State-of-the-art review on frequency response of wind power plants in power systems
Abstract With an increasing penetration of wind power in the modern electrical grid, the increasing replacement of large conventional synchronous generators by wind power plants will potentially result in deteriorated frequency regulation performance due to the reduced system inertia and primary fre...
Ausführliche Beschreibung
Autor*in: |
WU, Ziping [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of modern power systems and clean energy - Nanjing : NARI, 2013, 6(2017), 1 vom: 22. Sept., Seite 1-16 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2017 ; number:1 ; day:22 ; month:09 ; pages:1-16 |
Links: |
---|
DOI / URN: |
10.1007/s40565-017-0315-y |
---|
Katalog-ID: |
SPR036671797 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR036671797 | ||
003 | DE-627 | ||
005 | 20230328191549.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40565-017-0315-y |2 doi | |
035 | |a (DE-627)SPR036671797 | ||
035 | |a (SPR)s40565-017-0315-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a WU, Ziping |e verfasserin |4 aut | |
245 | 1 | 0 | |a State-of-the-art review on frequency response of wind power plants in power systems |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2017 | ||
520 | |a Abstract With an increasing penetration of wind power in the modern electrical grid, the increasing replacement of large conventional synchronous generators by wind power plants will potentially result in deteriorated frequency regulation performance due to the reduced system inertia and primary frequency response. A series of challenging issues arise from the aspects of power system planning, operation, control and protection. Therefore, it is valuable to develop variable speed wind turbines (VSWTs) equipped with frequency regulation capabilities that allow them to effectively participate in addressing severe frequency contingencies. This paper provides a comprehensive survey on frequency regulation methods for VSWTs. It fully describes the concepts, principles and control strategies of prevailing frequency controls of VSWTs, including future development trends. It concludes with a performance comparison of frequency regulation by the four main types of wind power plants. | ||
650 | 4 | |a Wind power plant |7 (dpeaa)DE-He213 | |
650 | 4 | |a Inertial response |7 (dpeaa)DE-He213 | |
650 | 4 | |a Primary frequency control |7 (dpeaa)DE-He213 | |
650 | 4 | |a Automatic generation control (AGC) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Variable speed wind turbine (VSWT) |7 (dpeaa)DE-He213 | |
700 | 1 | |a GAO, Wenzhong |0 (orcid)0000-0002-4034-2932 |4 aut | |
700 | 1 | |a GAO, Tianqi |4 aut | |
700 | 1 | |a YAN, Weihang |4 aut | |
700 | 1 | |a ZHANG, Huaguang |4 aut | |
700 | 1 | |a YAN, Shijie |4 aut | |
700 | 1 | |a WANG, Xiao |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of modern power systems and clean energy |d Nanjing : NARI, 2013 |g 6(2017), 1 vom: 22. Sept., Seite 1-16 |w (DE-627)75682821X |w (DE-600)2727912-1 |x 2196-5420 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2017 |g number:1 |g day:22 |g month:09 |g pages:1-16 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40565-017-0315-y |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2017 |e 1 |b 22 |c 09 |h 1-16 |
author_variant |
z w zw w g wg t g tg w y wy h z hz s y sy x w xw |
---|---|
matchkey_str |
article:21965420:2017----::ttoterrveofeunyepnefidoep |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s40565-017-0315-y doi (DE-627)SPR036671797 (SPR)s40565-017-0315-y-e DE-627 ger DE-627 rakwb eng WU, Ziping verfasserin aut State-of-the-art review on frequency response of wind power plants in power systems 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Abstract With an increasing penetration of wind power in the modern electrical grid, the increasing replacement of large conventional synchronous generators by wind power plants will potentially result in deteriorated frequency regulation performance due to the reduced system inertia and primary frequency response. A series of challenging issues arise from the aspects of power system planning, operation, control and protection. Therefore, it is valuable to develop variable speed wind turbines (VSWTs) equipped with frequency regulation capabilities that allow them to effectively participate in addressing severe frequency contingencies. This paper provides a comprehensive survey on frequency regulation methods for VSWTs. It fully describes the concepts, principles and control strategies of prevailing frequency controls of VSWTs, including future development trends. It concludes with a performance comparison of frequency regulation by the four main types of wind power plants. Wind power plant (dpeaa)DE-He213 Inertial response (dpeaa)DE-He213 Primary frequency control (dpeaa)DE-He213 Automatic generation control (AGC) (dpeaa)DE-He213 Variable speed wind turbine (VSWT) (dpeaa)DE-He213 GAO, Wenzhong (orcid)0000-0002-4034-2932 aut GAO, Tianqi aut YAN, Weihang aut ZHANG, Huaguang aut YAN, Shijie aut WANG, Xiao aut Enthalten in Journal of modern power systems and clean energy Nanjing : NARI, 2013 6(2017), 1 vom: 22. Sept., Seite 1-16 (DE-627)75682821X (DE-600)2727912-1 2196-5420 nnns volume:6 year:2017 number:1 day:22 month:09 pages:1-16 https://dx.doi.org/10.1007/s40565-017-0315-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2017 1 22 09 1-16 |
