Grapevine RD22a constitutive expression in tobacco enhances stomatal adjustment and confers drought tolerance
Abstract Drought is one of the major constraints limiting crop production worldwide including grapevine. Investigations of drought tolerance genotypes by genetic engineering are an important goal in Vitis breeding program. Three dehydration-responsive RD22 genes (VviRD22) were identified in Vitis vi...
Ausführliche Beschreibung
Autor*in: |
Jardak-Jamoussi, Rahma [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Brazilian Society of Plant Physiology 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Theoretical and experimental plant physiology - Berlin : Springer, 2014, 28(2016), 4 vom: 04. Okt., Seite 395-413 |
---|---|
Übergeordnetes Werk: |
volume:28 ; year:2016 ; number:4 ; day:04 ; month:10 ; pages:395-413 |
Links: |
---|
DOI / URN: |
10.1007/s40626-016-0077-3 |
---|
Katalog-ID: |
SPR036933651 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR036933651 | ||
003 | DE-627 | ||
005 | 20230519174636.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40626-016-0077-3 |2 doi | |
035 | |a (DE-627)SPR036933651 | ||
035 | |a (SPR)s40626-016-0077-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Jardak-Jamoussi, Rahma |e verfasserin |4 aut | |
245 | 1 | 0 | |a Grapevine RD22a constitutive expression in tobacco enhances stomatal adjustment and confers drought tolerance |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Brazilian Society of Plant Physiology 2016 | ||
520 | |a Abstract Drought is one of the major constraints limiting crop production worldwide including grapevine. Investigations of drought tolerance genotypes by genetic engineering are an important goal in Vitis breeding program. Three dehydration-responsive RD22 genes (VviRD22) were identified in Vitis vinifera L. Here, we aim to evaluate the constitutive expression of VviRD22a effect on tobacco performance under low water availability conditions, namely under drought and under osmotic stress. In vitro, and under osmotic stress, transgenic seeds of tobacco showed an enhanced tolerance at the germination and seedling stages compared to the wild-type (WT). When drought was applied ex vitro by stopping irrigation during 9 days, transgenic lines exhibited an earlier decrease of stomatal conductance that was, interestingly, followed by an internal adjustment leading to a moderate decline of the photosynthetic rate. Additionally, differences between WT and transgenics under both control and stressed conditions were revealed at ultrastructural level through shape alteration within the transgenics. Additionally, the performances of the VviRD22a lines under drought were notably maintained in terms of biomass production (vegetative dry material) and water status (Relative water content and water retention ability). A significant distinctiveness between VviRD22a-expressing lines and WT under stress conditions but not under control conditions (principal component analyses) was found. Protection effect of VviRD22a constitutive expression towards drought involved root biomass, water status and stomatal adjustment traits. Overall, our data suggest that VviRD22a transgenic expression plays a positive role in drought tolerance improvement supporting it as an important candidate gene for molecular breeding of drought tolerant grapevines. | ||
650 | 4 | |a Constitutive gene expression |7 (dpeaa)DE-He213 | |
650 | 4 | |a Drought tolerance improvement |7 (dpeaa)DE-He213 | |
650 | 4 | |a Germination |7 (dpeaa)DE-He213 | |
650 | 4 | |a Stomatal adjustment |7 (dpeaa)DE-He213 | |
700 | 1 | |a Abdelwahed, Donia |4 aut | |
700 | 1 | |a Zoghlami, Néjia |4 aut | |
700 | 1 | |a Ben Salem, Asma |4 aut | |
700 | 1 | |a Zarrouk, Olfa |4 aut | |
700 | 1 | |a Mliki, Ahmed |4 aut | |
700 | 1 | |a Chaves, Manuela |4 aut | |
700 | 1 | |a Ghorbel, Abdelwahed |4 aut | |
700 | 1 | |a Pinheiro, Carla |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Theoretical and experimental plant physiology |d Berlin : Springer, 2014 |g 28(2016), 4 vom: 04. Okt., Seite 395-413 |w (DE-627)790227800 |w (DE-600)2776145-9 |x 2197-0025 |7 nnns |
773 | 1 | 8 | |g volume:28 |g year:2016 |g number:4 |g day:04 |g month:10 |g pages:395-413 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40626-016-0077-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 28 |j 2016 |e 4 |b 04 |c 10 |h 395-413 |
author_variant |
r j j rjj d a da n z nz s a b sa sab o z oz a m am m c mc a g ag c p cp |
---|---|
matchkey_str |
