Improved thermal design methodology for wind power converters
Abstract This paper presents an improved thermal design methodology for wind power converters. It combines analysis and experimental thermal design tools, including heat transfer correlations, flow network modeling (FNM), computational fluid dynamics (CFD), and experimental measurement techniques. M...
Ausführliche Beschreibung
Autor*in: |
Yang, Fei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of modern power systems and clean energy - Nanjing : NARI, 2013, 1(2013), 3 vom: 25. Okt., Seite 285-291 |
---|---|
Übergeordnetes Werk: |
volume:1 ; year:2013 ; number:3 ; day:25 ; month:10 ; pages:285-291 |
Links: |
---|
DOI / URN: |
10.1007/s40565-013-0031-1 |
---|
Katalog-ID: |
SPR036668591 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR036668591 | ||
003 | DE-627 | ||
005 | 20230328191539.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40565-013-0031-1 |2 doi | |
035 | |a (DE-627)SPR036668591 | ||
035 | |a (SPR)s40565-013-0031-1-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Yang, Fei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improved thermal design methodology for wind power converters |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2013 | ||
520 | |a Abstract This paper presents an improved thermal design methodology for wind power converters. It combines analysis and experimental thermal design tools, including heat transfer correlations, flow network modeling (FNM), computational fluid dynamics (CFD), and experimental measurement techniques. Moreover, a systemic product development process is introduced and an effective combination between the product development process and the thermal design methodology is achieved. The draft CFD modeling at the initial design stage is done. Furthermore, it uses the detailed CFD modeling and experimental measurement techniques to provide a higher degree of accuracy at latter design stages. The key advantage of the improved methodology is its emphasis on the use of varied design tools, each of which is actively applied at its optimal point in the proposed product development process. Thus, during the earlier stages of the product development process, the thermal risk is systematically reduced, and long-term reliability of products is maintained in a higher degree. | ||
650 | 4 | |a Flow network modeling (FNM) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Computational fluid dynamics (CFD) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Prototype |7 (dpeaa)DE-He213 | |
650 | 4 | |a Simulation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Experimental measurement |7 (dpeaa)DE-He213 | |
700 | 1 | |a Guo, Liang |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of modern power systems and clean energy |d Nanjing : NARI, 2013 |g 1(2013), 3 vom: 25. Okt., Seite 285-291 |w (DE-627)75682821X |w (DE-600)2727912-1 |x 2196-5420 |7 nnns |
773 | 1 | 8 | |g volume:1 |g year:2013 |g number:3 |g day:25 |g month:10 |g pages:285-291 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40565-013-0031-1 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 1 |j 2013 |e 3 |b 25 |c 10 |h 285-291 |
author_variant |
f y fy l g lg |
---|---|
matchkey_str |
article:21965420:2013----::mrvdhradsgmtoooyown |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1007/s40565-013-0031-1 doi (DE-627)SPR036668591 (SPR)s40565-013-0031-1-e DE-627 ger DE-627 rakwb eng Yang, Fei verfasserin aut Improved thermal design methodology for wind power converters 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2013 Abstract This paper presents an improved thermal design methodology for wind power converters. It combines analysis and experimental thermal design tools, including heat transfer correlations, flow network modeling (FNM), computational fluid dynamics (CFD), and experimental measurement techniques. Moreover, a systemic product development process is introduced and an effective combination between the product development process and the thermal design methodology is achieved. The draft CFD modeling at the initial design stage is done. Furthermore, it uses the detailed CFD modeling and experimental measurement techniques to provide a higher degree of accuracy at latter design stages. The key advantage of the improved methodology is its emphasis on the use of varied design tools, each of which is actively applied at its optimal point in the proposed product development process. Thus, during the earlier stages of the product development process, the thermal risk is systematically reduced, and long-term reliability of products is maintained in a higher degree. Flow network modeling (FNM) (dpeaa)DE-He213 Computational fluid dynamics (CFD) (dpeaa)DE-He213 Prototype (dpeaa)DE-He213 Simulation (dpeaa)DE-He213 Experimental measurement (dpeaa)DE-He213 Guo, Liang aut Enthalten in Journal of modern power systems and clean energy Nanjing : NARI, 2013 1(2013), 3 vom: 25. Okt., Seite 285-291 (DE-627)75682821X (DE-600)2727912-1 2196-5420 nnns volume:1 year:2013 number:3 day:25 month:10 pages:285-291 https://dx.doi.org/10.1007/s40565-013-0031-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2013 3 25 10 285-291 |