spelling |
10.1007/s40565-017-0315-y doi (DE-627)SPR036671797 (SPR)s40565-017-0315-y-e DE-627 ger DE-627 rakwb eng WU, Ziping verfasserin aut State-of-the-art review on frequency response of wind power plants in power systems 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Abstract With an increasing penetration of wind power in the modern electrical grid, the increasing replacement of large conventional synchronous generators by wind power plants will potentially result in deteriorated frequency regulation performance due to the reduced system inertia and primary frequency response. A series of challenging issues arise from the aspects of power system planning, operation, control and protection. Therefore, it is valuable to develop variable speed wind turbines (VSWTs) equipped with frequency regulation capabilities that allow them to effectively participate in addressing severe frequency contingencies. This paper provides a comprehensive survey on frequency regulation methods for VSWTs. It fully describes the concepts, principles and control strategies of prevailing frequency controls of VSWTs, including future development trends. It concludes with a performance comparison of frequency regulation by the four main types of wind power plants. Wind power plant (dpeaa)DE-He213 Inertial response (dpeaa)DE-He213 Primary frequency control (dpeaa)DE-He213 Automatic generation control (AGC) (dpeaa)DE-He213 Variable speed wind turbine (VSWT) (dpeaa)DE-He213 GAO, Wenzhong (orcid)0000-0002-4034-2932 aut GAO, Tianqi aut YAN, Weihang aut ZHANG, Huaguang aut YAN, Shijie aut WANG, Xiao aut Enthalten in Journal of modern power systems and clean energy Nanjing : NARI, 2013 6(2017), 1 vom: 22. Sept., Seite 1-16 (DE-627)75682821X (DE-600)2727912-1 2196-5420 nnns volume:6 year:2017 number:1 day:22 month:09 pages:1-16 https://dx.doi.org/10.1007/s40565-017-0315-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2017 1 22 09 1-16 |
allfields_unstemmed |
10.1007/s40565-017-0315-y doi (DE-627)SPR036671797 (SPR)s40565-017-0315-y-e DE-627 ger DE-627 rakwb eng WU, Ziping verfasserin aut State-of-the-art review on frequency response of wind power plants in power systems 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Abstract With an increasing penetration of wind power in the modern electrical grid, the increasing replacement of large conventional synchronous generators by wind power plants will potentially result in deteriorated frequency regulation performance due to the reduced system inertia and primary frequency response. A series of challenging issues arise from the aspects of power system planning, operation, control and protection. Therefore, it is valuable to develop variable speed wind turbines (VSWTs) equipped with frequency regulation capabilities that allow them to effectively participate in addressing severe frequency contingencies. This paper provides a comprehensive survey on frequency regulation methods for VSWTs. It fully describes the concepts, principles and control strategies of prevailing frequency controls of VSWTs, including future development trends. It concludes with a performance comparison of frequency regulation by the four main types of wind power plants. Wind power plant (dpeaa)DE-He213 Inertial response (dpeaa)DE-He213 Primary frequency control (dpeaa)DE-He213 Automatic generation control (AGC) (dpeaa)DE-He213 Variable speed wind turbine (VSWT) (dpeaa)DE-He213 GAO, Wenzhong (orcid)0000-0002-4034-2932 aut GAO, Tianqi aut YAN, Weihang aut ZHANG, Huaguang aut YAN, Shijie aut WANG, Xiao aut Enthalten in Journal of modern power systems and clean energy Nanjing : NARI, 2013 6(2017), 1 vom: 22. Sept., Seite 1-16 (DE-627)75682821X (DE-600)2727912-1 2196-5420 nnns volume:6 year:2017 number:1 day:22 month:09 pages:1-16 https://dx.doi.org/10.1007/s40565-017-0315-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2017 1 22 09 1-16 |
allfieldsGer |
10.1007/s40565-017-0315-y doi (DE-627)SPR036671797 (SPR)s40565-017-0315-y-e DE-627 ger DE-627 rakwb eng WU, Ziping verfasserin aut State-of-the-art review on frequency response of wind power plants in power systems 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Abstract With an increasing penetration of wind power in the modern electrical grid, the increasing replacement of large conventional synchronous generators by wind power plants will potentially result in deteriorated frequency regulation performance due to the reduced system inertia and primary frequency response. A series of challenging issues arise from the aspects of power system planning, operation, control and protection. Therefore, it is valuable to develop variable speed wind turbines (VSWTs) equipped with frequency regulation capabilities that allow them to effectively participate in addressing severe frequency contingencies. This paper provides a comprehensive survey on frequency regulation methods for VSWTs. It fully describes the concepts, principles and control strategies of prevailing frequency controls of VSWTs, including future development trends. It concludes with a performance comparison of frequency regulation by the four main types of wind power plants. Wind power plant (dpeaa)DE-He213 Inertial response (dpeaa)DE-He213 Primary frequency control (dpeaa)DE-He213 Automatic generation control (AGC) (dpeaa)DE-He213 Variable speed wind turbine (VSWT) (dpeaa)DE-He213 GAO, Wenzhong (orcid)0000-0002-4034-2932 aut GAO, Tianqi aut YAN, Weihang aut ZHANG, Huaguang aut YAN, Shijie aut WANG, Xiao aut Enthalten in Journal of modern power systems and clean energy Nanjing : NARI, 2013 6(2017), 1 vom: 22. Sept., Seite 1-16 (DE-627)75682821X (DE-600)2727912-1 2196-5420 nnns volume:6 year:2017 number:1 day:22 month:09 pages:1-16 https://dx.doi.org/10.1007/s40565-017-0315-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2017 1 22 09 1-16 |
