Detection of false data injection attacks using unscented Kalman filter
Abstract It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems (EMSs), is vulnerable to false data injection attacks, due to the undetectability of those attacks using standard bad data detection techniques, which ar...
Ausführliche Beschreibung
Autor*in: |
ŽIVKOVIĆ, Nemanja [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of modern power systems and clean energy - Nanjing : NARI, 2013, 6(2018), 5 vom: 07. Mai, Seite 847-859 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2018 ; number:5 ; day:07 ; month:05 ; pages:847-859 |
Links: |
---|
DOI / URN: |
10.1007/s40565-018-0413-5 |
---|
Katalog-ID: |
SPR036672599 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR036672599 | ||
003 | DE-627 | ||
005 | 20230328191552.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40565-018-0413-5 |2 doi | |
035 | |a (DE-627)SPR036672599 | ||
035 | |a (SPR)s40565-018-0413-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a ŽIVKOVIĆ, Nemanja |e verfasserin |4 aut | |
245 | 1 | 0 | |a Detection of false data injection attacks using unscented Kalman filter |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2018 | ||
520 | |a Abstract It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems (EMSs), is vulnerable to false data injection attacks, due to the undetectability of those attacks using standard bad data detection techniques, which are typically based on normalized measurement residuals. Therefore, it is of the utmost importance to develop novel and efficient methods that are capable of detecting such malicious attacks. In this paper, we propose using the unscented Kalman filter (UKF) in conjunction with a weighted least square (WLS) based SE algorithm in real-time, to detect discrepancies between SV estimates and, as a consequence, to identify false data attacks. After an attack is detected and an appropriate alarm is raised, an operator can take actions to prevent or minimize the potential consequences. The proposed algorithm was successfully tested on benchmark IEEE 14-bus and 300-bus test systems, making it suitable for implementation in commercial EMS software. | ||
650 | 4 | |a State estimation |7 (dpeaa)DE-He213 | |
650 | 4 | |a False data injection attack |7 (dpeaa)DE-He213 | |
650 | 4 | |a Bad data detection |7 (dpeaa)DE-He213 | |
650 | 4 | |a Unscented Kalman filter |7 (dpeaa)DE-He213 | |
700 | 1 | |a SARIĆ, Andrija T. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of modern power systems and clean energy |d Nanjing : NARI, 2013 |g 6(2018), 5 vom: 07. Mai, Seite 847-859 |w (DE-627)75682821X |w (DE-600)2727912-1 |x 2196-5420 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2018 |g number:5 |g day:07 |g month:05 |g pages:847-859 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40565-018-0413-5 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2018 |e 5 |b 07 |c 05 |h 847-859 |
author_variant |
n ž nž a t s at ats |
---|---|
matchkey_str |
article:21965420:2018----::eetoofleaanetoatcssnus |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s40565-018-0413-5 doi (DE-627)SPR036672599 (SPR)s40565-018-0413-5-e DE-627 ger DE-627 rakwb eng ŽIVKOVIĆ, Nemanja verfasserin aut Detection of false data injection attacks using unscented Kalman filter 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Abstract It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems (EMSs), is vulnerable to false data injection attacks, due to the undetectability of those attacks using standard bad data detection techniques, which are typically based on normalized measurement residuals. Therefore, it is of the utmost importance to develop novel and efficient methods that are capable of detecting such malicious attacks. In this paper, we propose using the unscented Kalman filter (UKF) in conjunction with a weighted least square (WLS) based SE algorithm in real-time, to detect discrepancies between SV estimates and, as a consequence, to identify false data attacks. After an attack is detected and an appropriate alarm is raised, an operator can take actions to prevent or minimize the potential consequences. The proposed algorithm was successfully tested on benchmark IEEE 14-bus and 300-bus test systems, making it suitable for implementation in commercial EMS software. State estimation (dpeaa)DE-He213 False data injection attack (dpeaa)DE-He213 Bad data detection (dpeaa)DE-He213 Unscented Kalman filter (dpeaa)DE-He213 SARIĆ, Andrija T. aut Enthalten in Journal of modern power systems and clean energy Nanjing : NARI, 2013 6(2018), 5 vom: 07. Mai, Seite 847-859 (DE-627)75682821X (DE-600)2727912-1 2196-5420 nnns volume:6 year:2018 number:5 day:07 month:05 pages:847-859 https://dx.doi.org/10.1007/s40565-018-0413-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 5 07 05 847-859 |
