Aerosol and Solar Irradiance Effects on Decadal Climate Variability and Predictability
Abstract The expanding interest in decadal climate variability, predictability, and prediction highlights the importance of understanding the sources and mechanisms of decadal and interdecadal climate fluctuations. The purpose of this paper is to provide a critical review of our current understandin...
Ausführliche Beschreibung
Autor*in: |
Zanchettin, Davide [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer International Publishing AG 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Current climate change reports - Berlin : Springer, 2015, 3(2017), 2 vom: 17. Apr., Seite 150-162 |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2017 ; number:2 ; day:17 ; month:04 ; pages:150-162 |
Links: |
---|
DOI / URN: |
10.1007/s40641-017-0065-y |
---|
Katalog-ID: |
SPR037095684 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR037095684 | ||
003 | DE-627 | ||
005 | 20230328181951.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40641-017-0065-y |2 doi | |
035 | |a (DE-627)SPR037095684 | ||
035 | |a (SPR)s40641-017-0065-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Zanchettin, Davide |e verfasserin |0 (orcid)0000-0001-5929-6983 |4 aut | |
245 | 1 | 0 | |a Aerosol and Solar Irradiance Effects on Decadal Climate Variability and Predictability |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Springer International Publishing AG 2017 | ||
520 | |a Abstract The expanding interest in decadal climate variability, predictability, and prediction highlights the importance of understanding the sources and mechanisms of decadal and interdecadal climate fluctuations. The purpose of this paper is to provide a critical review of our current understanding of externally forced decadal climate variability. In particular, proposed mechanisms determining decadal climate responses to variations in solar activity, stratospheric volcanic aerosols, and natural as well as anthropogenic tropospheric aerosols are discussed, both separately and in a unified framework. The review suggests that the excitation of internal modes of interdecadal climate variability, particularly centered in the Pacific and North Atlantic sectors, remains a paradigm to characterize externally forced decadal climate variability and to interpret the associated dynamics. Significant recent advancements are the improved understanding of the critical dependency of volcanically forced decadal climate variability on the relative phase of ongoing internal variability and on additional external perturbations, and the recognition that associated uncertainty may represent a serious obstacle to identifying the climatic consequences even of very strong eruptions. Particularly relevant is also the recent development of hypotheses about potential mechanisms (reemergence and synchronization) underlying solar forced decadal climate variability. Finally, outstanding issues and, hence, major opportunities for progress regarding externally forced decadal climate variability are discussed. Uncertain characterization of forcing and climate histories, imperfect implementation of complex forcings in climate models, limited understanding of the internal component of interdecadal climate variability, and poor quality of its simulation are some of the enduring critical obstacles on which to progress. It is suggested that much further understanding can be gained through identification and investigation of relevant periods of forced decadal climate variability during the preindustrial past millennium. Another upcoming opportunity for progress is the analysis of focused experiments with coupled ocean–atmosphere general circulation models within the umbrella of the next phase of the coupled model intercomparison project. | ||
650 | 4 | |a Decadal climate variability |7 (dpeaa)DE-He213 | |
650 | 4 | |a Volcanic forcing |7 (dpeaa)DE-He213 | |
650 | 4 | |a Solar cycle |7 (dpeaa)DE-He213 | |
650 | 4 | |a Tropospheric aerosol |7 (dpeaa)DE-He213 | |
650 | 4 | |a Volcanic aerosol |7 (dpeaa)DE-He213 | |
650 | 4 | |a Climate modes |7 (dpeaa)DE-He213 | |
650 | 4 | |a Forced decadal variability |7 (dpeaa)DE-He213 | |
650 | 4 | |a Climate reconstructions |7 (dpeaa)DE-He213 | |
650 | 4 | |a Coupled climate models |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t Current climate change reports |d Berlin : Springer, 2015 |g 3(2017), 2 vom: 17. Apr., Seite 150-162 |w (DE-627)817361057 |w (DE-600)2808618-1 |x 2198-6061 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2017 |g number:2 |g day:17 |g month:04 |g pages:150-162 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40641-017-0065-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 2017 |e 2 |b 17 |c 04 |h 150-162 |
author_variant |
d z dz |
---|---|
matchkey_str |