allfieldsSound |
10.1007/s40565-017-0315-y doi (DE-627)SPR036671797 (SPR)s40565-017-0315-y-e DE-627 ger DE-627 rakwb eng WU, Ziping verfasserin aut State-of-the-art review on frequency response of wind power plants in power systems 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Abstract With an increasing penetration of wind power in the modern electrical grid, the increasing replacement of large conventional synchronous generators by wind power plants will potentially result in deteriorated frequency regulation performance due to the reduced system inertia and primary frequency response. A series of challenging issues arise from the aspects of power system planning, operation, control and protection. Therefore, it is valuable to develop variable speed wind turbines (VSWTs) equipped with frequency regulation capabilities that allow them to effectively participate in addressing severe frequency contingencies. This paper provides a comprehensive survey on frequency regulation methods for VSWTs. It fully describes the concepts, principles and control strategies of prevailing frequency controls of VSWTs, including future development trends. It concludes with a performance comparison of frequency regulation by the four main types of wind power plants. Wind power plant (dpeaa)DE-He213 Inertial response (dpeaa)DE-He213 Primary frequency control (dpeaa)DE-He213 Automatic generation control (AGC) (dpeaa)DE-He213 Variable speed wind turbine (VSWT) (dpeaa)DE-He213 GAO, Wenzhong (orcid)0000-0002-4034-2932 aut GAO, Tianqi aut YAN, Weihang aut ZHANG, Huaguang aut YAN, Shijie aut WANG, Xiao aut Enthalten in Journal of modern power systems and clean energy Nanjing : NARI, 2013 6(2017), 1 vom: 22. Sept., Seite 1-16 (DE-627)75682821X (DE-600)2727912-1 2196-5420 nnns volume:6 year:2017 number:1 day:22 month:09 pages:1-16 https://dx.doi.org/10.1007/s40565-017-0315-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2017 1 22 09 1-16 |
language |
English |
source |
Enthalten in Journal of modern power systems and clean energy 6(2017), 1 vom: 22. Sept., Seite 1-16 volume:6 year:2017 number:1 day:22 month:09 pages:1-16 |
sourceStr |
Enthalten in Journal of modern power systems and clean energy 6(2017), 1 vom: 22. Sept., Seite 1-16 volume:6 year:2017 number:1 day:22 month:09 pages:1-16 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Wind power plant Inertial response Primary frequency control Automatic generation control (AGC) Variable speed wind turbine (VSWT) |
isfreeaccess_bool |
true |
container_title |
Journal of modern power systems and clean energy |
authorswithroles_txt_mv |
WU, Ziping @@aut@@ GAO, Wenzhong @@aut@@ GAO, Tianqi @@aut@@ YAN, Weihang @@aut@@ ZHANG, Huaguang @@aut@@ YAN, Shijie @@aut@@ WANG, Xiao @@aut@@ |
publishDateDaySort_date |
2017-09-22T00:00:00Z |
hierarchy_top_id |
75682821X |
id |
SPR036671797 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036671797</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328191549.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40565-017-0315-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036671797</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40565-017-0315-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">WU, Ziping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">State-of-the-art review on frequency response of wind power plants in power systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract With an increasing penetration of wind power in the modern electrical grid, the increasing replacement of large conventional synchronous generators by wind power plants will potentially result in deteriorated frequency regulation performance due to the reduced system inertia and primary frequency response. A series of challenging issues arise from the aspects of power system planning, operation, control and protection. Therefore, it is valuable to develop variable speed wind turbines (VSWTs) equipped with frequency regulation capabilities that allow them to effectively participate in addressing severe frequency contingencies. This paper provides a comprehensive survey on frequency regulation methods for VSWTs. It fully describes the concepts, principles and control strategies of prevailing frequency controls of VSWTs, including future development trends. It concludes with a performance comparison of frequency regulation by the four main types of wind power plants.