article:21970025:2016----::rpvnr2aosiuiexrsinnoacehnesoaaajsmna |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s40626-016-0077-3 doi (DE-627)SPR036933651 (SPR)s40626-016-0077-3-e DE-627 ger DE-627 rakwb eng Jardak-Jamoussi, Rahma verfasserin aut Grapevine RD22a constitutive expression in tobacco enhances stomatal adjustment and confers drought tolerance 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Brazilian Society of Plant Physiology 2016 Abstract Drought is one of the major constraints limiting crop production worldwide including grapevine. Investigations of drought tolerance genotypes by genetic engineering are an important goal in Vitis breeding program. Three dehydration-responsive RD22 genes (VviRD22) were identified in Vitis vinifera L. Here, we aim to evaluate the constitutive expression of VviRD22a effect on tobacco performance under low water availability conditions, namely under drought and under osmotic stress. In vitro, and under osmotic stress, transgenic seeds of tobacco showed an enhanced tolerance at the germination and seedling stages compared to the wild-type (WT). When drought was applied ex vitro by stopping irrigation during 9 days, transgenic lines exhibited an earlier decrease of stomatal conductance that was, interestingly, followed by an internal adjustment leading to a moderate decline of the photosynthetic rate. Additionally, differences between WT and transgenics under both control and stressed conditions were revealed at ultrastructural level through shape alteration within the transgenics. Additionally, the performances of the VviRD22a lines under drought were notably maintained in terms of biomass production (vegetative dry material) and water status (Relative water content and water retention ability). A significant distinctiveness between VviRD22a-expressing lines and WT under stress conditions but not under control conditions (principal component analyses) was found. Protection effect of VviRD22a constitutive expression towards drought involved root biomass, water status and stomatal adjustment traits. Overall, our data suggest that VviRD22a transgenic expression plays a positive role in drought tolerance improvement supporting it as an important candidate gene for molecular breeding of drought tolerant grapevines. Constitutive gene expression (dpeaa)DE-He213 Drought tolerance improvement (dpeaa)DE-He213 Germination (dpeaa)DE-He213 Stomatal adjustment (dpeaa)DE-He213 Abdelwahed, Donia aut Zoghlami, Néjia aut Ben Salem, Asma aut Zarrouk, Olfa aut Mliki, Ahmed aut Chaves, Manuela aut Ghorbel, Abdelwahed aut Pinheiro, Carla aut Enthalten in Theoretical and experimental plant physiology Berlin : Springer, 2014 28(2016), 4 vom: 04. Okt., Seite 395-413 (DE-627)790227800 (DE-600)2776145-9 2197-0025 nnns volume:28 year:2016 number:4 day:04 month:10 pages:395-413 https://dx.doi.org/10.1007/s40626-016-0077-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 28 2016 4 04 10 395-413 |
spelling |
10.1007/s40626-016-0077-3 doi (DE-627)SPR036933651 (SPR)s40626-016-0077-3-e DE-627 ger DE-627 rakwb eng Jardak-Jamoussi, Rahma verfasserin aut Grapevine RD22a constitutive expression in tobacco enhances stomatal adjustment and confers drought tolerance 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Brazilian Society of Plant Physiology 2016 Abstract Drought is one of the major constraints limiting crop production worldwide including grapevine. Investigations of drought tolerance genotypes by genetic engineering are an important goal in Vitis breeding program. Three dehydration-responsive RD22 genes (VviRD22) were identified in Vitis vinifera L. Here, we aim to evaluate the constitutive expression of VviRD22a effect on tobacco performance under low water availability conditions, namely under drought and under osmotic stress. In vitro, and under osmotic stress, transgenic seeds of tobacco showed an enhanced tolerance at the germination and seedling stages compared to the wild-type (WT). When drought was applied ex vitro by stopping irrigation during 9 days, transgenic lines exhibited an earlier decrease of stomatal conductance that was, interestingly, followed by an internal adjustment leading to a moderate decline of the photosynthetic rate. Additionally, differences between WT and transgenics under both control and stressed conditions were revealed at ultrastructural level through shape alteration within the transgenics. Additionally, the performances of the VviRD22a lines under drought were notably maintained in terms of biomass production (vegetative dry material) and water status (Relative water content and water retention ability). A significant distinctiveness between VviRD22a-expressing lines and WT under stress conditions but not under