On the calculation of radial wave functions corresponding to energies in the continuum part of the helium spectrum
Summary For the purpose of recalculating the helium primary specific ionization values in an attempt to bridge the gap existing between theory and experiment in this field, this paper deals with the derivation of new wave functions corresponding to energies from the continuum part of the He spectrum...
Ausführliche Beschreibung
Autor*in: |
Grosjean, C. C. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1961 |
---|
Anmerkung: |
© Società Italiana di Fisica 1961 |
---|
Übergeordnetes Werk: |
Enthalten in: Il nuovo cimento - Pisa, 1855, 19(1961), 4 vom: 01. Feb., Seite 696-722 |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:1961 ; number:4 ; day:01 ; month:02 ; pages:696-722 |
Links: |
---|
DOI / URN: |
10.1007/BF02733367 |
---|
Katalog-ID: |
SPR037327038 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR037327038 | ||
003 | DE-627 | ||
005 | 20230328183850.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s1961 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02733367 |2 doi | |
035 | |a (DE-627)SPR037327038 | ||
035 | |a (SPR)BF02733367-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Grosjean, C. C. |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the calculation of radial wave functions corresponding to energies in the continuum part of the helium spectrum |
264 | 1 | |c 1961 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Società Italiana di Fisica 1961 | ||
520 | |a Summary For the purpose of recalculating the helium primary specific ionization values in an attempt to bridge the gap existing between theory and experiment in this field, this paper deals with the derivation of new wave functions corresponding to energies from the continuum part of the He spectrum, which are more accurate than those resulting from the commonly adopted approximations. Sect.1 is devoted to an appropriate series expansion of the wave function for the two helium planetary electrons and to the corresponding transformation of the Schrödinger equation into an infinite system of simultaneous differential equations which the expansion entails. Further, it is shown how a suitable truncation leads to the basic, one-electron, Schrödinger-type differential equation for the approximate wave function describing the positive energy electron in the electric field of the helium nucleus and the bound electron. The physical reasons underlying the truncation procedure are discussed in detail. In Sect.2, it is shown that the correction due to the motion of the nucleus vanishes identically to within the present lowest-order approximation scheme. Sect.3 deals with the radial part of the desired wave function, its reduction to atomic units, the ordinary second order differential equation which it satisfies, its Maclaurin series expansion and its general characteristics, especially its asymptotic behavior. Sect.4 describes the numerical integration of the mentioned radial wave equation for 27 pairs of energy and orbital angular momentum quantum number values, using an IBM 650 ordinator. All wave functions have been obtained in an interval of at least 8 atomic units. Finally, the normalization of the resulting curves to unit amplitude at infinity is examined in Sect.5. Two very elegant methods are developed and studied in detail. In the first procedure, the amplitude at infinity and the phase angle are rigorously given by certain integrals which are directly calculable. In the second and actually adopted method, the basic idea consists in introducing the Madelung transformation, leading to a non-linear differential equation for the local amplitude of the radial wave function. Calculating an asymptotic series expansion for this local amplitude, it becomes possible, in principle, to compute the normalized wave function starting at infinity down to a certain minimum abscissa dictated by the desired limit of precision. The corresponding curve to be normalized could then be fitted to the normalized one. However, it is shown that the entire procedure is enormously simplified by carrying out the matching operation at a zero of the oscillating radial wave function. | ||
700 | 1 | |a Van de Walle, R. T. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Il nuovo cimento |d Pisa, 1855 |g 19(1961), 4 vom: 01. Feb., Seite 696-722 |w (DE-627)626757762 |w (DE-600)2554784-7 |x 1827-6121 |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:1961 |g number:4 |g day:01 |g month:02 |g pages:696-722 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/BF02733367 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_121 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_374 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2043 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2158 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2193 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_2808 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4346 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
912 | |a GBV_ILN_4753 | ||
951 | |a AR | ||
952 | |d 19 |j 1961 |e 4 |b 01 |c 02 |h 696-722 |
author_variant |
c c g cc ccg d w r t v dwrt dwrtv |
---|---|
matchkey_str |
article:18276121:1961----::nhcluainfailaeucincrepnigonrisnhcniu |
hierarchy_sort_str |
1961 |
publishDate |
1961 |
allfields |