spelling |
10.1007/s40565-018-0413-5 doi (DE-627)SPR036672599 (SPR)s40565-018-0413-5-e DE-627 ger DE-627 rakwb eng ŽIVKOVIĆ, Nemanja verfasserin aut Detection of false data injection attacks using unscented Kalman filter 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Abstract It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems (EMSs), is vulnerable to false data injection attacks, due to the undetectability of those attacks using standard bad data detection techniques, which are typically based on normalized measurement residuals. Therefore, it is of the utmost importance to develop novel and efficient methods that are capable of detecting such malicious attacks. In this paper, we propose using the unscented Kalman filter (UKF) in conjunction with a weighted least square (WLS) based SE algorithm in real-time, to detect discrepancies between SV estimates and, as a consequence, to identify false data attacks. After an attack is detected and an appropriate alarm is raised, an operator can take actions to prevent or minimize the potential consequences. The proposed algorithm was successfully tested on benchmark IEEE 14-bus and 300-bus test systems, making it suitable for implementation in commercial EMS software. State estimation (dpeaa)DE-He213 False data injection attack (dpeaa)DE-He213 Bad data detection (dpeaa)DE-He213 Unscented Kalman filter (dpeaa)DE-He213 SARIĆ, Andrija T. aut Enthalten in Journal of modern power systems and clean energy Nanjing : NARI, 2013 6(2018), 5 vom: 07. Mai, Seite 847-859 (DE-627)75682821X (DE-600)2727912-1 2196-5420 nnns volume:6 year:2018 number:5 day:07 month:05 pages:847-859 https://dx.doi.org/10.1007/s40565-018-0413-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 5 07 05 847-859 |
allfields_unstemmed |
10.1007/s40565-018-0413-5 doi (DE-627)SPR036672599 (SPR)s40565-018-0413-5-e DE-627 ger DE-627 rakwb eng ŽIVKOVIĆ, Nemanja verfasserin aut Detection of false data injection attacks using unscented Kalman filter 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Abstract It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems (EMSs), is vulnerable to false data injection attacks, due to the undetectability of those attacks using standard bad data detection techniques, which are typically based on normalized measurement residuals. Therefore, it is of the utmost importance to develop novel and efficient methods that are capable of detecting such malicious attacks. In this paper, we propose using the unscented Kalman filter (UKF) in conjunction with a weighted least square (WLS) based SE algorithm in real-time, to detect discrepancies between SV estimates and, as a consequence, to identify false data attacks. After an attack is detected and an appropriate alarm is raised, an operator can take actions to prevent or minimize the potential consequences. The proposed algorithm was successfully tested on benchmark IEEE 14-bus and 300-bus test systems, making it suitable for implementation in commercial EMS software. State estimation (dpeaa)DE-He213 False data injection attack (dpeaa)DE-He213 Bad data detection (dpeaa)DE-He213 Unscented Kalman filter (dpeaa)DE-He213 SARIĆ, Andrija T. aut Enthalten in Journal of modern power systems and clean energy Nanjing : NARI, 2013 6(2018), 5 vom: 07. Mai, Seite 847-859 (DE-627)75682821X (DE-600)2727912-1 2196-5420 nnns volume:6 year:2018 number:5 day:07 month:05 pages:847-859 https://dx.doi.org/10.1007/s40565-018-0413-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 5 07 05 847-859 |
allfieldsGer |
10.1007/s40565-018-0413-5 doi (DE-627)SPR036672599 (SPR)s40565-018-0413-5-e DE-627 ger DE-627 rakwb eng ŽIVKOVIĆ, Nemanja verfasserin aut Detection of false data injection attacks using unscented Kalman filter 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Abstract It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems (EMSs), is vulnerable to false data injection attacks, due to the undetectability of those attacks using standard bad data detection techniques, which are typically based on normalized measurement residuals. Therefore, it is of the utmost importance to develop novel and efficient methods that are capable of detecting such malicious attacks. In this paper, we propose using the unscented Kalman filter (UKF) in conjunction with a weighted least square (WLS) based SE algorithm in real-time, to detect discrepancies between SV estimates and, as a consequence, to identify false data attacks. After an attack is detected and an appropriate alarm is raised, an operator can take actions to prevent