control conditions (principal component analyses) was found. Protection effect of VviRD22a constitutive expression towards drought involved root biomass, water status and stomatal adjustment traits. Overall, our data suggest that VviRD22a transgenic expression plays a positive role in drought tolerance improvement supporting it as an important candidate gene for molecular breeding of drought tolerant grapevines. Constitutive gene expression (dpeaa)DE-He213 Drought tolerance improvement (dpeaa)DE-He213 Germination (dpeaa)DE-He213 Stomatal adjustment (dpeaa)DE-He213 Abdelwahed, Donia aut Zoghlami, Néjia aut Ben Salem, Asma aut Zarrouk, Olfa aut Mliki, Ahmed aut Chaves, Manuela aut Ghorbel, Abdelwahed aut Pinheiro, Carla aut Enthalten in Theoretical and experimental plant physiology Berlin : Springer, 2014 28(2016), 4 vom: 04. Okt., Seite 395-413 (DE-627)790227800 (DE-600)2776145-9 2197-0025 nnns volume:28 year:2016 number:4 day:04 month:10 pages:395-413 https://dx.doi.org/10.1007/s40626-016-0077-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 28 2016 4 04 10 395-413 |
allfields_unstemmed |
10.1007/s40626-016-0077-3 doi (DE-627)SPR036933651 (SPR)s40626-016-0077-3-e DE-627 ger DE-627 rakwb eng Jardak-Jamoussi, Rahma verfasserin aut Grapevine RD22a constitutive expression in tobacco enhances stomatal adjustment and confers drought tolerance 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Brazilian Society of Plant Physiology 2016 Abstract Drought is one of the major constraints limiting crop production worldwide including grapevine. Investigations of drought tolerance genotypes by genetic engineering are an important goal in Vitis breeding program. Three dehydration-responsive RD22 genes (VviRD22) were identified in Vitis vinifera L. Here, we aim to evaluate the constitutive expression of VviRD22a effect on tobacco performance under low water availability conditions, namely under drought and under osmotic stress. In vitro, and under osmotic stress, transgenic seeds of tobacco showed an enhanced tolerance at the germination and seedling stages compared to the wild-type (WT). When drought was applied ex vitro by stopping irrigation during 9 days, transgenic lines exhibited an earlier decrease of stomatal conductance that was, interestingly, followed by an internal adjustment leading to a moderate decline of the photosynthetic rate. Additionally, differences between WT and transgenics under both control and stressed conditions were revealed at ultrastructural level through shape alteration within the transgenics. Additionally, the performances of the VviRD22a lines under drought were notably maintained in terms of biomass production (vegetative dry material) and water status (Relative water content and water retention ability). A significant distinctiveness between VviRD22a-expressing lines and WT under stress conditions but not under control conditions (principal component analyses) was found. Protection effect of VviRD22a constitutive expression towards drought involved root biomass, water status and stomatal adjustment traits. Overall, our data suggest that VviRD22a transgenic expression plays a positive role in drought tolerance improvement supporting it as an important candidate gene for molecular breeding of drought tolerant grapevines. Constitutive gene expression (dpeaa)DE-He213 Drought tolerance improvement (dpeaa)DE-He213 Germination (dpeaa)DE-He213 Stomatal adjustment (dpeaa)DE-He213 Abdelwahed, Donia aut Zoghlami, Néjia aut Ben Salem, Asma aut Zarrouk, Olfa aut Mliki, Ahmed aut Chaves, Manuela aut Ghorbel, Abdelwahed aut Pinheiro, Carla aut Enthalten in Theoretical and experimental plant physiology Berlin : Springer, 2014 28(2016), 4 vom: 04. Okt., Seite 395-413 (DE-627)790227800 (DE-600)2776145-9 2197-0025 nnns volume:28 year:2016 number:4 day:04 month:10 pages:395-413 https://dx.doi.org/10.1007/s40626-016-0077-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 28 2016 4 04 10 395-413 |
allfieldsGer |