10.1007/BF02733367 doi (DE-627)SPR037327038 (SPR)BF02733367-e DE-627 ger DE-627 rakwb eng Grosjean, C. C. verfasserin aut On the calculation of radial wave functions corresponding to energies in the continuum part of the helium spectrum 1961 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Società Italiana di Fisica 1961 Summary For the purpose of recalculating the helium primary specific ionization values in an attempt to bridge the gap existing between theory and experiment in this field, this paper deals with the derivation of new wave functions corresponding to energies from the continuum part of the He spectrum, which are more accurate than those resulting from the commonly adopted approximations. Sect.1 is devoted to an appropriate series expansion of the wave function for the two helium planetary electrons and to the corresponding transformation of the Schrödinger equation into an infinite system of simultaneous differential equations which the expansion entails. Further, it is shown how a suitable truncation leads to the basic, one-electron, Schrödinger-type differential equation for the approximate wave function describing the positive energy electron in the electric field of the helium nucleus and the bound electron. The physical reasons underlying the truncation procedure are discussed in detail. In Sect.2, it is shown that the correction due to the motion of the nucleus vanishes identically to within the present lowest-order approximation scheme. Sect.3 deals with the radial part of the desired wave function, its reduction to atomic units, the ordinary second order differential equation which it satisfies, its Maclaurin series expansion and its general characteristics, especially its asymptotic behavior. Sect.4 describes the numerical integration of the mentioned radial wave equation for 27 pairs of energy and orbital angular momentum quantum number values, using an IBM 650 ordinator. All wave functions have been obtained in an interval of at least 8 atomic units. Finally, the normalization of the resulting curves to unit amplitude at infinity is examined in Sect.5. Two very elegant methods are developed and studied in detail. In the first procedure, the amplitude at infinity and the phase angle are rigorously given by certain integrals which are directly calculable. In the second and actually adopted method, the basic idea consists in introducing the Madelung transformation, leading to a non-linear differential equation for the local amplitude of the radial wave function. Calculating an asymptotic series expansion for this local amplitude, it becomes possible, in principle, to compute the normalized wave function starting at infinity down to a certain minimum abscissa dictated by the desired limit of precision. The corresponding curve to be normalized could then be fitted to the normalized one. However, it is shown that the entire procedure is enormously simplified by carrying out the matching operation at a zero of the oscillating radial wave function. Van de Walle, R. T. aut Enthalten in Il nuovo cimento Pisa, 1855 19(1961), 4 vom: 01. Feb., Seite 696-722 (DE-627)626757762 (DE-600)2554784-7 1827-6121 nnns volume:19 year:1961 number:4 day:01 month:02 pages:696-722 https://dx.doi.org/10.1007/BF02733367 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2043 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2158 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2193 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2808 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_4753 AR 19 1961 4 01 02 696-722 |
spelling |
10.1007/BF02733367 doi (DE-627)SPR037327038 (SPR)BF02733367-e DE-627 ger DE-627 rakwb eng Grosjean, C. C. verfasserin aut On the calculation of radial wave functions corresponding to energies in the continuum part of the helium spectrum 1961 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Società Italiana di Fisica 1961 Summary For the purpose of recalculating the helium primary specific ionization values in an attempt to bridge the gap existing between theory and experiment in this field, this paper deals with the derivation of new wave functions corresponding to energies from the continuum part of the He spectrum, which are more accurate than those resulting from the commonly adopted approximations. Sect.1 is devoted to an appropriate series expansion of the wave function for the two helium planetary electrons and to the corresponding transformation of the Schrödinger equation into an infinite system of simultaneous differential equations which the expansion entails. Further, it is shown how a suitable truncation leads to the basic, one-electron, Schrödinger-type differential equation for the approximate wave function describing the positive energy electron in the electric field of the helium nucleus and the bound electron. The physical reasons underlying the truncation procedure are discussed in detail. In Sect.2, it is shown that the correction due to the motion of the nucleus vanishes identically to within the present lowest-order approximation scheme. Sect.3 deals with the radial part of the desired wave function, its reduction to atomic units, the ordinary second order differential equation which it satisfies, its Maclaurin series expansion and its general characteristics, especially its asymptotic behavior. Sect.4 describes the numerical integration of the mentioned radial wave equation for 27 pairs of energy and orbital angular momentum quantum number values, using an IBM 650 ordinator. All wave functions have been obtained in an interval of at least 8 atomic