The role of pargasitic amphibole in the formation of major geophysical discontinuities in the shallow upper mantle
Abstract Several explanations have been proposed for variation in geophysical properties and depths for the lithosphere–asthenosphere boundary (LAB) and mid-lithospheric discontinuities (MLD). Here, we investigate the proposal that the dehydration solidus of pargasitic amphibole-bearing upper mantle...
Ausführliche Beschreibung
Autor*in: |
Kovács, István [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
Lithosphere–asthenosphere boundary (LAB) |
---|
Anmerkung: |
© Akadémiai Kiadó 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta geodaetica et geophysica Hungarica - Budapest : Akad. Kiadó, 1997, 52(2017), 2 vom: 14. Feb., Seite 183-204 |
---|---|
Übergeordnetes Werk: |
volume:52 ; year:2017 ; number:2 ; day:14 ; month:02 ; pages:183-204 |
Links: |
---|
DOI / URN: |
10.1007/s40328-016-0191-3 |
---|
Katalog-ID: |
SPR037151797 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR037151797 | ||
003 | DE-627 | ||
005 | 20230328170102.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40328-016-0191-3 |2 doi | |
035 | |a (DE-627)SPR037151797 | ||
035 | |a (SPR)s40328-016-0191-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Kovács, István |e verfasserin |4 aut | |
245 | 1 | 4 | |a The role of pargasitic amphibole in the formation of major geophysical discontinuities in the shallow upper mantle |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Akadémiai Kiadó 2017 | ||
520 | |a Abstract Several explanations have been proposed for variation in geophysical properties and depths for the lithosphere–asthenosphere boundary (LAB) and mid-lithospheric discontinuities (MLD). Here, we investigate the proposal that the dehydration solidus of pargasitic amphibole-bearing upper mantle with very low bulk water (hundreds ppm) may be one of the main reasons for the observed geophysical anomalies. The dehydration solidus may be associated with a very small degree of partial melting in the upper mantle at temperatures and pressures in excess of 1050 °C (for geochemically more depleted) or 1100 °C (for geochemically less depleted upper mantle) and from 1 to 3 GPa (~30 to 90 km) respectively. This small amount of partial melt may be responsible for changes in geophysical properties (e.g. lower seismic velocity, higher attenuation of seismic waves, higher electrical conductivity) in association with the LAB and MLD. This simple petrologic model is tested on the abundant geophysical data of the Carpathian–Pannonian region (CPR), central Europe. The high resolution heat flow data available in the CPR allows us to estimate the depths to intersection of area specific depth-temperature curves with the dehydration solidus temperatures (1050 and 1100 °C isotherms). There is relatively small mismatch (<5 km) between the position of these intersections and the geophysically determined LAB in the central area of the CPR. These observations lend support for the proposition that the dehydration solidus may be largely responsible for depth variation of the LAB in young continental rift areas. Towards the margins of the CPR, however, where the heat flow is lower (≲70 mW/$ m^{2} $), the predictive capability of the dehydration solidus model deteriorates. This is because, for lower geothermal gradients, pargasitic amphibole breaks down at ~90 km (or ~3 GPa) before temperature exceeds the dehydration solidus temperatures. Consequently, at ~90 km depth we expect no changes in geophysical properties indicative of hydrous silicate melt, in areas where surface heat flow is lower (i.e. Precambrian cratonic shields, Phanerozoic continental lithospheres or, possibly older oceanic plates). Alternatively, in these areas, the intersection of the geotherm with pargasitic amphibole breakdown may cause small changes in properties which correlate with the MLD rather than the LAB, which is at deeper levels. | ||
650 | 4 | |a Lithosphere–asthenosphere boundary (LAB) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mid lithosphere discontinuities (MLD) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Amphibole |7 (dpeaa)DE-He213 | |
650 | 4 | |a Melt |7 (dpeaa)DE-He213 | |
650 | 4 | |a Water |7 (dpeaa)DE-He213 | |
700 | 1 | |a Lenkey, László |4 aut | |
700 | 1 | |a Green, David. H. |4 aut | |
700 | 1 | |a Fancsik, Tamás |4 aut | |
700 | 1 | |a Falus, György |4 aut | |
700 | 1 | |a Kiss, János |4 aut | |
700 | 1 | |a Orosz, László |4 aut | |
700 | 1 | |a Angyal, Jolán |4 aut | |
700 | 1 | |a Vikor, Zsuzsanna |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Acta geodaetica et geophysica Hungarica |d Budapest : Akad. Kiadó, 1997 |g 52(2017), 2 vom: 14. Feb., Seite 183-204 |w (DE-627)364470852 |w (DE-600)2110468-2 |x 1587-1037 |7 nnns |
773 | 1 | 8 | |g volume:52 |g year:2017 |g number:2 |g day:14 |g month:02 |g pages:183-204 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40328-016-0191-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
951 | |a AR | ||
952 | |d 52 |j 2017 |e 2 |b 14 |c 02 |h 183-204 |
author_variant |
i k ik l l ll d h g dh dhg t f tf g f gf j k jk l o lo j a ja z v zv |
---|---|
matchkey_str |