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind power plant</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inertial response</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Primary frequency control</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic generation control (AGC)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variable speed wind turbine (VSWT)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">GAO, Wenzhong</subfield><subfield code="0">(orcid)0000-0002-4034-2932</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">GAO, Tianqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">YAN, Weihang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">ZHANG, Huaguang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">YAN, Shijie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">WANG, Xiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of modern power systems and clean energy</subfield><subfield code="d">Nanjing : NARI, 2013</subfield><subfield code="g">6(2017), 1 vom: 22. Sept., Seite 1-16</subfield><subfield code="w">(DE-627)75682821X</subfield><subfield code="w">(DE-600)2727912-1</subfield><subfield code="x">2196-5420</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1-16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40565-017-0315-y</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">09</subfield><subfield code="h">1-16</subfield></datafield></record></collection>
|
author |
WU, Ziping |
spellingShingle |
WU, Ziping misc Wind power plant misc Inertial response misc Primary frequency control misc Automatic generation control (AGC) misc Variable speed wind turbine (VSWT) State-of-the-art review on frequency response of wind power plants in power systems |
authorStr |
WU, Ziping |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)75682821X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2196-5420 |
topic_title |
State-of-the-art review on frequency response of wind power plants in power systems Wind power plant (dpeaa)DE-He213 Inertial response (dpeaa)DE-He213 Primary frequency control (dpeaa)DE-He213 Automatic generation control (AGC) (dpeaa)DE-He213 Variable speed wind turbine (VSWT) (dpeaa)DE-He213 |
topic |
misc Wind power plant misc Inertial response misc Primary frequency control misc Automatic generation control (AGC) misc Variable speed wind turbine (VSWT) |
topic_unstemmed |
misc Wind power plant misc Inertial response misc Primary frequency control misc Automatic generation control (AGC) misc Variable speed wind turbine (VSWT) |
topic_browse |
misc Wind power plant misc Inertial response misc Primary frequency control misc Automatic generation control (AGC) misc Variable speed wind turbine (VSWT) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of modern power systems and clean energy |
hierarchy_parent_id |
75682821X |
hierarchy_top_title |
Journal of modern power systems and clean energy |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)75682821X (DE-600)2727912-1 |
title |
State-of-the-art review on frequency response of wind power plants in power systems |
ctrlnum |
(DE-627)SPR036671797 (SPR)s40565-017-0315-y-e |
title_full |
State-of-the-art review on frequency response of wind power plants in power systems |
author_sort |
WU, Ziping |
journal |
Journal of modern power systems and clean energy |
journalStr |
Journal of modern power systems and clean energy |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
WU, Ziping GAO, Wenzhong GAO, Tianqi YAN, Weihang ZHANG, Huaguang YAN, Shijie WANG, Xiao |
container_volume |
6 |
format_se |
Elektronische Aufsätze |
author-letter |
WU, Ziping |
doi_str_mv |
10.1007/s40565-017-0315-y |
normlink |
(ORCID)0000-0002-4034-2932 |
normlink_prefix_str_mv |
(orcid)0000-0002-4034-2932 |
title_sort |
state-of-the-art review on frequency response of wind power plants in power systems |
title_auth |
State-of-the-art review on frequency response of wind power plants in power systems |
abstract |
Abstract With an increasing penetration of wind power in the modern electrical grid, the increasing replacement of large conventional synchronous generators by wind power plants will potentially result in deteriorated frequency regulation performance due to the reduced system inertia and primary frequency response. A series of challenging issues arise from the aspects of power system planning, operation, control and protection. Therefore, it is valuable to develop variable speed wind turbines (VSWTs) equipped with frequency regulation capabilities that allow them to effectively participate in addressing severe frequency contingencies. This paper provides a comprehensive survey on frequency regulation methods for VSWTs. It fully describes the concepts, principles and control strategies of prevailing frequency controls of VSWTs, including future development trends. It concludes with a performance comparison of frequency regulation by the four main types of wind power plants. © The Author(s) 2017 |
abstractGer |