units. Finally, the normalization of the resulting curves to unit amplitude at infinity is examined in Sect.5. Two very elegant methods are developed and studied in detail. In the first procedure, the amplitude at infinity and the phase angle are rigorously given by certain integrals which are directly calculable. In the second and actually adopted method, the basic idea consists in introducing the Madelung transformation, leading to a non-linear differential equation for the local amplitude of the radial wave function. Calculating an asymptotic series expansion for this local amplitude, it becomes possible, in principle, to compute the normalized wave function starting at infinity down to a certain minimum abscissa dictated by the desired limit of precision. The corresponding curve to be normalized could then be fitted to the normalized one. However, it is shown that the entire procedure is enormously simplified by carrying out the matching operation at a zero of the oscillating radial wave function. Van de Walle, R. T. aut Enthalten in Il nuovo cimento Pisa, 1855 19(1961), 4 vom: 01. Feb., Seite 696-722 (DE-627)626757762 (DE-600)2554784-7 1827-6121 nnns volume:19 year:1961 number:4 day:01 month:02 pages:696-722 https://dx.doi.org/10.1007/BF02733367 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2043 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2158 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2193 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2808 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_4753 AR 19 1961 4 01 02 696-722 |
allfields_unstemmed |
10.1007/BF02733367 doi (DE-627)SPR037327038 (SPR)BF02733367-e DE-627 ger DE-627 rakwb eng Grosjean, C. C. verfasserin aut On the calculation of radial wave functions corresponding to energies in the continuum part of the helium spectrum 1961 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Società Italiana di Fisica 1961 Summary For the purpose of recalculating the helium primary specific ionization values in an attempt to bridge the gap existing between theory and experiment in this field, this paper deals with the derivation of new wave functions corresponding to energies from the continuum part of the He spectrum, which are more accurate than those resulting from the commonly adopted approximations. Sect.1 is devoted to an appropriate series expansion of the wave function for the two helium planetary electrons and to the corresponding transformation of the Schrödinger equation into an infinite system of simultaneous differential equations which the expansion entails. Further, it is shown how a suitable truncation leads to the basic, one-electron, Schrödinger-type differential equation for the approximate wave function describing the positive energy electron in the electric field of the helium nucleus and the bound electron. The physical reasons underlying the truncation procedure are discussed in detail. In Sect.2, it is shown that the correction due to the motion of the nucleus vanishes identically to within the present lowest-order approximation scheme. Sect.3 deals with the radial part of the desired wave function, its reduction to atomic units, the ordinary second order differential equation which it satisfies, its Maclaurin series expansion and its general characteristics, especially its asymptotic behavior. Sect.4 describes the numerical integration of the mentioned radial wave equation for 27 pairs of energy and orbital angular momentum quantum number values, using an IBM 650 ordinator. All wave functions have been obtained in an interval of at least 8 atomic units. Finally, the normalization of the resulting curves to unit amplitude at infinity is examined in Sect.5. Two very elegant methods are developed and studied in detail. In the first procedure, the amplitude at infinity and the phase angle are rigorously given by certain integrals which are directly calculable. In the second and actually adopted method, the basic idea consists in introducing the Madelung transformation, leading to a non-linear differential equation for the local amplitude of the radial wave function. Calculating an asymptotic series expansion for this local amplitude, it becomes possible, in principle, to compute the normalized wave function starting at infinity down to a certain minimum abscissa dictated by the desired limit of precision. The corresponding curve to be normalized could then be fitted to the normalized one. However, it is shown that the entire procedure is enormously simplified by carrying out the matching operation at a zero of the oscillating radial wave function. Van de Walle, R. T. aut Enthalten in Il nuovo cimento Pisa, 1855 19(1961), 4 vom: 01. Feb., Seite 696-722 (DE-627)626757762 (DE-600)2554784-7 1827-6121 nnns volume:19 year:1961 number:4 day:01 month:02 pages:696-722 https://dx.doi.org/10.1007/BF02733367 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2043 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2158 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2193 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2808 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_4753 AR 19 1961 4 01 02 696-722 |
allfieldsGer |