article:15871037:2017----::hrlopraiiapioenhfrainfaogohsclicniut |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s40328-016-0191-3 doi (DE-627)SPR037151797 (SPR)s40328-016-0191-3-e DE-627 ger DE-627 rakwb eng Kovács, István verfasserin aut The role of pargasitic amphibole in the formation of major geophysical discontinuities in the shallow upper mantle 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Akadémiai Kiadó 2017 Abstract Several explanations have been proposed for variation in geophysical properties and depths for the lithosphere–asthenosphere boundary (LAB) and mid-lithospheric discontinuities (MLD). Here, we investigate the proposal that the dehydration solidus of pargasitic amphibole-bearing upper mantle with very low bulk water (hundreds ppm) may be one of the main reasons for the observed geophysical anomalies. The dehydration solidus may be associated with a very small degree of partial melting in the upper mantle at temperatures and pressures in excess of 1050 °C (for geochemically more depleted) or 1100 °C (for geochemically less depleted upper mantle) and from 1 to 3 GPa (~30 to 90 km) respectively. This small amount of partial melt may be responsible for changes in geophysical properties (e.g. lower seismic velocity, higher attenuation of seismic waves, higher electrical conductivity) in association with the LAB and MLD. This simple petrologic model is tested on the abundant geophysical data of the Carpathian–Pannonian region (CPR), central Europe. The high resolution heat flow data available in the CPR allows us to estimate the depths to intersection of area specific depth-temperature curves with the dehydration solidus temperatures (1050 and 1100 °C isotherms). There is relatively small mismatch (<5 km) between the position of these intersections and the geophysically determined LAB in the central area of the CPR. These observations lend support for the proposition that the dehydration solidus may be largely responsible for depth variation of the LAB in young continental rift areas. Towards the margins of the CPR, however, where the heat flow is lower (≲70 mW/$ m^{2} $), the predictive capability of the dehydration solidus model deteriorates. This is because, for lower geothermal gradients, pargasitic amphibole breaks down at ~90 km (or ~3 GPa) before temperature exceeds the dehydration solidus temperatures. Consequently, at ~90 km depth we expect no changes in geophysical properties indicative of hydrous silicate melt, in areas where surface heat flow is lower (i.e. Precambrian cratonic shields, Phanerozoic continental lithospheres or, possibly older oceanic plates). Alternatively, in these areas, the intersection of the geotherm with pargasitic amphibole breakdown may cause small changes in properties which correlate with the MLD rather than the LAB, which is at deeper levels. Lithosphere–asthenosphere boundary (LAB) (dpeaa)DE-He213 Mid lithosphere discontinuities (MLD) (dpeaa)DE-He213 Amphibole (dpeaa)DE-He213 Melt (dpeaa)DE-He213 Water (dpeaa)DE-He213 Lenkey, László aut Green, David. H. aut Fancsik, Tamás aut Falus, György aut Kiss, János aut Orosz, László aut Angyal, Jolán aut Vikor, Zsuzsanna aut Enthalten in Acta geodaetica et geophysica Hungarica Budapest : Akad. Kiadó, 1997 52(2017), 2 vom: 14. Feb., Seite 183-204 (DE-627)364470852 (DE-600)2110468-2 1587-1037 nnns volume:52 year:2017 number:2 day:14 month:02 pages:183-204 https://dx.doi.org/10.1007/s40328-016-0191-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 52 2017 2 14 02 183-204 |
spelling |
10.1007/s40328-016-0191-3 doi (DE-627)SPR037151797 (SPR)s40328-016-0191-3-e DE-627 ger DE-627 rakwb eng Kovács, István verfasserin aut The role of pargasitic amphibole in the formation of major geophysical discontinuities in the shallow upper mantle 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Akadémiai Kiadó 2017 Abstract Several explanations have been proposed for variation in geophysical properties and depths for the lithosphere–asthenosphere boundary (LAB) and mid-lithospheric discontinuities (MLD). Here, we investigate the proposal that the dehydration solidus of pargasitic amphibole-bearing upper mantle with very low bulk water (hundreds ppm) may be one of the main reasons for the observed geophysical anomalies. The dehydration solidus may be associated with a very small degree of partial melting in the upper mantle at temperatures and pressures in excess of 1050 °C (for geochemically more depleted) or 1100 °C (for geochemically less depleted upper mantle) and from 1 to 3 GPa (~30 to 90 km) respectively. This small amount of partial melt may be responsible for changes in geophysical properties (e.g. lower seismic velocity, higher attenuation of seismic waves, higher electrical conductivity) in association with the LAB and MLD. This simple petrologic model is tested on the abundant geophysical data of the Carpathian–Pannonian region (CPR), central Europe. The high resolution heat flow data available in the CPR allows us to estimate the depths to intersection of area specific depth-temperature curves with the dehydration solidus temperatures (1050 and 1100 °C isotherms). There is relatively small mismatch (<5 km) between the position of these intersections and the geophysically determined LAB in the central area of the CPR. These observations lend support for the proposition that the dehydration solidus may be largely responsible for depth variation of the LAB in young continental rift areas. Towards the margins of the CPR, however, where the heat flow is lower (≲70 mW/$ m^{2} $), the predictive capability of the dehydration