Lesser known indigenous vegetables as potential natural egg colourant in laying chickens
Background A six-week study involving two hundred and fifty (250) Harco Black layer birds at point of lay was conducted to investigate the effects of potential natural colorant on performance and Egg quality traits. The birds were assigned to five (5) dietary treatments, each containing supplements...
Ausführliche Beschreibung
Autor*in: |
Abiodun, Bolu Steven [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Abiodun et al.; licensee BioMed Central Ltd. 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of animal science and technology - Seoul : Korean Society of Animal Science and Technology, 2014, 56(2014), 1 vom: 24. Sept. |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2014 ; number:1 ; day:24 ; month:09 |
Links: |
---|
DOI / URN: |
10.1186/2055-0391-56-18 |
---|
Katalog-ID: |
SPR037744690 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR037744690 | ||
003 | DE-627 | ||
005 | 20230328210125.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/2055-0391-56-18 |2 doi | |
035 | |a (DE-627)SPR037744690 | ||
035 | |a (SPR)2055-0391-56-18-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Abiodun, Bolu Steven |e verfasserin |4 aut | |
245 | 1 | 0 | |a Lesser known indigenous vegetables as potential natural egg colourant in laying chickens |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Abiodun et al.; licensee BioMed Central Ltd. 2014 | ||
520 | |a Background A six-week study involving two hundred and fifty (250) Harco Black layer birds at point of lay was conducted to investigate the effects of potential natural colorant on performance and Egg quality traits. The birds were assigned to five (5) dietary treatments, each containing supplements either of control, Baobab Leaf (BL), Waterleaf (WL), Red Pepper (RP), Canthaxanthin (CTX) at 40 g/kg feed and 50 mg/kg feed of natural and commercial colorants, respectively. Results Performance records shows that there was no significant (p > 0.05) difference in feed intake across the supplements of Red pepper, Water leaf, Canthaxanthin and control diet, however, birds fed Baobab leaf treatment had a significantly lower (p < 0.05) feed intake value (94.07 g) when compared with other treatments. Body weight gain and Hen Day Production were not significant influenced (p > 0.05) by the dietary treatments, although laying hens fed Baobab leaf supplement had lowest mean HDP of 48.80%, while birds fed Red pepper and Water leaf supplement had an average value of 52.79%. There was no significant effect (p > 0.05) of colorants on egg external traits, compared with the control; birds fed Canthaxanthin treatment had higher mean egg weight (51.79 g), egg length (4.55 g), egg breadth (3.29 g); Red pepper treatment had highest mean shell thickness (0.29 g), however these differences were not significant (p > 0.05). Yolk height, Albumen height, Yolk index, and Haugh unit were not significantly affected (p > 0.05) across treatments. Yolk width was lowest (p < 0.05) in Baobab leaf treatment (2.54 cm); Red pepper, Water leaf and Canthaxanthin (2.89 cm, 2.62 cm and 2.89 cm respectively) were not significantly (p > 0.05) different from the control (2.73 cm). Yolk colour score was significantly highest (p < 0.05) in Red pepper treatment (7.50); Water leaf, Baobab leaf and Canthaxanthin ranged between 2.25- 3.31 on the DSM yolk colour fan, Control treatment had the lowest yolk colour score (p < 0.05) of 1.31. Conclusion The study showed Red pepper as a worthy alternative to commercial yolk colorant. Water leaf and baobab are not good substitutes for canthaxanthin as a yolk colourant. | ||
650 | 4 | |a Canthaxanthin |7 (dpeaa)DE-He213 | |
650 | 4 | |a Egg yolk colorant |7 (dpeaa)DE-He213 | |
650 | 4 | |a Waterleaf |7 (dpeaa)DE-He213 | |
650 | 4 | |a Red pepper |7 (dpeaa)DE-He213 | |
650 | 4 | |a Baobab leaf |7 (dpeaa)DE-He213 | |
700 | 1 | |a Adedeji, Aderibigbe Simeon |4 aut | |
700 | 1 | |a Abiodun, Elegbeleye |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of animal science and technology |d Seoul : Korean Society of Animal Science and Technology, 2014 |g 56(2014), 1 vom: 24. Sept. |w (DE-627)788845659 |w (DE-600)2775231-8 |x 2055-0391 |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2014 |g number:1 |g day:24 |g month:09 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/2055-0391-56-18 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 56 |j 2014 |e 1 |b 24 |c 09 |