10.1007/BF02733367 doi (DE-627)SPR037327038 (SPR)BF02733367-e DE-627 ger DE-627 rakwb eng Grosjean, C. C. verfasserin aut On the calculation of radial wave functions corresponding to energies in the continuum part of the helium spectrum 1961 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Società Italiana di Fisica 1961 Summary For the purpose of recalculating the helium primary specific ionization values in an attempt to bridge the gap existing between theory and experiment in this field, this paper deals with the derivation of new wave functions corresponding to energies from the continuum part of the He spectrum, which are more accurate than those resulting from the commonly adopted approximations. Sect.1 is devoted to an appropriate series expansion of the wave function for the two helium planetary electrons and to the corresponding transformation of the Schrödinger equation into an infinite system of simultaneous differential equations which the expansion entails. Further, it is shown how a suitable truncation leads to the basic, one-electron, Schrödinger-type differential equation for the approximate wave function describing the positive energy electron in the electric field of the helium nucleus and the bound electron. The physical reasons underlying the truncation procedure are discussed in detail. In Sect.2, it is shown that the correction due to the motion of the nucleus vanishes identically to within the present lowest-order approximation scheme. Sect.3 deals with the radial part of the desired wave function, its reduction to atomic units, the ordinary second order differential equation which it satisfies, its Maclaurin series expansion and its general characteristics, especially its asymptotic behavior. Sect.4 describes the numerical integration of the mentioned radial wave equation for 27 pairs of energy and orbital angular momentum quantum number values, using an IBM 650 ordinator. All wave functions have been obtained in an interval of at least 8 atomic units. Finally, the normalization of the resulting curves to unit amplitude at infinity is examined in Sect.5. Two very elegant methods are developed and studied in detail. In the first procedure, the amplitude at infinity and the phase angle are rigorously given by certain integrals which are directly calculable. In the second and actually adopted method, the basic idea consists in introducing the Madelung transformation, leading to a non-linear differential equation for the local amplitude of the radial wave function. Calculating an asymptotic series expansion for this local amplitude, it becomes possible, in principle, to compute the normalized wave function starting at infinity down to a certain minimum abscissa dictated by the desired limit of precision. The corresponding curve to be normalized could then be fitted to the normalized one. However, it is shown that the entire procedure is enormously simplified by carrying out the matching operation at a zero of the oscillating radial wave function. Van de Walle, R. T. aut Enthalten in Il nuovo cimento Pisa, 1855 19(1961), 4 vom: 01. Feb., Seite 696-722 (DE-627)626757762 (DE-600)2554784-7 1827-6121 nnns volume:19 year:1961 number:4 day:01 month:02 pages:696-722 https://dx.doi.org/10.1007/BF02733367 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2043 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2158 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2193 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2808 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_4753 AR 19 1961 4 01 02 696-722 |
allfieldsSound |
10.1007/BF02733367 doi (DE-627)SPR037327038 (SPR)BF02733367-e DE-627 ger DE-627 rakwb eng Grosjean, C. C. verfasserin aut On the calculation of radial wave functions corresponding to energies in the continuum part of the helium spectrum 1961 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Società Italiana di Fisica 1961 Summary For the purpose of recalculating the helium primary specific ionization values in an attempt to bridge the gap existing between theory and experiment in this field, this paper deals with the derivation of new wave functions corresponding to energies from the continuum part of the He spectrum, which are more accurate than those resulting from the commonly adopted approximations. Sect.1 is devoted to an appropriate series expansion of the wave function for the two helium planetary electrons and to the corresponding transformation of the Schrödinger equation into an infinite system of simultaneous differential equations which the expansion entails. Further, it is shown how a suitable truncation leads to the basic, one-electron, Schrödinger-type differential equation for the approximate wave function describing the positive energy electron in the electric field of the helium nucleus and the bound electron. The physical reasons underlying the truncation procedure are discussed in detail. In Sect.2, it is shown that the correction due to the motion of the nucleus vanishes identically to within the present lowest-order approximation scheme. Sect.3 deals with the radial part of the desired wave function, its reduction to atomic units, the ordinary second order differential equation which it satisfies, its Maclaurin series expansion and its general characteristics, especially its asymptotic behavior. Sect.4 describes the numerical integration of the mentioned radial wave equation for 27 pairs of energy and orbital angular momentum quantum number values, using an IBM 650 ordinator. All wave functions have been obtained in an interval of at least 8 atomic units. Finally, the normalization of the resulting curves to unit amplitude at infinity is examined in Sect.5. Two very elegant methods are developed and studied in detail. In the