article:21986061:2017----::eooadoairdacefcsneaaciaeaibl |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s40641-017-0065-y doi (DE-627)SPR037095684 (SPR)s40641-017-0065-y-e DE-627 ger DE-627 rakwb eng Zanchettin, Davide verfasserin (orcid)0000-0001-5929-6983 aut Aerosol and Solar Irradiance Effects on Decadal Climate Variability and Predictability 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer International Publishing AG 2017 Abstract The expanding interest in decadal climate variability, predictability, and prediction highlights the importance of understanding the sources and mechanisms of decadal and interdecadal climate fluctuations. The purpose of this paper is to provide a critical review of our current understanding of externally forced decadal climate variability. In particular, proposed mechanisms determining decadal climate responses to variations in solar activity, stratospheric volcanic aerosols, and natural as well as anthropogenic tropospheric aerosols are discussed, both separately and in a unified framework. The review suggests that the excitation of internal modes of interdecadal climate variability, particularly centered in the Pacific and North Atlantic sectors, remains a paradigm to characterize externally forced decadal climate variability and to interpret the associated dynamics. Significant recent advancements are the improved understanding of the critical dependency of volcanically forced decadal climate variability on the relative phase of ongoing internal variability and on additional external perturbations, and the recognition that associated uncertainty may represent a serious obstacle to identifying the climatic consequences even of very strong eruptions. Particularly relevant is also the recent development of hypotheses about potential mechanisms (reemergence and synchronization) underlying solar forced decadal climate variability. Finally, outstanding issues and, hence, major opportunities for progress regarding externally forced decadal climate variability are discussed. Uncertain characterization of forcing and climate histories, imperfect implementation of complex forcings in climate models, limited understanding of the internal component of interdecadal climate variability, and poor quality of its simulation are some of the enduring critical obstacles on which to progress. It is suggested that much further understanding can be gained through identification and investigation of relevant periods of forced decadal climate variability during the preindustrial past millennium. Another upcoming opportunity for progress is the analysis of focused experiments with coupled ocean–atmosphere general circulation models within the umbrella of the next phase of the coupled model intercomparison project. Decadal climate variability (dpeaa)DE-He213 Volcanic forcing (dpeaa)DE-He213 Solar cycle (dpeaa)DE-He213 Tropospheric aerosol (dpeaa)DE-He213 Volcanic aerosol (dpeaa)DE-He213 Climate modes (dpeaa)DE-He213 Forced decadal variability (dpeaa)DE-He213 Climate reconstructions (dpeaa)DE-He213 Coupled climate models (dpeaa)DE-He213 Enthalten in Current climate change reports Berlin : Springer, 2015 3(2017), 2 vom: 17. Apr., Seite 150-162 (DE-627)817361057 (DE-600)2808618-1 2198-6061 nnns volume:3 year:2017 number:2 day:17 month:04 pages:150-162 https://dx.doi.org/10.1007/s40641-017-0065-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 3 2017 2 17 04 150-162 |
spelling |
10.1007/s40641-017-0065-y doi (DE-627)SPR037095684 (SPR)s40641-017-0065-y-e DE-627 ger DE-627 rakwb eng Zanchettin, Davide verfasserin (orcid)0000-0001-5929-6983 aut Aerosol and Solar Irradiance Effects on Decadal Climate Variability and Predictability 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer International Publishing AG 2017 Abstract The expanding interest in decadal climate variability, predictability, and prediction highlights the importance of understanding the sources and mechanisms of decadal and interdecadal climate fluctuations. The purpose of this paper is to provide a critical review of our current understanding of externally forced decadal climate variability. In particular, proposed mechanisms determining decadal climate responses to variations in solar activity, stratospheric volcanic aerosols, and natural as well as anthropogenic tropospheric aerosols are discussed, both separately and in a unified framework. The review suggests that the excitation of internal modes of interdecadal climate variability, particularly centered in the Pacific and North Atlantic sectors, remains a paradigm to characterize externally forced decadal climate variability and to interpret the associated dynamics. Significant recent advancements are the improved understanding of the critical dependency of volcanically forced decadal climate variability on the relative phase of ongoing internal variability and on additional external perturbations, and the recognition that associated uncertainty may represent a serious obstacle to identifying the climatic consequences even of very strong eruptions. Particularly relevant is also the recent development of hypotheses about potential mechanisms (reemergence and synchronization) underlying solar forced decadal climate variability. Finally, outstanding issues and, hence, major opportunities for progress regarding externally forced decadal climate variability are discussed. Uncertain characterization of forcing and climate histories, imperfect implementation of complex forcings in climate models, limited understanding of the internal component of interdecadal climate variability, and poor quality