang |
author2Str |
Autruffe, Antoine Aas, Lars Martin Sandvik Kildemo, Morten Ma, Xiang |
ppnlink |
776853015 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40553-014-0018-5 |
up_date |
2024-07-03T18:52:13.301Z |
_version_ |
1803585043359072256 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR03664708X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519231651.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40553-014-0018-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR03664708X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40553-014-0018-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gouttebroze, Sylvain</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effect of Grain Orientation and Cooling Rate on Stress Distribution in a Small-scale Silicon Ingot</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Minerals, Metals & Materials Society and ASM International 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Small-scale solidification simulations were carried out in order to study the effect of the grain orientation and cooling rate on the stresses in mono- and bi-crystals. First, a 2D-axisymetric heat-transfer model of the global furnace is established to provide input to the sub-model. The sub-model takes into account only the crucible and silicon ingot. The flux histories are transferred from the global model. A finite element crystal plasticity model solves the mechanical deformation in the ingot. Ingots were grown in the small-scale Bridgman furnace with different pulling rates ranging from 0.2 to 50 mm/min. The results show the asymmetric effect of the crystal orientation and the stress build-up at the grain boundary due to different orientations. The change in pulling rate affects strongly the solidification front shape and the residual stresses. The 3D mechanical model illustrates also the limitations of the 2D-axisymmetric approach when silicon crystal anisotropy is taken into account.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coincidence Site Lattice</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mueller Matrix</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystal Plasticity Model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multicrystalline Silicon</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon Ingot</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Autruffe, Antoine</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aas, Lars Martin Sandvik</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kildemo, Morten</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Xiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metallurgical and materials transactions</subfield><subfield code="d">New York, NY : Springer, 2014</subfield><subfield code="g">1(2014), 2 vom: 22. Mai, Seite 180-186</subfield><subfield code="w">(DE-627)776853015</subfield><subfield code="w">(DE-600)2750815-8</subfield><subfield code="x">2196-2944</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:2</subfield><subfield code="g">day:22</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:180-186</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40553-014-0018-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2014</subfield><subfield code="e">2</subfield><subfield code="b">22</subfield><subfield code="c">05</subfield><subfield code="h">180-186</subfield></datafield></record></collection>
|
score |
7.401641 |