10.1007/s40626-016-0077-3 doi (DE-627)SPR036933651 (SPR)s40626-016-0077-3-e DE-627 ger DE-627 rakwb eng Jardak-Jamoussi, Rahma verfasserin aut Grapevine RD22a constitutive expression in tobacco enhances stomatal adjustment and confers drought tolerance 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Brazilian Society of Plant Physiology 2016 Abstract Drought is one of the major constraints limiting crop production worldwide including grapevine. Investigations of drought tolerance genotypes by genetic engineering are an important goal in Vitis breeding program. Three dehydration-responsive RD22 genes (VviRD22) were identified in Vitis vinifera L. Here, we aim to evaluate the constitutive expression of VviRD22a effect on tobacco performance under low water availability conditions, namely under drought and under osmotic stress. In vitro, and under osmotic stress, transgenic seeds of tobacco showed an enhanced tolerance at the germination and seedling stages compared to the wild-type (WT). When drought was applied ex vitro by stopping irrigation during 9 days, transgenic lines exhibited an earlier decrease of stomatal conductance that was, interestingly, followed by an internal adjustment leading to a moderate decline of the photosynthetic rate. Additionally, differences between WT and transgenics under both control and stressed conditions were revealed at ultrastructural level through shape alteration within the transgenics. Additionally, the performances of the VviRD22a lines under drought were notably maintained in terms of biomass production (vegetative dry material) and water status (Relative water content and water retention ability). A significant distinctiveness between VviRD22a-expressing lines and WT under stress conditions but not under control conditions (principal component analyses) was found. Protection effect of VviRD22a constitutive expression towards drought involved root biomass, water status and stomatal adjustment traits. Overall, our data suggest that VviRD22a transgenic expression plays a positive role in drought tolerance improvement supporting it as an important candidate gene for molecular breeding of drought tolerant grapevines. Constitutive gene expression (dpeaa)DE-He213 Drought tolerance improvement (dpeaa)DE-He213 Germination (dpeaa)DE-He213 Stomatal adjustment (dpeaa)DE-He213 Abdelwahed, Donia aut Zoghlami, Néjia aut Ben Salem, Asma aut Zarrouk, Olfa aut Mliki, Ahmed aut Chaves, Manuela aut Ghorbel, Abdelwahed aut Pinheiro, Carla aut Enthalten in Theoretical and experimental plant physiology Berlin : Springer, 2014 28(2016), 4 vom: 04. Okt., Seite 395-413 (DE-627)790227800 (DE-600)2776145-9 2197-0025 nnns volume:28 year:2016 number:4 day:04 month:10 pages:395-413 https://dx.doi.org/10.1007/s40626-016-0077-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 28 2016 4 04 10 395-413 |
allfieldsSound |
10.1007/s40626-016-0077-3 doi (DE-627)SPR036933651 (SPR)s40626-016-0077-3-e DE-627 ger DE-627 rakwb eng Jardak-Jamoussi, Rahma verfasserin aut Grapevine RD22a constitutive expression in tobacco enhances stomatal adjustment and confers drought tolerance 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Brazilian Society of Plant Physiology 2016 Abstract Drought is one of the major constraints limiting crop production worldwide including grapevine. Investigations of drought tolerance genotypes by genetic engineering are an important goal in Vitis breeding program. Three dehydration-responsive RD22 genes (VviRD22) were identified in Vitis vinifera L. Here, we aim to evaluate the constitutive expression of VviRD22a effect on tobacco performance under low water availability conditions, namely under drought and under osmotic stress. In vitro, and under osmotic stress, transgenic seeds of tobacco showed an enhanced tolerance at the germination and seedling stages compared to the wild-type (WT). When drought was applied ex vitro by stopping irrigation during 9 days, transgenic lines exhibited an earlier decrease of stomatal conductance that was, interestingly, followed by an internal adjustment leading to a moderate decline of the photosynthetic rate. Additionally, differences between WT and transgenics under both control and stressed conditions were revealed at ultrastructural level through shape alteration within the transgenics. Additionally, the performances of the VviRD22a lines under drought were notably maintained in terms of biomass production (vegetative dry material) and water status (Relative water content and water retention ability). A significant distinctiveness between VviRD22a-expressing lines and WT under stress conditions but not under control conditions (principal component analyses) was found. Protection effect of VviRD22a constitutive expression towards drought involved root biomass, water status and stomatal adjustment traits. Overall, our data suggest that VviRD22a transgenic expression plays a positive role in drought tolerance improvement supporting it as an important candidate gene for molecular breeding of drought tolerant grapevines. Constitutive gene expression (dpeaa)DE-He213 Drought tolerance improvement (dpeaa)DE-He213 Germination (dpeaa)DE-He213 Stomatal adjustment (dpeaa)DE-He213 Abdelwahed, Donia aut Zoghlami, Néjia aut Ben Salem, Asma aut Zarrouk, Olfa aut Mliki, Ahmed aut Chaves, Manuela aut Ghorbel, Abdelwahed aut Pinheiro, Carla aut Enthalten in Theoretical and experimental plant physiology Berlin : Springer, 2014 28(2016), 4 vom: 04. Okt., Seite 395-413 (DE-627)790227800 (DE-600)2776145-9 2197-0025 nnns volume:28 year:2016 number:4 day:04 month:10 pages:395-413 https://dx.doi.org/10.1007/s40626-016-0077-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 28 2016 4 04 10 395-413 |