of its simulation are some of the enduring critical obstacles on which to progress. It is suggested that much further understanding can be gained through identification and investigation of relevant periods of forced decadal climate variability during the preindustrial past millennium. Another upcoming opportunity for progress is the analysis of focused experiments with coupled ocean–atmosphere general circulation models within the umbrella of the next phase of the coupled model intercomparison project. Decadal climate variability (dpeaa)DE-He213 Volcanic forcing (dpeaa)DE-He213 Solar cycle (dpeaa)DE-He213 Tropospheric aerosol (dpeaa)DE-He213 Volcanic aerosol (dpeaa)DE-He213 Climate modes (dpeaa)DE-He213 Forced decadal variability (dpeaa)DE-He213 Climate reconstructions (dpeaa)DE-He213 Coupled climate models (dpeaa)DE-He213 Enthalten in Current climate change reports Berlin : Springer, 2015 3(2017), 2 vom: 17. Apr., Seite 150-162 (DE-627)817361057 (DE-600)2808618-1 2198-6061 nnns volume:3 year:2017 number:2 day:17 month:04 pages:150-162 https://dx.doi.org/10.1007/s40641-017-0065-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 3 2017 2 17 04 150-162 |
allfields_unstemmed |
10.1007/s40641-017-0065-y doi (DE-627)SPR037095684 (SPR)s40641-017-0065-y-e DE-627 ger DE-627 rakwb eng Zanchettin, Davide verfasserin (orcid)0000-0001-5929-6983 aut Aerosol and Solar Irradiance Effects on Decadal Climate Variability and Predictability 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer International Publishing AG 2017 Abstract The expanding interest in decadal climate variability, predictability, and prediction highlights the importance of understanding the sources and mechanisms of decadal and interdecadal climate fluctuations. The purpose of this paper is to provide a critical review of our current understanding of externally forced decadal climate variability. In particular, proposed mechanisms determining decadal climate responses to variations in solar activity, stratospheric volcanic aerosols, and natural as well as anthropogenic tropospheric aerosols are discussed, both separately and in a unified framework. The review suggests that the excitation of internal modes of interdecadal climate variability, particularly centered in the Pacific and North Atlantic sectors, remains a paradigm to characterize externally forced decadal climate variability and to interpret the associated dynamics. Significant recent advancements are the improved understanding of the critical dependency of volcanically forced decadal climate variability on the relative phase of ongoing internal variability and on additional external perturbations, and the recognition that associated uncertainty may represent a serious obstacle to identifying the climatic consequences even of very strong eruptions. Particularly relevant is also the recent development of hypotheses about potential mechanisms (reemergence and synchronization) underlying solar forced decadal climate variability. Finally, outstanding issues and, hence, major opportunities for progress regarding externally forced decadal climate variability are discussed. Uncertain characterization of forcing and climate histories, imperfect implementation of complex forcings in climate models, limited understanding of the internal component of interdecadal climate variability, and poor quality of its simulation are some of the enduring critical obstacles on which to progress. It is suggested that much further understanding can be gained through identification and investigation of relevant periods of forced decadal climate variability during the preindustrial past millennium. Another upcoming opportunity for progress is the analysis of focused experiments with coupled ocean–atmosphere general circulation models within the umbrella of the next phase of the coupled model intercomparison project. Decadal climate variability (dpeaa)DE-He213 Volcanic forcing (dpeaa)DE-He213 Solar cycle (dpeaa)DE-He213 Tropospheric aerosol (dpeaa)DE-He213 Volcanic aerosol (dpeaa)DE-He213 Climate modes (dpeaa)DE-He213 Forced decadal variability (dpeaa)DE-He213 Climate reconstructions (dpeaa)DE-He213 Coupled climate models (dpeaa)DE-He213 Enthalten in Current climate change reports Berlin : Springer, 2015 3(2017), 2 vom: 17. Apr., Seite 150-162 (DE-627)817361057 (DE-600)2808618-1 2198-6061 nnns volume:3 year:2017 number:2 day:17 month:04 pages:150-162 https://dx.doi.org/10.1007/s40641-017-0065-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 3 2017 2 17 04 150-162 |
allfieldsGer |