or minimize the potential consequences. The proposed algorithm was successfully tested on benchmark IEEE 14-bus and 300-bus test systems, making it suitable for implementation in commercial EMS software. State estimation (dpeaa)DE-He213 False data injection attack (dpeaa)DE-He213 Bad data detection (dpeaa)DE-He213 Unscented Kalman filter (dpeaa)DE-He213 SARIĆ, Andrija T. aut Enthalten in Journal of modern power systems and clean energy Nanjing : NARI, 2013 6(2018), 5 vom: 07. Mai, Seite 847-859 (DE-627)75682821X (DE-600)2727912-1 2196-5420 nnns volume:6 year:2018 number:5 day:07 month:05 pages:847-859 https://dx.doi.org/10.1007/s40565-018-0413-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 5 07 05 847-859 |
allfieldsSound |
10.1007/s40565-018-0413-5 doi (DE-627)SPR036672599 (SPR)s40565-018-0413-5-e DE-627 ger DE-627 rakwb eng ŽIVKOVIĆ, Nemanja verfasserin aut Detection of false data injection attacks using unscented Kalman filter 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Abstract It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems (EMSs), is vulnerable to false data injection attacks, due to the undetectability of those attacks using standard bad data detection techniques, which are typically based on normalized measurement residuals. Therefore, it is of the utmost importance to develop novel and efficient methods that are capable of detecting such malicious attacks. In this paper, we propose using the unscented Kalman filter (UKF) in conjunction with a weighted least square (WLS) based SE algorithm in real-time, to detect discrepancies between SV estimates and, as a consequence, to identify false data attacks. After an attack is detected and an appropriate alarm is raised, an operator can take actions to prevent or minimize the potential consequences. The proposed algorithm was successfully tested on benchmark IEEE 14-bus and 300-bus test systems, making it suitable for implementation in commercial EMS software. State estimation (dpeaa)DE-He213 False data injection attack (dpeaa)DE-He213 Bad data detection (dpeaa)DE-He213 Unscented Kalman filter (dpeaa)DE-He213 SARIĆ, Andrija T. aut Enthalten in Journal of modern power systems and clean energy Nanjing : NARI, 2013 6(2018), 5 vom: 07. Mai, Seite 847-859 (DE-627)75682821X (DE-600)2727912-1 2196-5420 nnns volume:6 year:2018 number:5 day:07 month:05 pages:847-859 https://dx.doi.org/10.1007/s40565-018-0413-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2018 5 07 05 847-859 |
language |
English |
source |
Enthalten in Journal of modern power systems and clean energy 6(2018), 5 vom: 07. Mai, Seite 847-859 volume:6 year:2018 number:5 day:07 month:05 pages:847-859 |
sourceStr |
Enthalten in Journal of modern power systems and clean energy 6(2018), 5 vom: 07. Mai, Seite 847-859 volume:6 year:2018 number:5 day:07 month:05 pages:847-859 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
State estimation False data injection attack Bad data detection Unscented Kalman filter |
isfreeaccess_bool |
true |
container_title |
Journal of modern power systems and clean energy |
authorswithroles_txt_mv |
ŽIVKOVIĆ, Nemanja @@aut@@ SARIĆ, Andrija T. @@aut@@ |
publishDateDaySort_date |
2018-05-07T00:00:00Z |
hierarchy_top_id |
75682821X |
id |
SPR036672599 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036672599</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328191552.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40565-018-0413-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036672599</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40565-018-0413-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">ŽIVKOVIĆ, Nemanja</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detection of false data injection attacks using unscented Kalman filter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems (EMSs), is vulnerable to false data injection attacks, due to the undetectability of those attacks using standard bad data detection techniques, which are typically based on normalized measurement residuals. Therefore, it is of the utmost importance to develop novel and efficient methods that are capable of detecting such malicious attacks. In this paper, we propose using the unscented Kalman filter (UKF) in conjunction with a weighted least square (WLS) based SE algorithm in real-time, to detect discrepancies between SV estimates and, as a consequence, to identify false data attacks. After an attack is detected and an appropriate alarm is raised, an operator can take actions to prevent or minimize the potential consequences. The proposed algorithm was successfully tested on benchmark IEEE 14-bus and 300-bus test systems, making it suitable for implementation in commercial EMS software.