author_variant |
b s a bs bsa a s a as asa e a ea |
---|---|
matchkey_str |
article:20550391:2014----::esrnwidgnuvgtbeaptnilauaegoo |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1186/2055-0391-56-18 doi (DE-627)SPR037744690 (SPR)2055-0391-56-18-e DE-627 ger DE-627 rakwb eng Abiodun, Bolu Steven verfasserin aut Lesser known indigenous vegetables as potential natural egg colourant in laying chickens 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Abiodun et al.; licensee BioMed Central Ltd. 2014 Background A six-week study involving two hundred and fifty (250) Harco Black layer birds at point of lay was conducted to investigate the effects of potential natural colorant on performance and Egg quality traits. The birds were assigned to five (5) dietary treatments, each containing supplements either of control, Baobab Leaf (BL), Waterleaf (WL), Red Pepper (RP), Canthaxanthin (CTX) at 40 g/kg feed and 50 mg/kg feed of natural and commercial colorants, respectively. Results Performance records shows that there was no significant (p > 0.05) difference in feed intake across the supplements of Red pepper, Water leaf, Canthaxanthin and control diet, however, birds fed Baobab leaf treatment had a significantly lower (p < 0.05) feed intake value (94.07 g) when compared with other treatments. Body weight gain and Hen Day Production were not significant influenced (p > 0.05) by the dietary treatments, although laying hens fed Baobab leaf supplement had lowest mean HDP of 48.80%, while birds fed Red pepper and Water leaf supplement had an average value of 52.79%. There was no significant effect (p > 0.05) of colorants on egg external traits, compared with the control; birds fed Canthaxanthin treatment had higher mean egg weight (51.79 g), egg length (4.55 g), egg breadth (3.29 g); Red pepper treatment had highest mean shell thickness (0.29 g), however these differences were not significant (p > 0.05). Yolk height, Albumen height, Yolk index, and Haugh unit were not significantly affected (p > 0.05) across treatments. Yolk width was lowest (p < 0.05) in Baobab leaf treatment (2.54 cm); Red pepper, Water leaf and Canthaxanthin (2.89 cm, 2.62 cm and 2.89 cm respectively) were not significantly (p > 0.05) different from the control (2.73 cm). Yolk colour score was significantly highest (p < 0.05) in Red pepper treatment (7.50); Water leaf, Baobab leaf and Canthaxanthin ranged between 2.25- 3.31 on the DSM yolk colour fan, Control treatment had the lowest yolk colour score (p < 0.05) of 1.31. Conclusion The study showed Red pepper as a worthy alternative to commercial yolk colorant. Water leaf and baobab are not good substitutes for canthaxanthin as a yolk colourant. Canthaxanthin (dpeaa)DE-He213 Egg yolk colorant (dpeaa)DE-He213 Waterleaf (dpeaa)DE-He213 Red pepper (dpeaa)DE-He213 Baobab leaf (dpeaa)DE-He213 Adedeji, Aderibigbe Simeon aut Abiodun, Elegbeleye aut Enthalten in Journal of animal science and technology Seoul : Korean Society of Animal Science and Technology, 2014 56(2014), 1 vom: 24. Sept. (DE-627)788845659 (DE-600)2775231-8 2055-0391 nnns volume:56 year:2014 number:1 day:24 month:09 https://dx.doi.org/10.1186/2055-0391-56-18 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 56 2014 1 24 09 |
spelling |
10.1186/2055-0391-56-18 doi (DE-627)SPR037744690 (SPR)2055-0391-56-18-e DE-627 ger DE-627 rakwb eng Abiodun, Bolu Steven verfasserin aut Lesser known indigenous vegetables as potential natural egg colourant in laying chickens 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Abiodun et al.; licensee BioMed Central Ltd. 2014 Background A six-week study involving two hundred and fifty (250) Harco Black layer birds at point of lay was conducted to investigate the effects of potential natural colorant on performance and Egg quality traits. The birds were assigned to five (5) dietary treatments, each containing supplements either of control, Baobab Leaf (BL), Waterleaf (WL), Red Pepper (RP), Canthaxanthin (CTX) at 40 g/kg feed and 50 