10.1007/s40641-017-0065-y doi (DE-627)SPR037095684 (SPR)s40641-017-0065-y-e DE-627 ger DE-627 rakwb eng Zanchettin, Davide verfasserin (orcid)0000-0001-5929-6983 aut Aerosol and Solar Irradiance Effects on Decadal Climate Variability and Predictability 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer International Publishing AG 2017 Abstract The expanding interest in decadal climate variability, predictability, and prediction highlights the importance of understanding the sources and mechanisms of decadal and interdecadal climate fluctuations. The purpose of this paper is to provide a critical review of our current understanding of externally forced decadal climate variability. In particular, proposed mechanisms determining decadal climate responses to variations in solar activity, stratospheric volcanic aerosols, and natural as well as anthropogenic tropospheric aerosols are discussed, both separately and in a unified framework. The review suggests that the excitation of internal modes of interdecadal climate variability, particularly centered in the Pacific and North Atlantic sectors, remains a paradigm to characterize externally forced decadal climate variability and to interpret the associated dynamics. Significant recent advancements are the improved understanding of the critical dependency of volcanically forced decadal climate variability on the relative phase of ongoing internal variability and on additional external perturbations, and the recognition that associated uncertainty may represent a serious obstacle to identifying the climatic consequences even of very strong eruptions. Particularly relevant is also the recent development of hypotheses about potential mechanisms (reemergence and synchronization) underlying solar forced decadal climate variability. Finally, outstanding issues and, hence, major opportunities for progress regarding externally forced decadal climate variability are discussed. Uncertain characterization of forcing and climate histories, imperfect implementation of complex forcings in climate models, limited understanding of the internal component of interdecadal climate variability, and poor quality of its simulation are some of the enduring critical obstacles on which to progress. It is suggested that much further understanding can be gained through identification and investigation of relevant periods of forced decadal climate variability during the preindustrial past millennium. Another upcoming opportunity for progress is the analysis of focused experiments with coupled ocean–atmosphere general circulation models within the umbrella of the next phase of the coupled model intercomparison project. Decadal climate variability (dpeaa)DE-He213 Volcanic forcing (dpeaa)DE-He213 Solar cycle (dpeaa)DE-He213 Tropospheric aerosol (dpeaa)DE-He213 Volcanic aerosol (dpeaa)DE-He213 Climate modes (dpeaa)DE-He213 Forced decadal variability (dpeaa)DE-He213 Climate reconstructions (dpeaa)DE-He213 Coupled climate models (dpeaa)DE-He213 Enthalten in Current climate change reports Berlin : Springer, 2015 3(2017), 2 vom: 17. Apr., Seite 150-162 (DE-627)817361057 (DE-600)2808618-1 2198-6061 nnns volume:3 year:2017 number:2 day:17 month:04 pages:150-162 https://dx.doi.org/10.1007/s40641-017-0065-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 3 2017 2 17 04 150-162 |
allfieldsSound |
10.1007/s40641-017-0065-y doi (DE-627)SPR037095684 (SPR)s40641-017-0065-y-e DE-627 ger DE-627 rakwb eng Zanchettin, Davide verfasserin (orcid)0000-0001-5929-6983 aut Aerosol and Solar Irradiance Effects on Decadal Climate Variability and Predictability 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer International Publishing AG 2017 Abstract The expanding interest in decadal climate variability, predictability, and prediction highlights the importance of understanding the sources and mechanisms of decadal and interdecadal climate fluctuations. The purpose of this paper is to provide a critical review of our current understanding of externally forced decadal climate variability. In particular, proposed mechanisms determining decadal climate responses to variations in solar activity, stratospheric volcanic aerosols, and natural as well as anthropogenic tropospheric aerosols are discussed, both separately and in a unified framework. The review suggests that the excitation of internal modes of interdecadal climate variability, particularly centered in the Pacific and North Atlantic sectors, remains a paradigm to characterize externally forced decadal climate variability and to interpret the associated dynamics. Significant recent advancements are the improved understanding of the critical dependency of volcanically forced decadal climate variability on the relative phase of ongoing internal variability and on additional external perturbations, and the recognition that associated uncertainty may represent a serious obstacle to identifying the climatic consequences even of very strong eruptions. Particularly relevant is also the recent development of hypotheses about potential mechanisms (reemergence and synchronization) underlying solar forced decadal climate variability. Finally, outstanding issues and, hence, major opportunities for progress regarding externally forced decadal climate variability are discussed. Uncertain characterization of forcing and climate histories, imperfect implementation of complex forcings in climate models, limited understanding of the internal component of interdecadal climate variability, and poor quality of its simulation are some of the enduring critical obstacles on which to progress. It is suggested that much further understanding can be gained through identification and investigation of relevant periods of forced decadal climate variability during the preindustrial past millennium. Another upcoming opportunity for progress is the analysis of focused experiments