language |
English |
source |
Enthalten in Theoretical and experimental plant physiology 28(2016), 4 vom: 04. Okt., Seite 395-413 volume:28 year:2016 number:4 day:04 month:10 pages:395-413 |
sourceStr |
Enthalten in Theoretical and experimental plant physiology 28(2016), 4 vom: 04. Okt., Seite 395-413 volume:28 year:2016 number:4 day:04 month:10 pages:395-413 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Constitutive gene expression Drought tolerance improvement Germination Stomatal adjustment |
isfreeaccess_bool |
false |
container_title |
Theoretical and experimental plant physiology |
authorswithroles_txt_mv |
Jardak-Jamoussi, Rahma @@aut@@ Abdelwahed, Donia @@aut@@ Zoghlami, Néjia @@aut@@ Ben Salem, Asma @@aut@@ Zarrouk, Olfa @@aut@@ Mliki, Ahmed @@aut@@ Chaves, Manuela @@aut@@ Ghorbel, Abdelwahed @@aut@@ Pinheiro, Carla @@aut@@ |
publishDateDaySort_date |
2016-10-04T00:00:00Z |
hierarchy_top_id |
790227800 |
id |
SPR036933651 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036933651</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519174636.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40626-016-0077-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036933651</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40626-016-0077-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jardak-Jamoussi, Rahma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Grapevine RD22a constitutive expression in tobacco enhances stomatal adjustment and confers drought tolerance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Brazilian Society of Plant Physiology 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Drought is one of the major constraints limiting crop production worldwide including grapevine. Investigations of drought tolerance genotypes by genetic engineering are an important goal in Vitis breeding program. Three dehydration-responsive RD22 genes (VviRD22) were identified in Vitis vinifera L. Here, we aim to evaluate the constitutive expression of VviRD22a effect on tobacco performance under low water availability conditions, namely under drought and under osmotic stress. In vitro, and under osmotic stress, transgenic seeds of tobacco showed an enhanced tolerance at the germination and seedling stages compared to the wild-type (WT). When drought was applied ex vitro by stopping irrigation during 9 days, transgenic lines exhibited an earlier decrease of stomatal conductance that was, interestingly, followed by an internal adjustment leading to a moderate decline of the photosynthetic rate. Additionally, differences between WT and transgenics under both control and stressed conditions were revealed at ultrastructural level through shape alteration within the transgenics. Additionally, the performances of the VviRD22a lines under drought were notably maintained in terms of biomass production (vegetative dry material) and water status (Relative water content and water retention ability). A significant distinctiveness between VviRD22a-expressing lines and WT under stress conditions but not under control conditions (principal component analyses) was found. Protection effect of VviRD22a constitutive expression towards drought involved root biomass, water status and stomatal adjustment traits. Overall, our data suggest that VviRD22a transgenic expression plays a positive role in drought tolerance improvement supporting it as an important candidate gene for molecular breeding of drought tolerant grapevines.