mg/kg feed of natural and commercial colorants, respectively. Results Performance records shows that there was no significant (p > 0.05) difference in feed intake across the supplements of Red pepper, Water leaf, Canthaxanthin and control diet, however, birds fed Baobab leaf treatment had a significantly lower (p < 0.05) feed intake value (94.07 g) when compared with other treatments. Body weight gain and Hen Day Production were not significant influenced (p > 0.05) by the dietary treatments, although laying hens fed Baobab leaf supplement had lowest mean HDP of 48.80%, while birds fed Red pepper and Water leaf supplement had an average value of 52.79%. There was no significant effect (p > 0.05) of colorants on egg external traits, compared with the control; birds fed Canthaxanthin treatment had higher mean egg weight (51.79 g), egg length (4.55 g), egg breadth (3.29 g); Red pepper treatment had highest mean shell thickness (0.29 g), however these differences were not significant (p > 0.05). Yolk height, Albumen height, Yolk index, and Haugh unit were not significantly affected (p > 0.05) across treatments. Yolk width was lowest (p < 0.05) in Baobab leaf treatment (2.54 cm); Red pepper, Water leaf and Canthaxanthin (2.89 cm, 2.62 cm and 2.89 cm respectively) were not significantly (p > 0.05) different from the control (2.73 cm). Yolk colour score was significantly highest (p < 0.05) in Red pepper treatment (7.50); Water leaf, Baobab leaf and Canthaxanthin ranged between 2.25- 3.31 on the DSM yolk colour fan, Control treatment had the lowest yolk colour score (p < 0.05) of 1.31. Conclusion The study showed Red pepper as a worthy alternative to commercial yolk colorant. Water leaf and baobab are not good substitutes for canthaxanthin as a yolk colourant. Canthaxanthin (dpeaa)DE-He213 Egg yolk colorant (dpeaa)DE-He213 Waterleaf (dpeaa)DE-He213 Red pepper (dpeaa)DE-He213 Baobab leaf (dpeaa)DE-He213 Adedeji, Aderibigbe Simeon aut Abiodun, Elegbeleye aut Enthalten in Journal of animal science and technology Seoul : Korean Society of Animal Science and Technology, 2014 56(2014), 1 vom: 24. Sept. (DE-627)788845659 (DE-600)2775231-8 2055-0391 nnns volume:56 year:2014 number:1 day:24 month:09 https://dx.doi.org/10.1186/2055-0391-56-18 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 56 2014 1 24 09 |
allfields_unstemmed |
10.1186/2055-0391-56-18 doi (DE-627)SPR037744690 (SPR)2055-0391-56-18-e DE-627 ger DE-627 rakwb eng Abiodun, Bolu Steven verfasserin aut Lesser known indigenous vegetables as potential natural egg colourant in laying chickens 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Abiodun et al.; licensee BioMed Central Ltd. 2014 Background A six-week study involving two hundred and fifty (250) Harco Black layer birds at point of lay was conducted to investigate the effects of potential natural colorant on performance and Egg quality traits. The birds were assigned to five (5) dietary treatments, each containing supplements either of control, Baobab Leaf (BL), Waterleaf (WL), Red Pepper (RP), Canthaxanthin (CTX) at 40 g/kg feed and 50 mg/kg feed of natural and commercial colorants, respectively. Results Performance records shows that there was no significant (p > 0.05) difference in feed intake across the supplements of Red pepper, Water leaf, Canthaxanthin and control diet, however, birds fed Baobab leaf treatment had a significantly lower (p < 0.05) feed intake value (94.07 g) when compared with other treatments. Body weight gain and Hen Day Production were not significant influenced (p > 0.05) by the dietary treatments, although laying hens fed Baobab leaf supplement had lowest mean HDP of 48.80%, while birds fed Red pepper and Water leaf supplement had an average value of 52.79%. There was no significant effect (p > 0.05) of colorants on egg external traits, compared with the control; birds fed Canthaxanthin treatment had higher mean egg weight (51.79 g), egg length (4.55 g), egg breadth (3.29 g); Red pepper treatment had highest mean shell thickness (0.29 g), however these differences were not significant (p > 0.05). Yolk height, Albumen height, Yolk index, and Haugh unit were not significantly affected (p > 0.05) across treatments. Yolk width was lowest (p < 0.05) in