with coupled ocean–atmosphere general circulation models within the umbrella of the next phase of the coupled model intercomparison project. Decadal climate variability (dpeaa)DE-He213 Volcanic forcing (dpeaa)DE-He213 Solar cycle (dpeaa)DE-He213 Tropospheric aerosol (dpeaa)DE-He213 Volcanic aerosol (dpeaa)DE-He213 Climate modes (dpeaa)DE-He213 Forced decadal variability (dpeaa)DE-He213 Climate reconstructions (dpeaa)DE-He213 Coupled climate models (dpeaa)DE-He213 Enthalten in Current climate change reports Berlin : Springer, 2015 3(2017), 2 vom: 17. Apr., Seite 150-162 (DE-627)817361057 (DE-600)2808618-1 2198-6061 nnns volume:3 year:2017 number:2 day:17 month:04 pages:150-162 https://dx.doi.org/10.1007/s40641-017-0065-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 3 2017 2 17 04 150-162 |
language |
English |
source |
Enthalten in Current climate change reports 3(2017), 2 vom: 17. Apr., Seite 150-162 volume:3 year:2017 number:2 day:17 month:04 pages:150-162 |
sourceStr |
Enthalten in Current climate change reports 3(2017), 2 vom: 17. Apr., Seite 150-162 volume:3 year:2017 number:2 day:17 month:04 pages:150-162 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Decadal climate variability Volcanic forcing Solar cycle Tropospheric aerosol Volcanic aerosol Climate modes Forced decadal variability Climate reconstructions Coupled climate models |
isfreeaccess_bool |
false |
container_title |
Current climate change reports |
authorswithroles_txt_mv |
Zanchettin, Davide @@aut@@ |
publishDateDaySort_date |
2017-04-17T00:00:00Z |
hierarchy_top_id |
817361057 |
id |
SPR037095684 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR037095684</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328181951.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40641-017-0065-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR037095684</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40641-017-0065-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zanchettin, Davide</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5929-6983</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Aerosol and Solar Irradiance Effects on Decadal Climate Variability and Predictability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer International Publishing AG 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The expanding interest in decadal climate variability, predictability, and prediction highlights the importance of understanding the sources and mechanisms of decadal and interdecadal climate fluctuations. The purpose of this paper is to provide a critical review of our current understanding of externally forced decadal climate variability. In particular, proposed mechanisms determining decadal climate responses to variations in solar activity, stratospheric volcanic aerosols, and natural as well as anthropogenic tropospheric aerosols are discussed, both separately and in a unified framework. The review suggests that the excitation of internal modes of interdecadal climate variability, particularly centered in the Pacific and North Atlantic sectors, remains a paradigm to characterize externally forced decadal climate variability and to interpret the associated dynamics. Significant recent advancements are the improved understanding of the critical dependency of volcanically forced decadal climate variability on the relative phase of ongoing internal variability and on additional external perturbations, and the recognition that associated uncertainty may represent a serious obstacle to identifying the climatic consequences even of very strong eruptions. Particularly relevant is also the recent development of hypotheses about potential mechanisms (reemergence and synchronization) underlying solar forced decadal climate variability. Finally, outstanding issues and, hence, major opportunities for progress regarding externally forced decadal climate variability are discussed. Uncertain characterization of forcing and climate histories, imperfect implementation of complex forcings in climate models, limited understanding of the internal component of interdecadal climate variability, and poor quality of its simulation are some of the enduring critical obstacles on which to progress. It is suggested that much further understanding can be gained through identification and investigation of relevant periods of forced decadal climate variability during the preindustrial past millennium. Another upcoming opportunity for progress is the analysis of focused experiments with coupled ocean–atmosphere general circulation models within the umbrella of the next phase of the coupled model intercomparison project.