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constitutive gene expression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drought tolerance improvement</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Germination</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stomatal adjustment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abdelwahed, Donia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zoghlami, Néjia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ben Salem, Asma</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zarrouk, Olfa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mliki, Ahmed</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chaves, Manuela</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghorbel, Abdelwahed</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pinheiro, Carla</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and experimental plant physiology</subfield><subfield code="d">Berlin : Springer, 2014</subfield><subfield code="g">28(2016), 4 vom: 04. Okt., Seite 395-413</subfield><subfield code="w">(DE-627)790227800</subfield><subfield code="w">(DE-600)2776145-9</subfield><subfield code="x">2197-0025</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">day:04</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:395-413</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40626-016-0077-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="b">04</subfield><subfield code="c">10</subfield><subfield code="h">395-413</subfield></datafield></record></collection>
|
author |
Jardak-Jamoussi, Rahma |
spellingShingle |
Jardak-Jamoussi, Rahma misc Constitutive gene expression misc Drought tolerance improvement misc Germination misc Stomatal adjustment Grapevine RD22a constitutive expression in tobacco enhances stomatal adjustment and confers drought tolerance |
authorStr |
Jardak-Jamoussi, Rahma |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)790227800 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2197-0025 |
topic_title |
Grapevine RD22a constitutive expression in tobacco enhances stomatal adjustment and confers drought tolerance Constitutive gene expression (dpeaa)DE-He213 Drought tolerance improvement (dpeaa)DE-He213 Germination (dpeaa)DE-He213 Stomatal adjustment (dpeaa)DE-He213 |
topic |
misc Constitutive gene expression misc Drought tolerance improvement misc Germination misc Stomatal adjustment |
topic_unstemmed |
misc Constitutive gene expression misc Drought tolerance improvement misc Germination misc Stomatal adjustment |
topic_browse |
misc Constitutive gene expression misc Drought tolerance improvement misc Germination misc Stomatal adjustment |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Theoretical and experimental plant physiology |
hierarchy_parent_id |
790227800 |
hierarchy_top_title |
Theoretical and experimental plant physiology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)790227800 (DE-600)2776145-9 |
title |
Grapevine RD22a constitutive expression in tobacco enhances stomatal adjustment and confers drought tolerance |
ctrlnum |
(DE-627)SPR036933651 (SPR)s40626-016-0077-3-e |
title_full |
Grapevine RD22a constitutive expression in tobacco enhances stomatal adjustment and confers drought tolerance |
author_sort |
Jardak-Jamoussi, Rahma |
journal |
Theoretical and experimental plant physiology |
journalStr |
Theoretical and experimental plant physiology |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
395 |
author_browse |
Jardak-Jamoussi, Rahma Abdelwahed, Donia Zoghlami, Néjia Ben Salem, Asma Zarrouk, Olfa Mliki, Ahmed Chaves, Manuela Ghorbel, Abdelwahed Pinheiro, Carla |
container_volume |
28 |
format_se |
Elektronische Aufsätze |
author-letter |
Jardak-Jamoussi, Rahma |
doi_str_mv |
10.1007/s40626-016-0077-3 |
title_sort |
grapevine rd22a constitutive expression in tobacco enhances stomatal adjustment and confers drought tolerance |
title_auth |
Grapevine RD22a constitutive expression in tobacco enhances stomatal adjustment and confers drought tolerance |
abstract |
Abstract Drought is one of the major constraints limiting crop production worldwide including grapevine. Investigations of drought tolerance genotypes by genetic engineering are an important goal in Vitis breeding program. Three dehydration-responsive RD22 genes (VviRD22) were identified in Vitis vinifera L. Here, we aim to evaluate the constitutive expression of VviRD22a effect on tobacco performance under low water availability conditions, namely under drought and under osmotic stress. In vitro, and under osmotic stress, transgenic seeds of tobacco showed an enhanced tolerance at the germination and seedling stages compared to the wild-type (WT). When drought was applied ex vitro by stopping irrigation during 9 days, transgenic lines exhibited an earlier decrease of stomatal conductance that was, interestingly, followed by an internal adjustment leading to a moderate decline of the photosynthetic rate. Additionally, differences between WT and transgenics under both control and stressed conditions were revealed at ultrastructural level through shape alteration within the transgenics. Additionally, the performances of the VviRD22a lines under drought were notably maintained in terms of biomass production (vegetative dry material) and water status (Relative water content and water retention ability). A significant distinctiveness between VviRD22a-expressing lines and WT under stress conditions but not under control conditions (principal component analyses) was found. Protection effect of VviRD22a constitutive expression towards drought involved root biomass, water status and stomatal adjustment traits. Overall, our data suggest that VviRD22a transgenic expression plays a positive role in drought tolerance improvement supporting it as an important candidate gene for molecular breeding of drought tolerant grapevines. © Brazilian Society of Plant Physiology 2016 |