Baobab leaf treatment (2.54 cm); Red pepper, Water leaf and Canthaxanthin (2.89 cm, 2.62 cm and 2.89 cm respectively) were not significantly (p > 0.05) different from the control (2.73 cm). Yolk colour score was significantly highest (p < 0.05) in Red pepper treatment (7.50); Water leaf, Baobab leaf and Canthaxanthin ranged between 2.25- 3.31 on the DSM yolk colour fan, Control treatment had the lowest yolk colour score (p < 0.05) of 1.31. Conclusion The study showed Red pepper as a worthy alternative to commercial yolk colorant. Water leaf and baobab are not good substitutes for canthaxanthin as a yolk colourant. Canthaxanthin (dpeaa)DE-He213 Egg yolk colorant (dpeaa)DE-He213 Waterleaf (dpeaa)DE-He213 Red pepper (dpeaa)DE-He213 Baobab leaf (dpeaa)DE-He213 Adedeji, Aderibigbe Simeon aut Abiodun, Elegbeleye aut Enthalten in Journal of animal science and technology Seoul : Korean Society of Animal Science and Technology, 2014 56(2014), 1 vom: 24. Sept. (DE-627)788845659 (DE-600)2775231-8 2055-0391 nnns volume:56 year:2014 number:1 day:24 month:09 https://dx.doi.org/10.1186/2055-0391-56-18 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 56 2014 1 24 09 |
allfieldsGer |
10.1186/2055-0391-56-18 doi (DE-627)SPR037744690 (SPR)2055-0391-56-18-e DE-627 ger DE-627 rakwb eng Abiodun, Bolu Steven verfasserin aut Lesser known indigenous vegetables as potential natural egg colourant in laying chickens 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Abiodun et al.; licensee BioMed Central Ltd. 2014 Background A six-week study involving two hundred and fifty (250) Harco Black layer birds at point of lay was conducted to investigate the effects of potential natural colorant on performance and Egg quality traits. The birds were assigned to five (5) dietary treatments, each containing supplements either of control, Baobab Leaf (BL), Waterleaf (WL), Red Pepper (RP), Canthaxanthin (CTX) at 40 g/kg feed and 50 mg/kg feed of natural and commercial colorants, respectively. Results Performance records shows that there was no significant (p > 0.05) difference in feed intake across the supplements of Red pepper, Water leaf, Canthaxanthin and control diet, however, birds fed Baobab leaf treatment had a significantly lower (p < 0.05) feed intake value (94.07 g) when compared with other treatments. Body weight gain and Hen Day Production were not significant influenced (p > 0.05) by the dietary treatments, although laying hens fed Baobab leaf supplement had lowest mean HDP of 48.80%, while birds fed Red pepper and Water leaf supplement had an average value of 52.79%. There was no significant effect (p > 0.05) of colorants on egg external traits, compared with the control; birds fed Canthaxanthin treatment had higher mean egg weight (51.79 g), egg length (4.55 g), egg breadth (3.29 g); Red pepper treatment had highest mean shell thickness (0.29 g), however these differences were not significant (p > 0.05). Yolk height, Albumen height, Yolk index, and Haugh unit were not significantly affected (p > 0.05) across treatments. Yolk width was lowest (p < 0.05) in Baobab leaf treatment (2.54 cm); Red pepper, Water leaf and Canthaxanthin (2.89 cm, 2.62 cm and 2.89 cm respectively) were not significantly (p > 0.05) different from the control (2.73 cm). Yolk colour score was significantly highest (p < 0.05) in Red pepper treatment (7.50); Water leaf, Baobab leaf and Canthaxanthin ranged between 2.25- 3.31 on the DSM yolk colour fan, Control treatment had the lowest yolk colour score (p < 0.05) of 1.31. Conclusion The study showed Red pepper as a worthy alternative to commercial yolk colorant. Water leaf and baobab are not good substitutes for canthaxanthin as a yolk colourant. Canthaxanthin (dpeaa)DE-He213 Egg yolk colorant (dpeaa)DE-He213 Waterleaf (dpeaa)DE-He213 Red pepper (dpeaa)DE-He213 Baobab leaf (dpeaa)DE-He213 Adedeji, Aderibigbe Simeon aut Abiodun, Elegbeleye aut Enthalten in Journal of animal science and technology Seoul : Korean Society of Animal Science and Technology, 2014 56(2014), 1 vom: 24. Sept. (DE-627)788845659 (DE-600)2775231-8 2055-0391 nnns volume:56 year:2014 number:1 day:24 month:09 https://dx.doi.org/10.1186/2055-0391-56-18 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 56 2014 1 24 09 |