spelling |
10.1007/s40565-013-0031-1 doi (DE-627)SPR036668591 (SPR)s40565-013-0031-1-e DE-627 ger DE-627 rakwb eng Yang, Fei verfasserin aut Improved thermal design methodology for wind power converters 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2013 Abstract This paper presents an improved thermal design methodology for wind power converters. It combines analysis and experimental thermal design tools, including heat transfer correlations, flow network modeling (FNM), computational fluid dynamics (CFD), and experimental measurement techniques. Moreover, a systemic product development process is introduced and an effective combination between the product development process and the thermal design methodology is achieved. The draft CFD modeling at the initial design stage is done. Furthermore, it uses the detailed CFD modeling and experimental measurement techniques to provide a higher degree of accuracy at latter design stages. The key advantage of the improved methodology is its emphasis on the use of varied design tools, each of which is actively applied at its optimal point in the proposed product development process. Thus, during the earlier stages of the product development process, the thermal risk is systematically reduced, and long-term reliability of products is maintained in a higher degree. Flow network modeling (FNM) (dpeaa)DE-He213 Computational fluid dynamics (CFD) (dpeaa)DE-He213 Prototype (dpeaa)DE-He213 Simulation (dpeaa)DE-He213 Experimental measurement (dpeaa)DE-He213 Guo, Liang aut Enthalten in Journal of modern power systems and clean energy Nanjing : NARI, 2013 1(2013), 3 vom: 25. Okt., Seite 285-291 (DE-627)75682821X (DE-600)2727912-1 2196-5420 nnns volume:1 year:2013 number:3 day:25 month:10 pages:285-291 https://dx.doi.org/10.1007/s40565-013-0031-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2013 3 25 10 285-291 |
allfields_unstemmed |
10.1007/s40565-013-0031-1 doi (DE-627)SPR036668591 (SPR)s40565-013-0031-1-e DE-627 ger DE-627 rakwb eng Yang, Fei verfasserin aut Improved thermal design methodology for wind power converters 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2013 Abstract This paper presents an improved thermal design methodology for wind power converters. It combines analysis and experimental thermal design tools, including heat transfer correlations, flow network modeling (FNM), computational fluid dynamics (CFD), and experimental measurement techniques. Moreover, a systemic product development process is introduced and an effective combination between the product development process and the thermal design methodology is achieved. The draft CFD modeling at the initial design stage is done. Furthermore, it uses the detailed CFD modeling and experimental measurement techniques to provide a higher degree of accuracy at latter design stages. The key advantage of the improved methodology is its emphasis on the use of varied design tools, each of which is actively applied at its optimal point in the proposed product development process. Thus, during the earlier stages of the product development process, the thermal risk is systematically reduced, and long-term reliability of products is maintained in a higher degree. Flow network modeling (FNM) (dpeaa)DE-He213 Computational fluid dynamics (CFD) (dpeaa)DE-He213 Prototype (dpeaa)DE-He213 Simulation (dpeaa)DE-He213 Experimental measurement (dpeaa)DE-He213 Guo, Liang aut Enthalten in Journal of modern power systems and clean energy Nanjing : NARI, 2013 1(2013), 3 vom: 25. Okt., Seite 285-291 (DE-627)75682821X (DE-600)2727912-1 2196-5420 nnns volume:1 year:2013 number:3 day:25 month:10 pages:285-291 https://dx.doi.org/10.1007/s40565-013-0031-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2013 3 25 10 285-291 |
allfieldsGer |
10.1007/s40565-013-0031-1 doi (DE-627)SPR036668591 (SPR)s40565-013-0031-1-e DE-627 ger DE-627 rakwb eng Yang, Fei verfasserin aut Improved thermal design methodology for wind power converters 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2013 Abstract This paper presents an improved thermal design methodology for wind power converters. It combines analysis and experimental thermal design tools, including heat transfer correlations, flow network modeling (FNM), computational fluid dynamics (CFD), and experimental measurement techniques. Moreover, a systemic product development process is introduced and an effective combination between the product development process and the thermal design methodology is achieved. The draft CFD modeling at the initial design stage is done. Furthermore, it uses the detailed CFD modeling and experimental measurement techniques to provide a higher degree of accuracy at latter design