solidus model deteriorates. This is because, for lower geothermal gradients, pargasitic amphibole breaks down at ~90 km (or ~3 GPa) before temperature exceeds the dehydration solidus temperatures. Consequently, at ~90 km depth we expect no changes in geophysical properties indicative of hydrous silicate melt, in areas where surface heat flow is lower (i.e. Precambrian cratonic shields, Phanerozoic continental lithospheres or, possibly older oceanic plates). Alternatively, in these areas, the intersection of the geotherm with pargasitic amphibole breakdown may cause small changes in properties which correlate with the MLD rather than the LAB, which is at deeper levels. Lithosphere–asthenosphere boundary (LAB) (dpeaa)DE-He213 Mid lithosphere discontinuities (MLD) (dpeaa)DE-He213 Amphibole (dpeaa)DE-He213 Melt (dpeaa)DE-He213 Water (dpeaa)DE-He213 Lenkey, László aut Green, David. H. aut Fancsik, Tamás aut Falus, György aut Kiss, János aut Orosz, László aut Angyal, Jolán aut Vikor, Zsuzsanna aut Enthalten in Acta geodaetica et geophysica Hungarica Budapest : Akad. Kiadó, 1997 52(2017), 2 vom: 14. Feb., Seite 183-204 (DE-627)364470852 (DE-600)2110468-2 1587-1037 nnns volume:52 year:2017 number:2 day:14 month:02 pages:183-204 https://dx.doi.org/10.1007/s40328-016-0191-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 52 2017 2 14 02 183-204 |
allfields_unstemmed |
10.1007/s40328-016-0191-3 doi (DE-627)SPR037151797 (SPR)s40328-016-0191-3-e DE-627 ger DE-627 rakwb eng Kovács, István verfasserin aut The role of pargasitic amphibole in the formation of major geophysical discontinuities in the shallow upper mantle 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Akadémiai Kiadó 2017 Abstract Several explanations have been proposed for variation in geophysical properties and depths for the lithosphere–asthenosphere boundary (LAB) and mid-lithospheric discontinuities (MLD). Here, we investigate the proposal that the dehydration solidus of pargasitic amphibole-bearing upper mantle with very low bulk water (hundreds ppm) may be one of the main reasons for the observed geophysical anomalies. The dehydration solidus may be associated with a very small degree of partial melting in the upper mantle at temperatures and pressures in excess of 1050 °C (for geochemically more depleted) or 1100 °C (for geochemically less depleted upper mantle) and from 1 to 3 GPa (~30 to 90 km) respectively. This small amount of partial melt may be responsible for changes in geophysical properties (e.g. lower seismic velocity, higher attenuation of seismic waves, higher electrical conductivity) in association with the LAB and MLD. This simple petrologic model is tested on the abundant geophysical data of the Carpathian–Pannonian region (CPR), central Europe. The high resolution heat flow data available in the CPR allows us to estimate the depths to intersection of area specific depth-temperature curves with the dehydration solidus temperatures (1050 and 1100 °C isotherms). There is relatively small mismatch (<5 km) between the position of these intersections and the geophysically determined LAB in the central area of the CPR. These observations lend support for the proposition that the dehydration solidus may be largely responsible for depth variation of the LAB in young continental rift areas. Towards the margins of the CPR, however, where the heat flow is lower (≲70 mW/$ m^{2} $), the predictive capability of the dehydration solidus model deteriorates. This is because, for lower geothermal gradients, pargasitic amphibole breaks down at ~90 km (or ~3 GPa) before temperature exceeds the dehydration solidus temperatures. Consequently, at ~90 km depth we expect no changes in geophysical properties indicative of hydrous silicate melt, in areas where surface heat flow is lower (i.e. Precambrian cratonic shields, Phanerozoic continental lithospheres or, possibly older oceanic plates). Alternatively, in these areas, the intersection of the geotherm with pargasitic amphibole breakdown may cause small changes in properties which correlate with the MLD rather than the LAB, which is at deeper levels. Lithosphere–asthenosphere boundary (LAB) (dpeaa)DE-He213 Mid lithosphere discontinuities (MLD) (dpeaa)DE-He213 Amphibole (dpeaa)DE-He213 Melt (dpeaa)DE-He213 Water (dpeaa)DE-He213 Lenkey, László aut Green, David. H. aut Fancsik, Tamás aut Falus, György aut Kiss, János aut Orosz, László aut Angyal, Jolán aut Vikor, Zsuzsanna aut Enthalten in Acta geodaetica et geophysica Hungarica Budapest : Akad. Kiadó, 1997 52(2017), 2 vom: 14. Feb., Seite 183-204 (DE-627)364470852 (DE-600)2110468-2 1587-1037 nnns volume:52 year:2017 number:2 day:14 month:02 pages:183-204 https://dx.doi.org/10.1007/s40328-016-0191-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 52 2017 2 14 02 183-204 |
allfieldsGer |