first procedure, the amplitude at infinity and the phase angle are rigorously given by certain integrals which are directly calculable. In the second and actually adopted method, the basic idea consists in introducing the Madelung transformation, leading to a non-linear differential equation for the local amplitude of the radial wave function. Calculating an asymptotic series expansion for this local amplitude, it becomes possible, in principle, to compute the normalized wave function starting at infinity down to a certain minimum abscissa dictated by the desired limit of precision. The corresponding curve to be normalized could then be fitted to the normalized one. However, it is shown that the entire procedure is enormously simplified by carrying out the matching operation at a zero of the oscillating radial wave function. Van de Walle, R. T. aut Enthalten in Il nuovo cimento Pisa, 1855 19(1961), 4 vom: 01. Feb., Seite 696-722 (DE-627)626757762 (DE-600)2554784-7 1827-6121 nnns volume:19 year:1961 number:4 day:01 month:02 pages:696-722 https://dx.doi.org/10.1007/BF02733367 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2043 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2158 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2193 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2808 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_4753 AR 19 1961 4 01 02 696-722 |
language |
English |
source |
Enthalten in Il nuovo cimento 19(1961), 4 vom: 01. Feb., Seite 696-722 volume:19 year:1961 number:4 day:01 month:02 pages:696-722 |
sourceStr |
Enthalten in Il nuovo cimento 19(1961), 4 vom: 01. Feb., Seite 696-722 volume:19 year:1961 number:4 day:01 month:02 pages:696-722 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
Il nuovo cimento |
authorswithroles_txt_mv |
Grosjean, C. C. @@aut@@ Van de Walle, R. T. @@aut@@ |
publishDateDaySort_date |
1961-02-01T00:00:00Z |
hierarchy_top_id |
626757762 |
id |
SPR037327038 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR037327038</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328183850.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s1961 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02733367</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR037327038</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)BF02733367-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grosjean, C. C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the calculation of radial wave functions corresponding to energies in the continuum part of the helium spectrum</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1961</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Società Italiana di Fisica 1961</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary For the purpose of recalculating the helium primary specific ionization values in an attempt to bridge the gap existing between theory and experiment in this field, this paper deals with the derivation of new wave functions corresponding to energies from the continuum part of the He spectrum, which are more accurate than those resulting from the commonly adopted approximations. Sect.1 is devoted to an appropriate series expansion of the wave function for the two helium planetary electrons and to the corresponding transformation of the Schrödinger equation into an infinite system of simultaneous differential equations which the expansion entails. Further, it is shown how a suitable truncation leads to the basic, one-electron, Schrödinger-type differential equation for the approximate wave function describing the positive energy electron in the electric field of the helium nucleus and the bound electron. The physical reasons underlying the truncation procedure are discussed in detail. In Sect.2, it is shown that the correction due to the motion of the nucleus vanishes identically to within the present lowest-order approximation scheme. Sect.3 deals with the radial part of the desired wave function, its reduction to atomic units, the ordinary second order differential equation which it satisfies, its Maclaurin series expansion and its general characteristics, especially its asymptotic behavior. Sect.4 describes the numerical integration of the mentioned radial wave equation for 27 pairs of energy and orbital angular momentum quantum number values, using an IBM 650 ordinator. All wave functions have been obtained in an interval of at least 8 atomic units. Finally, the normalization of the resulting curves to unit amplitude at infinity is examined in Sect.5. Two very elegant methods are developed and studied in detail. In the first procedure, the amplitude at infinity and the phase angle are rigorously given by certain integrals which are directly calculable. In the second and actually adopted method, the basic idea consists in introducing the Madelung transformation, leading to a non-linear differential equation for the local amplitude of the radial wave function. Calculating an asymptotic series expansion for this local amplitude, it becomes possible, in principle, to compute the normalized wave function starting at infinity down to a certain minimum abscissa dictated by the desired limit of precision. The corresponding curve to be normalized could then be fitted to the normalized one. However, it is shown that the entire procedure is enormously simplified by carrying out the matching operation at a zero of the oscillating radial wave function.