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decadal climate variability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volcanic forcing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar cycle</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tropospheric aerosol</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volcanic aerosol</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate modes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forced decadal variability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate reconstructions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupled climate models</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Current climate change reports</subfield><subfield code="d">Berlin : Springer, 2015</subfield><subfield code="g">3(2017), 2 vom: 17. Apr., Seite 150-162</subfield><subfield code="w">(DE-627)817361057</subfield><subfield code="w">(DE-600)2808618-1</subfield><subfield code="x">2198-6061</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">day:17</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:150-162</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40641-017-0065-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="b">17</subfield><subfield code="c">04</subfield><subfield code="h">150-162</subfield></datafield></record></collection>
|
author |
Zanchettin, Davide |
spellingShingle |
Zanchettin, Davide misc Decadal climate variability misc Volcanic forcing misc Solar cycle misc Tropospheric aerosol misc Volcanic aerosol misc Climate modes misc Forced decadal variability misc Climate reconstructions misc Coupled climate models Aerosol and Solar Irradiance Effects on Decadal Climate Variability and Predictability |
authorStr |
Zanchettin, Davide |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)817361057 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2198-6061 |
topic_title |
Aerosol and Solar Irradiance Effects on Decadal Climate Variability and Predictability Decadal climate variability (dpeaa)DE-He213 Volcanic forcing (dpeaa)DE-He213 Solar cycle (dpeaa)DE-He213 Tropospheric aerosol (dpeaa)DE-He213 Volcanic aerosol (dpeaa)DE-He213 Climate modes (dpeaa)DE-He213 Forced decadal variability (dpeaa)DE-He213 Climate reconstructions (dpeaa)DE-He213 Coupled climate models (dpeaa)DE-He213 |
topic |
misc Decadal climate variability misc Volcanic forcing misc Solar cycle misc Tropospheric aerosol misc Volcanic aerosol misc Climate modes misc Forced decadal variability misc Climate reconstructions misc Coupled climate models |
topic_unstemmed |
misc Decadal climate variability misc Volcanic forcing misc Solar cycle misc Tropospheric aerosol misc Volcanic aerosol misc Climate modes misc Forced decadal variability misc Climate reconstructions misc Coupled climate models |
topic_browse |
misc Decadal climate variability misc Volcanic forcing misc Solar cycle misc Tropospheric aerosol misc Volcanic aerosol misc Climate modes misc Forced decadal variability misc Climate reconstructions misc Coupled climate models |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Current climate change reports |
hierarchy_parent_id |
817361057 |
hierarchy_top_title |
Current climate change reports |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)817361057 (DE-600)2808618-1 |
title |
Aerosol and Solar Irradiance Effects on Decadal Climate Variability and Predictability |
ctrlnum |
(DE-627)SPR037095684 (SPR)s40641-017-0065-y-e |
title_full |
Aerosol and Solar Irradiance Effects on Decadal Climate Variability and Predictability |
author_sort |
Zanchettin, Davide |
journal |
Current climate change reports |
journalStr |
Current climate change reports |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
150 |
author_browse |
Zanchettin, Davide |
container_volume |
3 |
format_se |
Elektronische Aufsätze |
author-letter |
Zanchettin, Davide |
doi_str_mv |
10.1007/s40641-017-0065-y |
normlink |
(ORCID)0000-0001-5929-6983 |
normlink_prefix_str_mv |
(orcid)0000-0001-5929-6983 |
title_sort |
aerosol and solar irradiance effects on decadal climate variability and predictability |
title_auth |
Aerosol and Solar Irradiance Effects on Decadal Climate Variability and Predictability |
abstract |
Abstract The expanding interest in decadal climate variability, predictability, and prediction highlights the importance of understanding the sources and mechanisms of decadal and interdecadal climate fluctuations. The purpose of this paper is to provide a critical review of our current understanding of externally forced decadal climate variability. In particular, proposed mechanisms determining decadal climate responses to variations in solar activity, stratospheric volcanic aerosols, and natural as well as anthropogenic tropospheric aerosols are discussed, both separately and in a unified framework. The review suggests that the excitation of internal modes of interdecadal climate variability, particularly centered in the Pacific and North Atlantic sectors, remains a paradigm to characterize externally forced decadal climate variability and to interpret the associated dynamics. Significant recent advancements are the improved understanding of the critical dependency of volcanically forced decadal climate variability on the relative phase of ongoing internal variability and on additional external perturbations, and the recognition that associated uncertainty may represent a serious obstacle to identifying the climatic consequences even of very strong eruptions. Particularly relevant is also the recent development of hypotheses about potential mechanisms (reemergence and synchronization) underlying solar forced decadal climate variability. Finally, outstanding issues and, hence, major opportunities for progress regarding