10.1007/s40328-016-0191-3 doi (DE-627)SPR037151797 (SPR)s40328-016-0191-3-e DE-627 ger DE-627 rakwb eng Kovács, István verfasserin aut The role of pargasitic amphibole in the formation of major geophysical discontinuities in the shallow upper mantle 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Akadémiai Kiadó 2017 Abstract Several explanations have been proposed for variation in geophysical properties and depths for the lithosphere–asthenosphere boundary (LAB) and mid-lithospheric discontinuities (MLD). Here, we investigate the proposal that the dehydration solidus of pargasitic amphibole-bearing upper mantle with very low bulk water (hundreds ppm) may be one of the main reasons for the observed geophysical anomalies. The dehydration solidus may be associated with a very small degree of partial melting in the upper mantle at temperatures and pressures in excess of 1050 °C (for geochemically more depleted) or 1100 °C (for geochemically less depleted upper mantle) and from 1 to 3 GPa (~30 to 90 km) respectively. This small amount of partial melt may be responsible for changes in geophysical properties (e.g. lower seismic velocity, higher attenuation of seismic waves, higher electrical conductivity) in association with the LAB and MLD. This simple petrologic model is tested on the abundant geophysical data of the Carpathian–Pannonian region (CPR), central Europe. The high resolution heat flow data available in the CPR allows us to estimate the depths to intersection of area specific depth-temperature curves with the dehydration solidus temperatures (1050 and 1100 °C isotherms). There is relatively small mismatch (<5 km) between the position of these intersections and the geophysically determined LAB in the central area of the CPR. These observations lend support for the proposition that the dehydration solidus may be largely responsible for depth variation of the LAB in young continental rift areas. Towards the margins of the CPR, however, where the heat flow is lower (≲70 mW/$ m^{2} $), the predictive capability of the dehydration solidus model deteriorates. This is because, for lower geothermal gradients, pargasitic amphibole breaks down at ~90 km (or ~3 GPa) before temperature exceeds the dehydration solidus temperatures. Consequently, at ~90 km depth we expect no changes in geophysical properties indicative of hydrous silicate melt, in areas where surface heat flow is lower (i.e. Precambrian cratonic shields, Phanerozoic continental lithospheres or, possibly older oceanic plates). Alternatively, in these areas, the intersection of the geotherm with pargasitic amphibole breakdown may cause small changes in properties which correlate with the MLD rather than the LAB, which is at deeper levels. Lithosphere–asthenosphere boundary (LAB) (dpeaa)DE-He213 Mid lithosphere discontinuities (MLD) (dpeaa)DE-He213 Amphibole (dpeaa)DE-He213 Melt (dpeaa)DE-He213 Water (dpeaa)DE-He213 Lenkey, László aut Green, David. H. aut Fancsik, Tamás aut Falus, György aut Kiss, János aut Orosz, László aut Angyal, Jolán aut Vikor, Zsuzsanna aut Enthalten in Acta geodaetica et geophysica Hungarica Budapest : Akad. Kiadó, 1997 52(2017), 2 vom: 14. Feb., Seite 183-204 (DE-627)364470852 (DE-600)2110468-2 1587-1037 nnns volume:52 year:2017 number:2 day:14 month:02 pages:183-204 https://dx.doi.org/10.1007/s40328-016-0191-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 52 2017 2 14 02 183-204 |
allfieldsSound |
10.1007/s40328-016-0191-3 doi (DE-627)SPR037151797 (SPR)s40328-016-0191-3-e DE-627 ger DE-627 rakwb eng Kovács, István verfasserin aut The role of pargasitic amphibole in the formation of major geophysical discontinuities in the shallow upper mantle 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Akadémiai Kiadó 2017 Abstract Several explanations have been proposed for variation in geophysical properties and depths for the lithosphere–asthenosphere boundary (LAB) and mid-lithospheric discontinuities (MLD). Here, we investigate the proposal that the dehydration solidus of pargasitic amphibole-bearing upper mantle with very low bulk water (hundreds ppm) may be one of the main reasons for the observed geophysical anomalies. The dehydration solidus may be associated with a very small degree of partial melting in the upper mantle at temperatures and pressures in excess of 1050 °C (for geochemically more depleted) or 1100 °C (for geochemically less depleted upper mantle) and from 1 to 3 GPa (~30 to 90 km) respectively. This small amount of partial melt may be responsible for changes in geophysical properties (e.g. lower seismic velocity, higher attenuation of seismic waves, higher electrical conductivity) in association with the LAB and MLD. This simple petrologic model is tested on the abundant geophysical data of the Carpathian–Pannonian region (CPR), central Europe. The high resolution heat flow data available in the CPR allows us to estimate the depths to intersection of area specific depth-temperature curves with the dehydration solidus temperatures (1050 and 1100 °C isotherms). There is relatively small mismatch (<5 km) between the position of these intersections and the geophysically determined LAB in the central area of the CPR. These observations lend support for the proposition that the dehydration solidus may be largely responsible for depth variation of the LAB in young continental rift areas. Towards the margins of the CPR, however, where the heat flow is lower (≲70 mW/$ m^{2} $), the predictive capability of the dehydration solidus model deteriorates. This is because, for lower geothermal gradients, pargasitic amphibole breaks down at ~90 km (or ~3 GPa) before temperature exceeds the dehydration solidus temperatures. Consequently, at ~90 km depth we expect no changes in geophysical properties indicative of hydrous silicate melt, in areas where surface heat flow is lower (i.e. Precambrian cratonic shields, Phanerozoic continental lithospheres or, possibly older oceanic