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Van de Walle, R. T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Il nuovo cimento</subfield><subfield code="d">Pisa, 1855</subfield><subfield code="g">19(1961), 4 vom: 01. Feb., Seite 696-722</subfield><subfield code="w">(DE-627)626757762</subfield><subfield code="w">(DE-600)2554784-7</subfield><subfield code="x">1827-6121</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:1961</subfield><subfield code="g">number:4</subfield><subfield code="g">day:01</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:696-722</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/BF02733367</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2043</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2158</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2808</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4346</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4753</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">1961</subfield><subfield code="e">4</subfield><subfield code="b">01</subfield><subfield code="c">02</subfield><subfield code="h">696-722</subfield></datafield></record></collection>
|
author |
Grosjean, C. C. |
spellingShingle |
Grosjean, C. C. On the calculation of radial wave functions corresponding to energies in the continuum part of the helium spectrum |
authorStr |
Grosjean, C. C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)626757762 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1827-6121 |
topic_title |
On the calculation of radial wave functions corresponding to energies in the continuum part of the helium spectrum |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Il nuovo cimento |
hierarchy_parent_id |
626757762 |
hierarchy_top_title |
Il nuovo cimento |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)626757762 (DE-600)2554784-7 |
title |
On the calculation of radial wave functions corresponding to energies in the continuum part of the helium spectrum |
ctrlnum |
(DE-627)SPR037327038 (SPR)BF02733367-e |
title_full |
On the calculation of radial wave functions corresponding to energies in the continuum part of the helium spectrum |
author_sort |
Grosjean, C. C. |
journal |
Il nuovo cimento |
journalStr |
Il nuovo cimento |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1961 |
contenttype_str_mv |
txt |
container_start_page |
696 |
author_browse |
Grosjean, C. C. Van de Walle, R. T. |
container_volume |
19 |
format_se |
Elektronische Aufsätze |
author-letter |
Grosjean, C. C. |
doi_str_mv |
10.1007/BF02733367 |
title_sort |
on the calculation of radial wave functions corresponding to energies in the continuum part of the helium spectrum |
title_auth |
On the calculation of radial wave functions corresponding to energies in the continuum part of the helium spectrum |
abstract |
Summary For the purpose of recalculating the helium primary specific ionization values in an attempt to bridge the gap existing between theory and experiment in this field, this paper deals with the derivation of new wave functions corresponding to energies from the continuum part of the He spectrum, which are more accurate than those resulting from the commonly adopted approximations. Sect.1 is devoted to an appropriate series expansion of the wave function for the two helium planetary electrons and to the corresponding transformation of the Schrödinger equation into an infinite system of simultaneous differential equations which the expansion entails. Further, it is shown how a suitable truncation leads to the basic, one-electron, Schrödinger-type differential equation for the approximate wave function describing the positive energy electron in the electric field of the helium nucleus and the bound electron. The physical reasons underlying the truncation procedure are discussed in detail. In Sect.2, it is shown that the correction due to the motion of the nucleus vanishes identically to within the present lowest-order approximation scheme. Sect.3 deals with the radial part of the desired wave function, its reduction to atomic units, the ordinary second order differential equation which it satisfies, its Maclaurin series expansion and its general characteristics, especially its asymptotic behavior. Sect.4 describes the numerical integration of the mentioned radial wave equation for 27 pairs of energy and orbital angular momentum quantum number values, using an IBM 650 ordinator. All wave functions have been obtained in an interval of at least 8 atomic units. Finally, the normalization of the resulting curves to unit amplitude at infinity is examined in Sect.5. Two very elegant methods are developed and studied in detail. In the first procedure, the amplitude at infinity and the phase angle are rigorously given by certain integrals which are directly calculable. In the second and actually adopted method, the basic idea consists in introducing the Madelung transformation, leading to a non-linear differential equation for the local amplitude of the radial wave function. Calculating an asymptotic series expansion for this local amplitude, it becomes possible, in principle, to compute the normalized wave function starting at infinity down to a certain minimum abscissa dictated by the desired limit of precision. The corresponding curve to be normalized could then be fitted to the normalized one. However, it is shown that the entire procedure is enormously simplified by carrying out the matching operation at a zero of the oscillating radial wave function. © Società Italiana di Fisica 1961 |