externally forced decadal climate variability are discussed. Uncertain characterization of forcing and climate histories, imperfect implementation of complex forcings in climate models, limited understanding of the internal component of interdecadal climate variability, and poor quality of its simulation are some of the enduring critical obstacles on which to progress. It is suggested that much further understanding can be gained through identification and investigation of relevant periods of forced decadal climate variability during the preindustrial past millennium. Another upcoming opportunity for progress is the analysis of focused experiments with coupled ocean–atmosphere general circulation models within the umbrella of the next phase of the coupled model intercomparison project. © Springer International Publishing AG 2017 |
abstractGer |
Abstract The expanding interest in decadal climate variability, predictability, and prediction highlights the importance of understanding the sources and mechanisms of decadal and interdecadal climate fluctuations. The purpose of this paper is to provide a critical review of our current understanding of externally forced decadal climate variability. In particular, proposed mechanisms determining decadal climate responses to variations in solar activity, stratospheric volcanic aerosols, and natural as well as anthropogenic tropospheric aerosols are discussed, both separately and in a unified framework. The review suggests that the excitation of internal modes of interdecadal climate variability, particularly centered in the Pacific and North Atlantic sectors, remains a paradigm to characterize externally forced decadal climate variability and to interpret the associated dynamics. Significant recent advancements are the improved understanding of the critical dependency of volcanically forced decadal climate variability on the relative phase of ongoing internal variability and on additional external perturbations, and the recognition that associated uncertainty may represent a serious obstacle to identifying the climatic consequences even of very strong eruptions. Particularly relevant is also the recent development of hypotheses about potential mechanisms (reemergence and synchronization) underlying solar forced decadal climate variability. Finally, outstanding issues and, hence, major opportunities for progress regarding externally forced decadal climate variability are discussed. Uncertain characterization of forcing and climate histories, imperfect implementation of complex forcings in climate models, limited understanding of the internal component of interdecadal climate variability, and poor quality of its simulation are some of the enduring critical obstacles on which to progress. It is suggested that much further understanding can be gained through identification and investigation of relevant periods of forced decadal climate variability during the preindustrial past millennium. Another upcoming opportunity for progress is the analysis of focused experiments with coupled ocean–atmosphere general circulation models within the umbrella of the next phase of the coupled model intercomparison project. © Springer International Publishing AG 2017 |
abstract_unstemmed |
Abstract The expanding interest in decadal climate variability, predictability, and prediction highlights the importance of understanding the sources and mechanisms of decadal and interdecadal climate fluctuations. The purpose of this paper is to provide a critical review of our current understanding of externally forced decadal climate variability. In particular, proposed mechanisms determining decadal climate responses to variations in solar activity, stratospheric volcanic aerosols, and natural as well as anthropogenic tropospheric aerosols are discussed, both separately and in a unified framework. The review suggests that the excitation of internal modes of interdecadal climate variability, particularly centered in the Pacific and North Atlantic sectors, remains a paradigm to characterize externally forced decadal climate variability and to interpret the associated dynamics. Significant recent advancements are the improved understanding of the critical dependency of volcanically forced decadal climate variability on the relative phase of ongoing internal variability and on additional external perturbations, and the recognition that associated uncertainty may represent a serious obstacle to identifying the climatic consequences even of very strong eruptions. Particularly relevant is also the recent development of hypotheses about potential mechanisms (reemergence and synchronization) underlying solar forced decadal climate variability. Finally, outstanding issues and, hence, major opportunities for progress regarding externally forced decadal climate variability are discussed. Uncertain characterization of forcing and climate histories, imperfect implementation of complex forcings in climate models, limited understanding of the internal component of interdecadal climate variability, and poor quality of its simulation are some of the enduring critical obstacles on which to progress. It is suggested that much further understanding can be gained through identification and investigation of relevant periods of forced decadal climate variability during the preindustrial past millennium. Another upcoming opportunity for progress is the analysis of focused experiments with coupled ocean–atmosphere general circulation models within the umbrella of the next phase of the coupled model intercomparison project. © Springer International Publishing AG 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Aerosol and Solar Irradiance Effects on Decadal Climate Variability and Predictability |