plates). Alternatively, in these areas, the intersection of the geotherm with pargasitic amphibole breakdown may cause small changes in properties which correlate with the MLD rather than the LAB, which is at deeper levels. Lithosphere–asthenosphere boundary (LAB) (dpeaa)DE-He213 Mid lithosphere discontinuities (MLD) (dpeaa)DE-He213 Amphibole (dpeaa)DE-He213 Melt (dpeaa)DE-He213 Water (dpeaa)DE-He213 Lenkey, László aut Green, David. H. aut Fancsik, Tamás aut Falus, György aut Kiss, János aut Orosz, László aut Angyal, Jolán aut Vikor, Zsuzsanna aut Enthalten in Acta geodaetica et geophysica Hungarica Budapest : Akad. Kiadó, 1997 52(2017), 2 vom: 14. Feb., Seite 183-204 (DE-627)364470852 (DE-600)2110468-2 1587-1037 nnns volume:52 year:2017 number:2 day:14 month:02 pages:183-204 https://dx.doi.org/10.1007/s40328-016-0191-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 52 2017 2 14 02 183-204 |
language |
English |
source |
Enthalten in Acta geodaetica et geophysica Hungarica 52(2017), 2 vom: 14. Feb., Seite 183-204 volume:52 year:2017 number:2 day:14 month:02 pages:183-204 |
sourceStr |
Enthalten in Acta geodaetica et geophysica Hungarica 52(2017), 2 vom: 14. Feb., Seite 183-204 volume:52 year:2017 number:2 day:14 month:02 pages:183-204 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Lithosphere–asthenosphere boundary (LAB) Mid lithosphere discontinuities (MLD) Amphibole Melt Water |
isfreeaccess_bool |
false |
container_title |
Acta geodaetica et geophysica Hungarica |
authorswithroles_txt_mv |
Kovács, István @@aut@@ Lenkey, László @@aut@@ Green, David. H. @@aut@@ Fancsik, Tamás @@aut@@ Falus, György @@aut@@ Kiss, János @@aut@@ Orosz, László @@aut@@ Angyal, Jolán @@aut@@ Vikor, Zsuzsanna @@aut@@ |
publishDateDaySort_date |
2017-02-14T00:00:00Z |
hierarchy_top_id |
364470852 |
id |
SPR037151797 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR037151797</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328170102.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40328-016-0191-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR037151797</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40328-016-0191-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kovács, István</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The role of pargasitic amphibole in the formation of major geophysical discontinuities in the shallow upper mantle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Several explanations have been proposed for variation in geophysical properties and depths for the lithosphere–asthenosphere boundary (LAB) and mid-lithospheric discontinuities (MLD). Here, we investigate the proposal that the dehydration solidus of pargasitic amphibole-bearing upper mantle with very low bulk water (hundreds ppm) may be one of the main reasons for the observed geophysical anomalies. The dehydration solidus may be associated with a very small degree of partial melting in the upper mantle at temperatures and pressures in excess of 1050 °C (for geochemically more depleted) or 1100 °C (for geochemically less depleted upper mantle) and from 1 to 3 GPa (~30 to 90 km) respectively. This small amount of partial melt may be responsible for changes in geophysical properties (e.g. lower seismic velocity, higher attenuation of seismic waves, higher electrical conductivity) in association with the LAB and MLD. This simple petrologic model is tested on the abundant geophysical data of the Carpathian–Pannonian region (CPR), central Europe. The high resolution heat flow data available in the CPR allows us to estimate the depths to intersection of area specific depth-temperature curves with the dehydration solidus temperatures (1050 and 1100 °C isotherms). There is relatively small mismatch (<5 km) between the position of these intersections and the geophysically determined LAB in the central area of the CPR. These observations lend support for the proposition that the dehydration solidus may be largely responsible for depth variation of the LAB in young continental rift areas. Towards the margins of the CPR, however, where the heat flow is lower (≲70 mW/$ m^{2} $), the predictive capability of the dehydration solidus model deteriorates. This is because, for lower geothermal gradients, pargasitic amphibole breaks down at ~90 km (or ~3 GPa) before temperature exceeds the dehydration solidus temperatures. Consequently, at ~90 km depth we expect no changes in geophysical properties indicative of hydrous silicate melt, in areas where surface heat flow is lower (i.e. Precambrian cratonic shields, Phanerozoic continental lithospheres or, possibly older oceanic plates). Alternatively, in these areas, the intersection of the geotherm with pargasitic amphibole breakdown may cause small changes in properties which correlate with the MLD rather than the LAB, which is at deeper levels.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lithosphere–asthenosphere boundary (LAB)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mid lithosphere discontinuities (MLD)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amphibole</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Melt</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lenkey, László</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Green, David. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fancsik, Tamás</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Falus, György</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kiss, János</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Orosz, László</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Angyal, Jolán</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vikor, Zsuzsanna</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta geodaetica et geophysica Hungarica</subfield><subfield code="d">Budapest : Akad. Kiadó, 1997</subfield><subfield code="g">52(2017), 2 vom: 14. Feb., Seite 183-204</subfield><subfield code="w">(DE-627)364470852</subfield><subfield code="w">(DE-600)2110468-2</subfield><subfield code="x">1587-1037</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">day:14</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:183-204</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40328-016-0191-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="b">14</subfield><subfield code="c">02</subfield><subfield code="h">183-204</subfield></datafield></record></collection>
|
author |
Kovács, István |
spellingShingle |
Kovács, István misc Lithosphere–asthenosphere boundary (LAB) misc Mid lithosphere discontinuities (MLD) misc Amphibole misc Melt misc Water The role of pargasitic amphibole in the formation of major geophysical discontinuities in the shallow upper mantle |
authorStr |
Kovács, István |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)364470852 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1587-1037 |
topic_title |
The role of pargasitic amphibole in the formation of major geophysical discontinuities in the shallow upper mantle Lithosphere–asthenosphere boundary (LAB) (dpeaa)DE-He213 Mid lithosphere discontinuities (MLD) (dpeaa)DE-He213 Amphibole (dpeaa)DE-He213 Melt (dpeaa)DE-He213 Water (dpeaa)DE-He213 |
topic |
misc Lithosphere–asthenosphere boundary (LAB) misc Mid lithosphere discontinuities (MLD) misc Amphibole misc Melt misc Water |
topic_unstemmed |
misc Lithosphere–asthenosphere boundary (LAB) misc Mid lithosphere discontinuities (MLD) misc Amphibole misc Melt misc Water |
topic_browse |
misc Lithosphere–asthenosphere boundary (LAB) misc Mid lithosphere discontinuities (MLD) misc Amphibole misc Melt misc Water |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Acta geodaetica et geophysica Hungarica |
hierarchy_parent_id |
364470852 |
hierarchy_top_title |
Acta geodaetica et geophysica Hungarica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)364470852 (DE-600)2110468-2 |
title |
The role of pargasitic amphibole in the formation of major geophysical discontinuities in the shallow upper mantle |
ctrlnum |
(DE-627)SPR037151797 (SPR)s40328-016-0191-3-e |
title_full |
The role of pargasitic amphibole in the formation of major geophysical discontinuities in the shallow upper mantle |
author_sort |
Kovács, István |
journal |
Acta geodaetica et geophysica Hungarica |
journalStr |
Acta geodaetica et geophysica Hungarica |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
183 |
author_browse |
Kovács, István Lenkey, László Green, David. H. Fancsik, Tamás Falus, György Kiss, János Orosz, László Angyal, Jolán Vikor, Zsuzsanna |
container_volume |
52 |
format_se |
Elektronische Aufsätze |
author-letter |
Kovács, István |
doi_str_mv |
10.1007/s40328-016-0191-3 |
title_sort |
role of pargasitic amphibole in the formation of major geophysical discontinuities in the shallow upper mantle |
title_auth |
The role of pargasitic amphibole in the formation of major geophysical discontinuities in the shallow upper mantle |
abstract |
Abstract Several explanations have been proposed for variation in geophysical properties and depths for the lithosphere–asthenosphere boundary (LAB) and mid-lithospheric discontinuities (MLD). Here, we investigate the proposal that the dehydration solidus of pargasitic amphibole-bearing upper mantle with very low bulk water (hundreds ppm) may be one of the main reasons for the observed geophysical anomalies. The dehydration solidus may be associated with a very small degree of partial melting in the upper mantle at temperatures and pressures in excess of 1050 °C (for geochemically more depleted) or 1100 °C (for geochemically less depleted upper mantle) and from 1 to 3 GPa (~30 to 90 km) respectively. This small amount of partial melt may be responsible for changes in geophysical properties (e.g. lower seismic velocity, higher attenuation of seismic waves, higher electrical conductivity) in association with the LAB and MLD. This simple petrologic model is tested on the abundant geophysical data of the Carpathian–Pannonian region (CPR), central Europe. The high resolution heat flow data available in the CPR allows us to estimate the depths to intersection of area specific depth-temperature curves with the dehydration solidus temperatures (1050 and 1100 °C isotherms). There is relatively small mismatch (<5 km) between the position of these intersections and the geophysically determined LAB in the central area of the CPR. These observations lend support for the proposition that the dehydration solidus may be largely responsible for depth variation of the LAB in young continental rift areas. Towards the margins of the CPR, however, where the heat flow is lower (≲70 mW/$ m^{2} $), the predictive capability of the dehydration solidus model deteriorates. This is because, for lower geothermal gradients, pargasitic amphibole breaks down at ~90 km (or ~3 GPa) before temperature exceeds the dehydration solidus temperatures. Consequently, at ~90 km depth we expect no changes in geophysical properties indicative of hydrous silicate melt, in areas where surface heat flow is lower (i.e. Precambrian cratonic shields, Phanerozoic continental lithospheres or, possibly older oceanic plates). Alternatively, in these areas, the intersection of the geotherm with pargasitic amphibole breakdown may cause small changes in properties which correlate with the MLD rather than the LAB, which is at deeper levels. © Akadémiai Kiadó 2017 |