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">State estimation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">False data injection attack</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bad data detection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unscented Kalman filter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">SARIĆ, Andrija T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of modern power systems and clean energy</subfield><subfield code="d">Nanjing : NARI, 2013</subfield><subfield code="g">6(2018), 5 vom: 07. Mai, Seite 847-859</subfield><subfield code="w">(DE-627)75682821X</subfield><subfield code="w">(DE-600)2727912-1</subfield><subfield code="x">2196-5420</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:5</subfield><subfield code="g">day:07</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:847-859</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40565-018-0413-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="e">5</subfield><subfield code="b">07</subfield><subfield code="c">05</subfield><subfield code="h">847-859</subfield></datafield></record></collection>
|
author |
ŽIVKOVIĆ, Nemanja |
spellingShingle |
ŽIVKOVIĆ, Nemanja misc State estimation misc False data injection attack misc Bad data detection misc Unscented Kalman filter Detection of false data injection attacks using unscented Kalman filter |
authorStr |
ŽIVKOVIĆ, Nemanja |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)75682821X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2196-5420 |
topic_title |
Detection of false data injection attacks using unscented Kalman filter State estimation (dpeaa)DE-He213 False data injection attack (dpeaa)DE-He213 Bad data detection (dpeaa)DE-He213 Unscented Kalman filter (dpeaa)DE-He213 |
topic |
misc State estimation misc False data injection attack misc Bad data detection misc Unscented Kalman filter |
topic_unstemmed |
misc State estimation misc False data injection attack misc Bad data detection misc Unscented Kalman filter |
topic_browse |
misc State estimation misc False data injection attack misc Bad data detection misc Unscented Kalman filter |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of modern power systems and clean energy |
hierarchy_parent_id |
75682821X |
hierarchy_top_title |
Journal of modern power systems and clean energy |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)75682821X (DE-600)2727912-1 |
title |
Detection of false data injection attacks using unscented Kalman filter |
ctrlnum |
(DE-627)SPR036672599 (SPR)s40565-018-0413-5-e |
title_full |
Detection of false data injection attacks using unscented Kalman filter |
author_sort |
ŽIVKOVIĆ, Nemanja |
journal |
Journal of modern power systems and clean energy |
journalStr |
Journal of modern power systems and clean energy |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
847 |
author_browse |
ŽIVKOVIĆ, Nemanja SARIĆ, Andrija T. |
container_volume |
6 |
format_se |
Elektronische Aufsätze |
author-letter |
ŽIVKOVIĆ, Nemanja |
doi_str_mv |
10.1007/s40565-018-0413-5 |
title_sort |
detection of false data injection attacks using unscented kalman filter |
title_auth |
Detection of false data injection attacks using unscented Kalman filter |
abstract |
Abstract It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems (EMSs), is vulnerable to false data injection attacks, due to the undetectability of those attacks using standard bad data detection techniques, which are typically based on normalized measurement residuals. Therefore, it is of the utmost importance to develop novel and efficient methods that are capable of detecting such malicious attacks. In this paper, we propose using the unscented Kalman filter (UKF) in conjunction with a weighted least square (WLS) based SE algorithm in real-time, to detect discrepancies between SV estimates and, as a consequence, to identify false data attacks. After an attack is detected and an appropriate alarm is raised, an operator can take actions to prevent or minimize the potential consequences. The proposed algorithm was successfully tested on benchmark IEEE 14-bus and 300-bus test systems, making it suitable for implementation in commercial EMS software. © The Author(s) 2018 |
abstractGer |
