A multi-agent cooperative reinforcement learning model using a hierarchy of consultants, tutors and workers

Abstract The hierarchical organisation of distributed systems can provide an efficient decomposition for machine learning. This paper proposes an algorithm for cooperative policy construction for independent learners, named Q-learning with aggregation (QA-learning). The algorithm is based on a distr...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Abed-alguni, Bilal H. [verfasserIn]

Chalup, Stephan K.

Henskens, Frans A.

Paul, David J.

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2015

Schlagwörter:

Reinforcement learning

Q-Learning

Multi-agent system

Distributed system

Markov decision process

Factored Markov decision process

Anmerkung:

© The Author(s) 2015

Übergeordnetes Werk:

Enthalten in: Vietnam journal of computer science - Berlin : SpringerOpen, 2014, 2(2015), 4 vom: 05. Juli, Seite 213-226

Übergeordnetes Werk:

volume:2 ; year:2015 ; number:4 ; day:05 ; month:07 ; pages:213-226

Links:

Volltext

DOI / URN:

10.1007/s40595-015-0045-x

Katalog-ID:

SPR036702579

Nicht das Richtige dabei?

Schreiben Sie uns!