abstractGer |
Abstract Several explanations have been proposed for variation in geophysical properties and depths for the lithosphere–asthenosphere boundary (LAB) and mid-lithospheric discontinuities (MLD). Here, we investigate the proposal that the dehydration solidus of pargasitic amphibole-bearing upper mantle with very low bulk water (hundreds ppm) may be one of the main reasons for the observed geophysical anomalies. The dehydration solidus may be associated with a very small degree of partial melting in the upper mantle at temperatures and pressures in excess of 1050 °C (for geochemically more depleted) or 1100 °C (for geochemically less depleted upper mantle) and from 1 to 3 GPa (~30 to 90 km) respectively. This small amount of partial melt may be responsible for changes in geophysical properties (e.g. lower seismic velocity, higher attenuation of seismic waves, higher electrical conductivity) in association with the LAB and MLD. This simple petrologic model is tested on the abundant geophysical data of the Carpathian–Pannonian region (CPR), central Europe. The high resolution heat flow data available in the CPR allows us to estimate the depths to intersection of area specific depth-temperature curves with the dehydration solidus temperatures (1050 and 1100 °C isotherms). There is relatively small mismatch (<5 km) between the position of these intersections and the geophysically determined LAB in the central area of the CPR. These observations lend support for the proposition that the dehydration solidus may be largely responsible for depth variation of the LAB in young continental rift areas. Towards the margins of the CPR, however, where the heat flow is lower (≲70 mW/$ m^{2} $), the predictive capability of the dehydration solidus model deteriorates. This is because, for lower geothermal gradients, pargasitic amphibole breaks down at ~90 km (or ~3 GPa) before temperature exceeds the dehydration solidus temperatures. Consequently, at ~90 km depth we expect no changes in geophysical properties indicative of hydrous silicate melt, in areas where surface heat flow is lower (i.e. Precambrian cratonic shields, Phanerozoic continental lithospheres or, possibly older oceanic plates). Alternatively, in these areas, the intersection of the geotherm with pargasitic amphibole breakdown may cause small changes in properties which correlate with the MLD rather than the LAB, which is at deeper levels. © Akadémiai Kiadó 2017 |
abstract_unstemmed |
Abstract Several explanations have been proposed for variation in geophysical properties and depths for the lithosphere–asthenosphere boundary (LAB) and mid-lithospheric discontinuities (MLD). Here, we investigate the proposal that the dehydration solidus of pargasitic amphibole-bearing upper mantle with very low bulk water (hundreds ppm) may be one of the main reasons for the observed geophysical anomalies. The dehydration solidus may be associated with a very small degree of partial melting in the upper mantle at temperatures and pressures in excess of 1050 °C (for geochemically more depleted) or 1100 °C (for geochemically less depleted upper mantle) and from 1 to 3 GPa (~30 to 90 km) respectively. This small amount of partial melt may be responsible for changes in geophysical properties (e.g. lower seismic velocity, higher attenuation of seismic waves, higher electrical conductivity) in association with the LAB and MLD. This simple petrologic model is tested on the abundant geophysical data of the Carpathian–Pannonian region (CPR), central Europe. The high resolution heat flow data available in the CPR allows us to estimate the depths to intersection of area specific depth-temperature curves with the dehydration solidus temperatures (1050 and 1100 °C isotherms). There is relatively small mismatch (<5 km) between the position of these intersections and the geophysically determined LAB in the central area of the CPR. These observations lend support for the proposition that the dehydration solidus may be largely responsible for depth variation of the LAB in young continental rift areas. Towards the margins of the CPR, however, where the heat flow is lower (≲70 mW/$ m^{2} $), the predictive capability of the dehydration solidus model deteriorates. This is because, for lower geothermal gradients, pargasitic amphibole breaks down at ~90 km (or ~3 GPa) before temperature exceeds the dehydration solidus temperatures. Consequently, at ~90 km depth we expect no changes in geophysical properties indicative of hydrous silicate melt, in areas where surface heat flow is lower (i.e. Precambrian cratonic shields, Phanerozoic continental lithospheres or, possibly older oceanic plates). Alternatively, in these areas, the intersection of the geotherm with pargasitic amphibole breakdown may cause small changes in properties which correlate with the MLD rather than the LAB, which is at deeper levels. © Akadémiai Kiadó 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