Abstract With an increasing penetration of wind power in the modern electrical grid, the increasing replacement of large conventional synchronous generators by wind power plants will potentially result in deteriorated frequency regulation performance due to the reduced system inertia and primary frequency response. A series of challenging issues arise from the aspects of power system planning, operation, control and protection. Therefore, it is valuable to develop variable speed wind turbines (VSWTs) equipped with frequency regulation capabilities that allow them to effectively participate in addressing severe frequency contingencies. This paper provides a comprehensive survey on frequency regulation methods for VSWTs. It fully describes the concepts, principles and control strategies of prevailing frequency controls of VSWTs, including future development trends. It concludes with a performance comparison of frequency regulation by the four main types of wind power plants. © The Author(s) 2017 |
abstract_unstemmed |
Abstract With an increasing penetration of wind power in the modern electrical grid, the increasing replacement of large conventional synchronous generators by wind power plants will potentially result in deteriorated frequency regulation performance due to the reduced system inertia and primary frequency response. A series of challenging issues arise from the aspects of power system planning, operation, control and protection. Therefore, it is valuable to develop variable speed wind turbines (VSWTs) equipped with frequency regulation capabilities that allow them to effectively participate in addressing severe frequency contingencies. This paper provides a comprehensive survey on frequency regulation methods for VSWTs. It fully describes the concepts, principles and control strategies of prevailing frequency controls of VSWTs, including future development trends. It concludes with a performance comparison of frequency regulation by the four main types of wind power plants. © The Author(s) 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
State-of-the-art review on frequency response of wind power plants in power systems |
url |
https://dx.doi.org/10.1007/s40565-017-0315-y |
remote_bool |
true |
author2 |
GAO, Wenzhong GAO, Tianqi YAN, Weihang ZHANG, Huaguang YAN, Shijie WANG, Xiao |
author2Str |
GAO, Wenzhong GAO, Tianqi YAN, Weihang ZHANG, Huaguang YAN, Shijie WANG, Xiao |
ppnlink |
75682821X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40565-017-0315-y |
up_date |
2024-07-03T19:00:37.559Z |
_version_ |
1803585572107714560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036671797</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328191549.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40565-017-0315-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036671797</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40565-017-0315-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">WU, Ziping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">State-of-the-art review on frequency response of wind power plants in power systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract With an increasing penetration of wind power in the modern electrical grid, the increasing replacement of large conventional synchronous generators by wind power plants will potentially result in deteriorated frequency regulation performance due to the reduced system inertia and primary frequency response. A series of challenging issues arise from the aspects of power system planning, operation, control and protection. Therefore, it is valuable to develop variable speed wind turbines (VSWTs) equipped with frequency regulation capabilities that allow them to effectively participate in addressing severe frequency contingencies. This paper provides a comprehensive survey on frequency regulation methods for VSWTs. It fully describes the concepts, principles and control strategies of prevailing frequency controls of VSWTs, including future development trends. It concludes with a performance comparison of frequency regulation by the four main types of wind power plants.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wind power plant</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inertial response</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Primary frequency control</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic generation control (AGC)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variable speed wind turbine (VSWT)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">GAO, Wenzhong</subfield><subfield code="0">(orcid)0000-0002-4034-2932</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">GAO, Tianqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">YAN, Weihang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">ZHANG, Huaguang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">YAN, Shijie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">WANG, Xiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of modern power systems and clean energy</subfield><subfield code="d">Nanjing : NARI, 2013</subfield><subfield code="g">6(2017), 1 vom: 22. Sept., Seite 1-16</subfield><subfield code="w">(DE-627)75682821X</subfield><subfield code="w">(DE-600)2727912-1</subfield><subfield code="x">2196-5420</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1-16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40565-017-0315-y</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">09</subfield><subfield code="h">1-16</subfield></datafield></record></collection>
|
score |
7.401272 |