abstractGer |
Abstract Drought is one of the major constraints limiting crop production worldwide including grapevine. Investigations of drought tolerance genotypes by genetic engineering are an important goal in Vitis breeding program. Three dehydration-responsive RD22 genes (VviRD22) were identified in Vitis vinifera L. Here, we aim to evaluate the constitutive expression of VviRD22a effect on tobacco performance under low water availability conditions, namely under drought and under osmotic stress. In vitro, and under osmotic stress, transgenic seeds of tobacco showed an enhanced tolerance at the germination and seedling stages compared to the wild-type (WT). When drought was applied ex vitro by stopping irrigation during 9 days, transgenic lines exhibited an earlier decrease of stomatal conductance that was, interestingly, followed by an internal adjustment leading to a moderate decline of the photosynthetic rate. Additionally, differences between WT and transgenics under both control and stressed conditions were revealed at ultrastructural level through shape alteration within the transgenics. Additionally, the performances of the VviRD22a lines under drought were notably maintained in terms of biomass production (vegetative dry material) and water status (Relative water content and water retention ability). A significant distinctiveness between VviRD22a-expressing lines and WT under stress conditions but not under control conditions (principal component analyses) was found. Protection effect of VviRD22a constitutive expression towards drought involved root biomass, water status and stomatal adjustment traits. Overall, our data suggest that VviRD22a transgenic expression plays a positive role in drought tolerance improvement supporting it as an important candidate gene for molecular breeding of drought tolerant grapevines. © Brazilian Society of Plant Physiology 2016 |
abstract_unstemmed |
Abstract Drought is one of the major constraints limiting crop production worldwide including grapevine. Investigations of drought tolerance genotypes by genetic engineering are an important goal in Vitis breeding program. Three dehydration-responsive RD22 genes (VviRD22) were identified in Vitis vinifera L. Here, we aim to evaluate the constitutive expression of VviRD22a effect on tobacco performance under low water availability conditions, namely under drought and under osmotic stress. In vitro, and under osmotic stress, transgenic seeds of tobacco showed an enhanced tolerance at the germination and seedling stages compared to the wild-type (WT). When drought was applied ex vitro by stopping irrigation during 9 days, transgenic lines exhibited an earlier decrease of stomatal conductance that was, interestingly, followed by an internal adjustment leading to a moderate decline of the photosynthetic rate. Additionally, differences between WT and transgenics under both control and stressed conditions were revealed at ultrastructural level through shape alteration within the transgenics. Additionally, the performances of the VviRD22a lines under drought were notably maintained in terms of biomass production (vegetative dry material) and water status (Relative water content and water retention ability). A significant distinctiveness between VviRD22a-expressing lines and WT under stress conditions but not under control conditions (principal component analyses) was found. Protection effect of VviRD22a constitutive expression towards drought involved root biomass, water status and stomatal adjustment traits. Overall, our data suggest that VviRD22a transgenic expression plays a positive role in drought tolerance improvement supporting it as an important candidate gene for molecular breeding of drought tolerant grapevines. © Brazilian Society of Plant Physiology 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Grapevine RD22a constitutive expression in tobacco enhances stomatal adjustment and confers drought tolerance |
url |