url |
https://dx.doi.org/10.1007/s40641-017-0065-y |
remote_bool |
true |
ppnlink |
817361057 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40641-017-0065-y |
up_date |
2024-07-03T21:06:23.848Z |
_version_ |
1803593484966297600 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR037095684</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328181951.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40641-017-0065-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR037095684</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40641-017-0065-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zanchettin, Davide</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5929-6983</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Aerosol and Solar Irradiance Effects on Decadal Climate Variability and Predictability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer International Publishing AG 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The expanding interest in decadal climate variability, predictability, and prediction highlights the importance of understanding the sources and mechanisms of decadal and interdecadal climate fluctuations. The purpose of this paper is to provide a critical review of our current understanding of externally forced decadal climate variability. In particular, proposed mechanisms determining decadal climate responses to variations in solar activity, stratospheric volcanic aerosols, and natural as well as anthropogenic tropospheric aerosols are discussed, both separately and in a unified framework. The review suggests that the excitation of internal modes of interdecadal climate variability, particularly centered in the Pacific and North Atlantic sectors, remains a paradigm to characterize externally forced decadal climate variability and to interpret the associated dynamics. Significant recent advancements are the improved understanding of the critical dependency of volcanically forced decadal climate variability on the relative phase of ongoing internal variability and on additional external perturbations, and the recognition that associated uncertainty may represent a serious obstacle to identifying the climatic consequences even of very strong eruptions. Particularly relevant is also the recent development of hypotheses about potential mechanisms (reemergence and synchronization) underlying solar forced decadal climate variability. Finally, outstanding issues and, hence, major opportunities for progress regarding externally forced decadal climate variability are discussed. Uncertain characterization of forcing and climate histories, imperfect implementation of complex forcings in climate models, limited understanding of the internal component of interdecadal climate variability, and poor quality of its simulation are some of the enduring critical obstacles on which to progress. It is suggested that much further understanding can be gained through identification and investigation of relevant periods of forced decadal climate variability during the preindustrial past millennium. Another upcoming opportunity for progress is the analysis of focused experiments with coupled ocean–atmosphere general circulation models within the umbrella of the next phase of the coupled model intercomparison project.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decadal climate variability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volcanic forcing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar cycle</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tropospheric aerosol</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volcanic aerosol</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate modes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forced decadal variability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate reconstructions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupled climate models</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Current climate change reports</subfield><subfield code="d">Berlin : Springer, 2015</subfield><subfield code="g">3(2017), 2 vom: 17. Apr., Seite 150-162</subfield><subfield code="w">(DE-627)817361057</subfield><subfield code="w">(DE-600)2808618-1</subfield><subfield code="x">2198-6061</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">day:17</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:150-162</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40641-017-0065-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="b">17</subfield><subfield code="c">04</subfield><subfield code="h">150-162</subfield></datafield></record></collection>
|
score |
7.4012585 |