abstractGer |
Summary For the purpose of recalculating the helium primary specific ionization values in an attempt to bridge the gap existing between theory and experiment in this field, this paper deals with the derivation of new wave functions corresponding to energies from the continuum part of the He spectrum, which are more accurate than those resulting from the commonly adopted approximations. Sect.1 is devoted to an appropriate series expansion of the wave function for the two helium planetary electrons and to the corresponding transformation of the Schrödinger equation into an infinite system of simultaneous differential equations which the expansion entails. Further, it is shown how a suitable truncation leads to the basic, one-electron, Schrödinger-type differential equation for the approximate wave function describing the positive energy electron in the electric field of the helium nucleus and the bound electron. The physical reasons underlying the truncation procedure are discussed in detail. In Sect.2, it is shown that the correction due to the motion of the nucleus vanishes identically to within the present lowest-order approximation scheme. Sect.3 deals with the radial part of the desired wave function, its reduction to atomic units, the ordinary second order differential equation which it satisfies, its Maclaurin series expansion and its general characteristics, especially its asymptotic behavior. Sect.4 describes the numerical integration of the mentioned radial wave equation for 27 pairs of energy and orbital angular momentum quantum number values, using an IBM 650 ordinator. All wave functions have been obtained in an interval of at least 8 atomic units. Finally, the normalization of the resulting curves to unit amplitude at infinity is examined in Sect.5. Two very elegant methods are developed and studied in detail. In the first procedure, the amplitude at infinity and the phase angle are rigorously given by certain integrals which are directly calculable. In the second and actually adopted method, the basic idea consists in introducing the Madelung transformation, leading to a non-linear differential equation for the local amplitude of the radial wave function. Calculating an asymptotic series expansion for this local amplitude, it becomes possible, in principle, to compute the normalized wave function starting at infinity down to a certain minimum abscissa dictated by the desired limit of precision. The corresponding curve to be normalized could then be fitted to the normalized one. However, it is shown that the entire procedure is enormously simplified by carrying out the matching operation at a zero of the oscillating radial wave function. © Società Italiana di Fisica 1961 |
abstract_unstemmed |
Summary For the purpose of recalculating the helium primary specific ionization values in an attempt to bridge the gap existing between theory and experiment in this field, this paper deals with the derivation of new wave functions corresponding to energies from the continuum part of the He spectrum, which are more accurate than those resulting from the commonly adopted approximations. Sect.1 is devoted to an appropriate series expansion of the wave function for the two helium planetary electrons and to the corresponding transformation of the Schrödinger equation into an infinite system of simultaneous differential equations which the expansion entails. Further, it is shown how a suitable truncation leads to the basic, one-electron, Schrödinger-type differential equation for the approximate wave function describing the positive energy electron in the electric field of the helium nucleus and the bound electron. The physical reasons underlying the truncation procedure are discussed in detail. In Sect.2, it is shown that the correction due to the motion of the nucleus vanishes identically to within the present lowest-order approximation scheme. Sect.3 deals with the radial part of the desired wave function, its reduction to atomic units, the ordinary second order differential equation which it satisfies, its Maclaurin series expansion and its general characteristics, especially its asymptotic behavior. Sect.4 describes the numerical integration of the mentioned radial wave equation for 27 pairs of energy and orbital angular momentum quantum number values, using an IBM 650 ordinator. All wave functions have been obtained in an interval of at least 8 atomic units. Finally, the normalization of the resulting curves to unit amplitude at infinity is examined in Sect.5. Two very elegant methods are developed and studied in detail. In the first procedure, the amplitude at infinity and the phase angle are rigorously given by certain integrals which are directly calculable. In the second and actually adopted method, the basic idea consists in introducing the Madelung transformation, leading to a non-linear differential equation for the local amplitude of the radial wave function. Calculating an asymptotic series expansion for this local amplitude, it becomes possible, in principle, to compute the normalized wave function starting at infinity down to a certain minimum abscissa dictated by the desired limit of precision. The corresponding curve to be normalized could then be fitted to the normalized one. However, it is shown that the entire procedure is enormously simplified by carrying out the matching operation at a zero of the oscillating radial wave function. © Società Italiana di Fisica 1961 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2043 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2158 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2193 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2808 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4346 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 GBV_ILN_4753 |