allfieldsSound |
10.1186/2055-0391-56-18 doi (DE-627)SPR037744690 (SPR)2055-0391-56-18-e DE-627 ger DE-627 rakwb eng Abiodun, Bolu Steven verfasserin aut Lesser known indigenous vegetables as potential natural egg colourant in laying chickens 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Abiodun et al.; licensee BioMed Central Ltd. 2014 Background A six-week study involving two hundred and fifty (250) Harco Black layer birds at point of lay was conducted to investigate the effects of potential natural colorant on performance and Egg quality traits. The birds were assigned to five (5) dietary treatments, each containing supplements either of control, Baobab Leaf (BL), Waterleaf (WL), Red Pepper (RP), Canthaxanthin (CTX) at 40 g/kg feed and 50 mg/kg feed of natural and commercial colorants, respectively. Results Performance records shows that there was no significant (p > 0.05) difference in feed intake across the supplements of Red pepper, Water leaf, Canthaxanthin and control diet, however, birds fed Baobab leaf treatment had a significantly lower (p < 0.05) feed intake value (94.07 g) when compared with other treatments. Body weight gain and Hen Day Production were not significant influenced (p > 0.05) by the dietary treatments, although laying hens fed Baobab leaf supplement had lowest mean HDP of 48.80%, while birds fed Red pepper and Water leaf supplement had an average value of 52.79%. There was no significant effect (p > 0.05) of colorants on egg external traits, compared with the control; birds fed Canthaxanthin treatment had higher mean egg weight (51.79 g), egg length (4.55 g), egg breadth (3.29 g); Red pepper treatment had highest mean shell thickness (0.29 g), however these differences were not significant (p > 0.05). Yolk height, Albumen height, Yolk index, and Haugh unit were not significantly affected (p > 0.05) across treatments. Yolk width was lowest (p < 0.05) in Baobab leaf treatment (2.54 cm); Red pepper, Water leaf and Canthaxanthin (2.89 cm, 2.62 cm and 2.89 cm respectively) were not significantly (p > 0.05) different from the control (2.73 cm). Yolk colour score was significantly highest (p < 0.05) in Red pepper treatment (7.50); Water leaf, Baobab leaf and Canthaxanthin ranged between 2.25- 3.31 on the DSM yolk colour fan, Control treatment had the lowest yolk colour score (p < 0.05) of 1.31. Conclusion The study showed Red pepper as a worthy alternative to commercial yolk colorant. Water leaf and baobab are not good substitutes for canthaxanthin as a yolk colourant. Canthaxanthin (dpeaa)DE-He213 Egg yolk colorant (dpeaa)DE-He213 Waterleaf (dpeaa)DE-He213 Red pepper (dpeaa)DE-He213 Baobab leaf (dpeaa)DE-He213 Adedeji, Aderibigbe Simeon aut Abiodun, Elegbeleye aut Enthalten in Journal of animal science and technology Seoul : Korean Society of Animal Science and Technology, 2014 56(2014), 1 vom: 24. Sept. (DE-627)788845659 (DE-600)2775231-8 2055-0391 nnns volume:56 year:2014 number:1 day:24 month:09 https://dx.doi.org/10.1186/2055-0391-56-18 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 56 2014 1 24 09 |
language |
English |
source |
Enthalten in Journal of animal science and technology 56(2014), 1 vom: 24. Sept. volume:56 year:2014 number:1 day:24 month:09 |
sourceStr |
Enthalten in Journal of animal science and technology 56(2014), 1 vom: 24. Sept. volume:56 year:2014 number:1 day:24 month:09 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Canthaxanthin Egg yolk colorant Waterleaf Red pepper Baobab leaf |
isfreeaccess_bool |
true |
container_title |
Journal of animal science and technology |
authorswithroles_txt_mv |
Abiodun, Bolu Steven @@aut@@ Adedeji, Aderibigbe Simeon @@aut@@ Abiodun, Elegbeleye @@aut@@ |
publishDateDaySort_date |
2014-09-24T00:00:00Z |
hierarchy_top_id |
788845659 |
id |