https://dx.doi.org/10.1007/s40626-016-0077-3 |
remote_bool |
true |
author2 |
Abdelwahed, Donia Zoghlami, Néjia Ben Salem, Asma Zarrouk, Olfa Mliki, Ahmed Chaves, Manuela Ghorbel, Abdelwahed Pinheiro, Carla |
author2Str |
Abdelwahed, Donia Zoghlami, Néjia Ben Salem, Asma Zarrouk, Olfa Mliki, Ahmed Chaves, Manuela Ghorbel, Abdelwahed Pinheiro, Carla |
ppnlink |
790227800 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40626-016-0077-3 |
up_date |
2024-07-03T20:26:39.993Z |
_version_ |
1803590985319448576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR036933651</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519174636.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40626-016-0077-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR036933651</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40626-016-0077-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jardak-Jamoussi, Rahma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Grapevine RD22a constitutive expression in tobacco enhances stomatal adjustment and confers drought tolerance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Brazilian Society of Plant Physiology 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Drought is one of the major constraints limiting crop production worldwide including grapevine. Investigations of drought tolerance genotypes by genetic engineering are an important goal in Vitis breeding program. Three dehydration-responsive RD22 genes (VviRD22) were identified in Vitis vinifera L. Here, we aim to evaluate the constitutive expression of VviRD22a effect on tobacco performance under low water availability conditions, namely under drought and under osmotic stress. In vitro, and under osmotic stress, transgenic seeds of tobacco showed an enhanced tolerance at the germination and seedling stages compared to the wild-type (WT). When drought was applied ex vitro by stopping irrigation during 9 days, transgenic lines exhibited an earlier decrease of stomatal conductance that was, interestingly, followed by an internal adjustment leading to a moderate decline of the photosynthetic rate. Additionally, differences between WT and transgenics under both control and stressed conditions were revealed at ultrastructural level through shape alteration within the transgenics. Additionally, the performances of the VviRD22a lines under drought were notably maintained in terms of biomass production (vegetative dry material) and water status (Relative water content and water retention ability). A significant distinctiveness between VviRD22a-expressing lines and WT under stress conditions but not under control conditions (principal component analyses) was found. Protection effect of VviRD22a constitutive expression towards drought involved root biomass, water status and stomatal adjustment traits. Overall, our data suggest that VviRD22a transgenic expression plays a positive role in drought tolerance improvement supporting it as an important candidate gene for molecular breeding of drought tolerant grapevines.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constitutive gene expression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Drought tolerance improvement</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Germination</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stomatal adjustment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abdelwahed, Donia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zoghlami, Néjia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ben Salem, Asma</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zarrouk, Olfa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mliki, Ahmed</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chaves, Manuela</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghorbel, Abdelwahed</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pinheiro, Carla</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Theoretical and experimental plant physiology</subfield><subfield code="d">Berlin : Springer, 2014</subfield><subfield code="g">28(2016), 4 vom: 04. Okt., Seite 395-413</subfield><subfield code="w">(DE-627)790227800</subfield><subfield code="w">(DE-600)2776145-9</subfield><subfield code="x">2197-0025</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">day:04</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:395-413</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40626-016-0077-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="b">04</subfield><subfield code="c">10</subfield><subfield code="h">395-413</subfield></datafield></record></collection>
|
score |
7.401143 |