stages. The key advantage of the improved methodology is its emphasis on the use of varied design tools, each of which is actively applied at its optimal point in the proposed product development process. Thus, during the earlier stages of the product development process, the thermal risk is systematically reduced, and long-term reliability of products is maintained in a higher degree. Flow network modeling (FNM) (dpeaa)DE-He213 Computational fluid dynamics (CFD) (dpeaa)DE-He213 Prototype (dpeaa)DE-He213 Simulation (dpeaa)DE-He213 Experimental measurement (dpeaa)DE-He213 Guo, Liang aut Enthalten in Journal of modern power systems and clean energy Nanjing : NARI, 2013 1(2013), 3 vom: 25. Okt., Seite 285-291 (DE-627)75682821X (DE-600)2727912-1 2196-5420 nnns volume:1 year:2013 number:3 day:25 month:10 pages:285-291 https://dx.doi.org/10.1007/s40565-013-0031-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2013 3 25 10 285-291 |
allfieldsSound |
10.1007/s40565-013-0031-1 doi (DE-627)SPR036668591 (SPR)s40565-013-0031-1-e DE-627 ger DE-627 rakwb eng Yang, Fei verfasserin aut Improved thermal design methodology for wind power converters 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2013 Abstract This paper presents an improved thermal design methodology for wind power converters. It combines analysis and experimental thermal design tools, including heat transfer correlations, flow network modeling (FNM), computational fluid dynamics (CFD), and experimental measurement techniques. Moreover, a systemic product development process is introduced and an effective combination between the product development process and the thermal design methodology is achieved. The draft CFD modeling at the initial design stage is done. Furthermore, it uses the detailed CFD modeling and experimental measurement techniques to provide a higher degree of accuracy at latter design stages. The key advantage of the improved methodology is its emphasis on the use of varied design tools, each of which is actively applied at its optimal point in the proposed product development process. Thus, during the earlier stages of the product development process, the thermal risk is systematically reduced, and long-term reliability of products is maintained in a higher degree. Flow network modeling (FNM) (dpeaa)DE-He213 Computational fluid dynamics (CFD) (dpeaa)DE-He213 Prototype (dpeaa)DE-He213 Simulation (dpeaa)DE-He213 Experimental measurement (dpeaa)DE-He213 Guo, Liang aut Enthalten in Journal of modern power systems and clean energy Nanjing : NARI, 2013 1(2013), 3 vom: 25. Okt., Seite 285-291 (DE-627)75682821X (DE-600)2727912-1 2196-5420 nnns volume:1 year:2013 number:3 day:25 month:10 pages:285-291 https://dx.doi.org/10.1007/s40565-013-0031-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2013 3 25 10 285-291 |
language |
English |
source |
Enthalten in Journal of modern power systems and clean energy 1(2013), 3 vom: 25. Okt., Seite 285-291 volume:1 year:2013 number:3 day:25 month:10 pages:285-291 |
sourceStr |
Enthalten in Journal of modern power systems and clean energy 1(2013), 3 vom: 25. Okt., Seite 285-291 volume:1 year:2013 number:3 day:25 month:10 pages:285-291 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Flow network modeling (FNM) Computational fluid dynamics (CFD) Prototype Simulation Experimental measurement |
isfreeaccess_bool |
true |
container_title |
Journal of modern power systems and clean energy |
authorswithroles_txt_mv |
Yang, Fei @@aut@@ Guo, Liang @@aut@@ |
publishDateDaySort_date |
2013-10-25T00:00:00Z |
hierarchy_top_id |
75682821X |
id |
SPR036668591 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036668591</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328191539.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40565-013-0031-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036668591</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40565-013-0031-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improved thermal design methodology for wind power converters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper presents an improved thermal design methodology for wind power converters. It combines analysis and experimental thermal design tools, including heat transfer correlations, flow network modeling (FNM), computational fluid dynamics (CFD), and experimental measurement techniques. Moreover, a systemic product development process is introduced and an effective combination between the product development process and the thermal design methodology is achieved. The draft CFD modeling at the initial design stage is done. Furthermore, it uses the detailed CFD modeling and experimental measurement techniques to provide a higher degree of accuracy at latter design stages. The key advantage of the improved methodology is its emphasis on the use of varied design tools, each of which is actively applied at its optimal point in the proposed product development process. Thus, during the earlier stages of the product development process, the thermal risk is systematically reduced, and long-term reliability of products is maintained in a higher degree.