Abstract It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems (EMSs), is vulnerable to false data injection attacks, due to the undetectability of those attacks using standard bad data detection techniques, which are typically based on normalized measurement residuals. Therefore, it is of the utmost importance to develop novel and efficient methods that are capable of detecting such malicious attacks. In this paper, we propose using the unscented Kalman filter (UKF) in conjunction with a weighted least square (WLS) based SE algorithm in real-time, to detect discrepancies between SV estimates and, as a consequence, to identify false data attacks. After an attack is detected and an appropriate alarm is raised, an operator can take actions to prevent or minimize the potential consequences. The proposed algorithm was successfully tested on benchmark IEEE 14-bus and 300-bus test systems, making it suitable for implementation in commercial EMS software. © The Author(s) 2018 |
abstract_unstemmed |
Abstract It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems (EMSs), is vulnerable to false data injection attacks, due to the undetectability of those attacks using standard bad data detection techniques, which are typically based on normalized measurement residuals. Therefore, it is of the utmost importance to develop novel and efficient methods that are capable of detecting such malicious attacks. In this paper, we propose using the unscented Kalman filter (UKF) in conjunction with a weighted least square (WLS) based SE algorithm in real-time, to detect discrepancies between SV estimates and, as a consequence, to identify false data attacks. After an attack is detected and an appropriate alarm is raised, an operator can take actions to prevent or minimize the potential consequences. The proposed algorithm was successfully tested on benchmark IEEE 14-bus and 300-bus test systems, making it suitable for implementation in commercial EMS software. © The Author(s) 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Detection of false data injection attacks using unscented Kalman filter |
url |
https://dx.doi.org/10.1007/s40565-018-0413-5 |
remote_bool |
true |
author2 |
SARIĆ, Andrija T. |
author2Str |
SARIĆ, Andrija T. |
ppnlink |
75682821X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40565-018-0413-5 |
up_date |
2024-07-03T19:00:53.614Z |
_version_ |
1803585588944699392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036672599</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328191552.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40565-018-0413-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036672599</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40565-018-0413-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">ŽIVKOVIĆ, Nemanja</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Detection of false data injection attacks using unscented Kalman filter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems (EMSs), is vulnerable to false data injection attacks, due to the undetectability of those attacks using standard bad data detection techniques, which are typically based on normalized measurement residuals. Therefore, it is of the utmost importance to develop novel and efficient methods that are capable of detecting such malicious attacks. In this paper, we propose using the unscented Kalman filter (UKF) in conjunction with a weighted least square (WLS) based SE algorithm in real-time, to detect discrepancies between SV estimates and, as a consequence, to identify false data attacks. After an attack is detected and an appropriate alarm is raised, an operator can take actions to prevent or minimize the potential consequences. The proposed algorithm was successfully tested on benchmark IEEE 14-bus and 300-bus test systems, making it suitable for implementation in commercial EMS software.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">State estimation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">False data injection attack</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bad data detection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unscented Kalman filter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">SARIĆ, Andrija T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of modern power systems and clean energy</subfield><subfield code="d">Nanjing : NARI, 2013</subfield><subfield code="g">6(2018), 5 vom: 07. Mai, Seite 847-859</subfield><subfield code="w">(DE-627)75682821X</subfield><subfield code="w">(DE-600)2727912-1</subfield><subfield code="x">2196-5420</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:5</subfield><subfield code="g">day:07</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:847-859</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40565-018-0413-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2018</subfield><subfield code="e">5</subfield><subfield code="b">07</subfield><subfield code="c">05</subfield><subfield code="h">847-859</subfield></datafield></record></collection>
|
score |
7.402916 |