container_issue |
4 |
title_short |
On the calculation of radial wave functions corresponding to energies in the continuum part of the helium spectrum |
url |
https://dx.doi.org/10.1007/BF02733367 |
remote_bool |
true |
author2 |
Van de Walle, R. T. |
author2Str |
Van de Walle, R. T. |
ppnlink |
626757762 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02733367 |
up_date |
2024-07-03T22:15:29.972Z |
_version_ |
1803597832492417024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR037327038</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328183850.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s1961 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02733367</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR037327038</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)BF02733367-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grosjean, C. C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the calculation of radial wave functions corresponding to energies in the continuum part of the helium spectrum</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1961</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Società Italiana di Fisica 1961</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary For the purpose of recalculating the helium primary specific ionization values in an attempt to bridge the gap existing between theory and experiment in this field, this paper deals with the derivation of new wave functions corresponding to energies from the continuum part of the He spectrum, which are more accurate than those resulting from the commonly adopted approximations. Sect.1 is devoted to an appropriate series expansion of the wave function for the two helium planetary electrons and to the corresponding transformation of the Schrödinger equation into an infinite system of simultaneous differential equations which the expansion entails. Further, it is shown how a suitable truncation leads to the basic, one-electron, Schrödinger-type differential equation for the approximate wave function describing the positive energy electron in the electric field of the helium nucleus and the bound electron. The physical reasons underlying the truncation procedure are discussed in detail. In Sect.2, it is shown that the correction due to the motion of the nucleus vanishes identically to within the present lowest-order approximation scheme. Sect.3 deals with the radial part of the desired wave function, its reduction to atomic units, the ordinary second order differential equation which it satisfies, its Maclaurin series expansion and its general characteristics, especially its asymptotic behavior. Sect.4 describes the numerical integration of the mentioned radial wave equation for 27 pairs of energy and orbital angular momentum quantum number values, using an IBM 650 ordinator. All wave functions have been obtained in an interval of at least 8 atomic units. Finally, the normalization of the resulting curves to unit amplitude at infinity is examined in Sect.5. Two very elegant methods are developed and studied in detail. In the first procedure, the amplitude at infinity and the phase angle are rigorously given by certain integrals which are directly calculable. In the second and actually adopted method, the basic idea consists in introducing the Madelung transformation, leading to a non-linear differential equation for the local amplitude of the radial wave function. Calculating an asymptotic series expansion for this local amplitude, it becomes possible, in principle, to compute the normalized wave function starting at infinity down to a certain minimum abscissa dictated by the desired limit of precision. The corresponding curve to be normalized could then be fitted to the normalized one. However, it is shown that the entire procedure is enormously simplified by carrying out the matching operation at a zero of the oscillating radial wave function.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Van de Walle, R. T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Il nuovo cimento</subfield><subfield code="d">Pisa, 1855</subfield><subfield code="g">19(1961), 4 vom: 01. Feb., Seite 696-722</subfield><subfield code="w">(DE-627)626757762</subfield><subfield code="w">(DE-600)2554784-7</subfield><subfield code="x">1827-6121</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:1961</subfield><subfield code="g">number:4</subfield><subfield code="g">day:01</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:696-722</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/BF02733367</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2043</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2158</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2808</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4346</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4753</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">1961</subfield><subfield code="e">4</subfield><subfield code="b">01</subfield><subfield code="c">02</subfield><subfield code="h">696-722</subfield></datafield></record></collection>
|
score |
7.401124 |