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow network modeling (FNM)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational fluid dynamics (CFD)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prototype</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experimental measurement</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Liang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of modern power systems and clean energy</subfield><subfield code="d">Nanjing : NARI, 2013</subfield><subfield code="g">1(2013), 3 vom: 25. Okt., Seite 285-291</subfield><subfield code="w">(DE-627)75682821X</subfield><subfield code="w">(DE-600)2727912-1</subfield><subfield code="x">2196-5420</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:3</subfield><subfield code="g">day:25</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:285-291</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40565-013-0031-1</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2013</subfield><subfield code="e">3</subfield><subfield code="b">25</subfield><subfield code="c">10</subfield><subfield code="h">285-291</subfield></datafield></record></collection>
|
author |
Yang, Fei |
spellingShingle |
Yang, Fei misc Flow network modeling (FNM) misc Computational fluid dynamics (CFD) misc Prototype misc Simulation misc Experimental measurement Improved thermal design methodology for wind power converters |
authorStr |
Yang, Fei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)75682821X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2196-5420 |
topic_title |
Improved thermal design methodology for wind power converters Flow network modeling (FNM) (dpeaa)DE-He213 Computational fluid dynamics (CFD) (dpeaa)DE-He213 Prototype (dpeaa)DE-He213 Simulation (dpeaa)DE-He213 Experimental measurement (dpeaa)DE-He213 |
topic |
misc Flow network modeling (FNM) misc Computational fluid dynamics (CFD) misc Prototype misc Simulation misc Experimental measurement |
topic_unstemmed |
misc Flow network modeling (FNM) misc Computational fluid dynamics (CFD) misc Prototype misc Simulation misc Experimental measurement |
topic_browse |
misc Flow network modeling (FNM) misc Computational fluid dynamics (CFD) misc Prototype misc Simulation misc Experimental measurement |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of modern power systems and clean energy |
hierarchy_parent_id |
75682821X |
hierarchy_top_title |
Journal of modern power systems and clean energy |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)75682821X (DE-600)2727912-1 |
title |
Improved thermal design methodology for wind power converters |
ctrlnum |
(DE-627)SPR036668591 (SPR)s40565-013-0031-1-e |
title_full |
Improved thermal design methodology for wind power converters |
author_sort |
Yang, Fei |
journal |
Journal of modern power systems and clean energy |
journalStr |
Journal of modern power systems and clean energy |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
285 |
author_browse |
Yang, Fei Guo, Liang |
container_volume |
1 |
format_se |
Elektronische Aufsätze |
author-letter |
Yang, Fei |
doi_str_mv |
10.1007/s40565-013-0031-1 |
title_sort |
improved thermal design methodology for wind power converters |
title_auth |
Improved thermal design methodology for wind power converters |
abstract |
Abstract This paper presents an improved thermal design methodology for wind power converters. It combines analysis and experimental thermal design tools, including heat transfer correlations, flow network modeling (FNM), computational fluid dynamics (CFD), and experimental measurement techniques. Moreover, a systemic product development process is introduced and an effective combination between the product development process and the thermal design methodology is achieved. The draft CFD modeling at the initial design stage is done. Furthermore, it uses the detailed CFD modeling and experimental measurement techniques to provide a higher degree of accuracy at latter design stages. The key advantage of the improved methodology is its emphasis on the use of varied design tools, each of which is actively applied at its optimal point in the proposed product development process. Thus, during the earlier stages of the product development process, the thermal risk is systematically reduced, and long-term reliability of products is maintained in a higher degree. © The Author(s) 2013 |
abstractGer |