2 |
title_short |
The role of pargasitic amphibole in the formation of major geophysical discontinuities in the shallow upper mantle |
url |
https://dx.doi.org/10.1007/s40328-016-0191-3 |
remote_bool |
true |
author2 |
Lenkey, László Green, David. H. Fancsik, Tamás Falus, György Kiss, János Orosz, László Angyal, Jolán Vikor, Zsuzsanna |
author2Str |
Lenkey, László Green, David. H. Fancsik, Tamás Falus, György Kiss, János Orosz, László Angyal, Jolán Vikor, Zsuzsanna |
ppnlink |
364470852 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40328-016-0191-3 |
up_date |
2024-07-03T21:25:08.058Z |
_version_ |
1803594663785922560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR037151797</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328170102.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40328-016-0191-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR037151797</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40328-016-0191-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kovács, István</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The role of pargasitic amphibole in the formation of major geophysical discontinuities in the shallow upper mantle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Several explanations have been proposed for variation in geophysical properties and depths for the lithosphere–asthenosphere boundary (LAB) and mid-lithospheric discontinuities (MLD). Here, we investigate the proposal that the dehydration solidus of pargasitic amphibole-bearing upper mantle with very low bulk water (hundreds ppm) may be one of the main reasons for the observed geophysical anomalies. The dehydration solidus may be associated with a very small degree of partial melting in the upper mantle at temperatures and pressures in excess of 1050 °C (for geochemically more depleted) or 1100 °C (for geochemically less depleted upper mantle) and from 1 to 3 GPa (~30 to 90 km) respectively. This small amount of partial melt may be responsible for changes in geophysical properties (e.g. lower seismic velocity, higher attenuation of seismic waves, higher electrical conductivity) in association with the LAB and MLD. This simple petrologic model is tested on the abundant geophysical data of the Carpathian–Pannonian region (CPR), central Europe. The high resolution heat flow data available in the CPR allows us to estimate the depths to intersection of area specific depth-temperature curves with the dehydration solidus temperatures (1050 and 1100 °C isotherms). There is relatively small mismatch (<5 km) between the position of these intersections and the geophysically determined LAB in the central area of the CPR. These observations lend support for the proposition that the dehydration solidus may be largely responsible for depth variation of the LAB in young continental rift areas. Towards the margins of the CPR, however, where the heat flow is lower (≲70 mW/$ m^{2} $), the predictive capability of the dehydration solidus model deteriorates. This is because, for lower geothermal gradients, pargasitic amphibole breaks down at ~90 km (or ~3 GPa) before temperature exceeds the dehydration solidus temperatures. Consequently, at ~90 km depth we expect no changes in geophysical properties indicative of hydrous silicate melt, in areas where surface heat flow is lower (i.e. Precambrian cratonic shields, Phanerozoic continental lithospheres or, possibly older oceanic plates). Alternatively, in these areas, the intersection of the geotherm with pargasitic amphibole breakdown may cause small changes in properties which correlate with the MLD rather than the LAB, which is at deeper levels.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lithosphere–asthenosphere boundary (LAB)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mid lithosphere discontinuities (MLD)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Amphibole</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Melt</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lenkey, László</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Green, David. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fancsik, Tamás</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Falus, György</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kiss, János</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Orosz, László</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Angyal, Jolán</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vikor, Zsuzsanna</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta geodaetica et geophysica Hungarica</subfield><subfield code="d">Budapest : Akad. Kiadó, 1997</subfield><subfield code="g">52(2017), 2 vom: 14. Feb., Seite 183-204</subfield><subfield code="w">(DE-627)364470852</subfield><subfield code="w">(DE-600)2110468-2</subfield><subfield code="x">1587-1037</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">day:14</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:183-204</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40328-016-0191-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="b">14</subfield><subfield code="c">02</subfield><subfield code="h">183-204</subfield></datafield></record></collection>
|
score |
7.4013157 |