Abstract This paper presents an improved thermal design methodology for wind power converters. It combines analysis and experimental thermal design tools, including heat transfer correlations, flow network modeling (FNM), computational fluid dynamics (CFD), and experimental measurement techniques. Moreover, a systemic product development process is introduced and an effective combination between the product development process and the thermal design methodology is achieved. The draft CFD modeling at the initial design stage is done. Furthermore, it uses the detailed CFD modeling and experimental measurement techniques to provide a higher degree of accuracy at latter design stages. The key advantage of the improved methodology is its emphasis on the use of varied design tools, each of which is actively applied at its optimal point in the proposed product development process. Thus, during the earlier stages of the product development process, the thermal risk is systematically reduced, and long-term reliability of products is maintained in a higher degree. © The Author(s) 2013 |
abstract_unstemmed |
Abstract This paper presents an improved thermal design methodology for wind power converters. It combines analysis and experimental thermal design tools, including heat transfer correlations, flow network modeling (FNM), computational fluid dynamics (CFD), and experimental measurement techniques. Moreover, a systemic product development process is introduced and an effective combination between the product development process and the thermal design methodology is achieved. The draft CFD modeling at the initial design stage is done. Furthermore, it uses the detailed CFD modeling and experimental measurement techniques to provide a higher degree of accuracy at latter design stages. The key advantage of the improved methodology is its emphasis on the use of varied design tools, each of which is actively applied at its optimal point in the proposed product development process. Thus, during the earlier stages of the product development process, the thermal risk is systematically reduced, and long-term reliability of products is maintained in a higher degree. © The Author(s) 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Improved thermal design methodology for wind power converters |
url |
https://dx.doi.org/10.1007/s40565-013-0031-1 |
remote_bool |
true |
author2 |
Guo, Liang |
author2Str |
Guo, Liang |
ppnlink |
75682821X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40565-013-0031-1 |
up_date |
2024-07-03T18:59:36.314Z |
_version_ |
1803585507886628864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036668591</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328191539.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40565-013-0031-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036668591</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40565-013-0031-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improved thermal design methodology for wind power converters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper presents an improved thermal design methodology for wind power converters. It combines analysis and experimental thermal design tools, including heat transfer correlations, flow network modeling (FNM), computational fluid dynamics (CFD), and experimental measurement techniques. Moreover, a systemic product development process is introduced and an effective combination between the product development process and the thermal design methodology is achieved. The draft CFD modeling at the initial design stage is done. Furthermore, it uses the detailed CFD modeling and experimental measurement techniques to provide a higher degree of accuracy at latter design stages. The key advantage of the improved methodology is its emphasis on the use of varied design tools, each of which is actively applied at its optimal point in the proposed product development process. Thus, during the earlier stages of the product development process, the thermal risk is systematically reduced, and long-term reliability of products is maintained in a higher degree.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow network modeling (FNM)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational fluid dynamics (CFD)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prototype</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experimental measurement</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Liang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of modern power systems and clean energy</subfield><subfield code="d">Nanjing : NARI, 2013</subfield><subfield code="g">1(2013), 3 vom: 25. Okt., Seite 285-291</subfield><subfield code="w">(DE-627)75682821X</subfield><subfield code="w">(DE-600)2727912-1</subfield><subfield code="x">2196-5420</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:3</subfield><subfield code="g">day:25</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:285-291</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40565-013-0031-1</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2013</subfield><subfield code="e">3</subfield><subfield code="b">25</subfield><subfield code="c">10</subfield><subfield code="h">285-291</subfield></datafield></record></collection>
|
score |
7.398492 |