SPR037744690 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR037744690</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328210125.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/2055-0391-56-18</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR037744690</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)2055-0391-56-18-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abiodun, Bolu Steven</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lesser known indigenous vegetables as potential natural egg colourant in laying chickens</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Abiodun et al.; licensee BioMed Central Ltd. 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background A six-week study involving two hundred and fifty (250) Harco Black layer birds at point of lay was conducted to investigate the effects of potential natural colorant on performance and Egg quality traits. The birds were assigned to five (5) dietary treatments, each containing supplements either of control, Baobab Leaf (BL), Waterleaf (WL), Red Pepper (RP), Canthaxanthin (CTX) at 40 g/kg feed and 50 mg/kg feed of natural and commercial colorants, respectively. Results Performance records shows that there was no significant (p > 0.05) difference in feed intake across the supplements of Red pepper, Water leaf, Canthaxanthin and control diet, however, birds fed Baobab leaf treatment had a significantly lower (p < 0.05) feed intake value (94.07 g) when compared with other treatments. Body weight gain and Hen Day Production were not significant influenced (p > 0.05) by the dietary treatments, although laying hens fed Baobab leaf supplement had lowest mean HDP of 48.80%, while birds fed Red pepper and Water leaf supplement had an average value of 52.79%. There was no significant effect (p > 0.05) of colorants on egg external traits, compared with the control; birds fed Canthaxanthin treatment had higher mean egg weight (51.79 g), egg length (4.55 g), egg breadth (3.29 g); Red pepper treatment had highest mean shell thickness (0.29 g), however these differences were not significant (p > 0.05). Yolk height, Albumen height, Yolk index, and Haugh unit were not significantly affected (p > 0.05) across treatments. Yolk width was lowest (p < 0.05) in Baobab leaf treatment (2.54 cm); Red pepper, Water leaf and Canthaxanthin (2.89 cm, 2.62 cm and 2.89 cm respectively) were not significantly (p > 0.05) different from the control (2.73 cm). Yolk colour score was significantly highest (p < 0.05) in Red pepper treatment (7.50); Water leaf, Baobab leaf and Canthaxanthin ranged between 2.25- 3.31 on the DSM yolk colour fan, Control treatment had the lowest yolk colour score (p < 0.05) of 1.31. Conclusion The study showed Red pepper as a worthy alternative to commercial yolk colorant. Water leaf and baobab are not good substitutes for canthaxanthin as a yolk colourant.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Canthaxanthin</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Egg yolk colorant</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waterleaf</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Red pepper</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Baobab leaf</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adedeji, Aderibigbe Simeon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abiodun, Elegbeleye</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of animal science and technology</subfield><subfield code="d">Seoul : Korean Society of Animal Science and Technology, 2014</subfield><subfield code="g">56(2014), 1 vom: 24. Sept.</subfield><subfield code="w">(DE-627)788845659</subfield><subfield code="w">(DE-600)2775231-8</subfield><subfield code="x">2055-0391</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:24</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/2055-0391-56-18</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">24</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
author |
Abiodun, Bolu Steven |
spellingShingle |
Abiodun, Bolu Steven misc Canthaxanthin misc Egg yolk colorant misc Waterleaf misc Red pepper misc Baobab leaf Lesser known indigenous vegetables as potential natural egg colourant in laying chickens |
authorStr |
Abiodun, Bolu Steven |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)788845659 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2055-0391 |
topic_title |
Lesser known indigenous vegetables as potential natural egg colourant in laying chickens Canthaxanthin (dpeaa)DE-He213 Egg yolk colorant (dpeaa)DE-He213 Waterleaf (dpeaa)DE-He213 Red pepper (dpeaa)DE-He213 Baobab leaf (dpeaa)DE-He213 |
topic |
misc Canthaxanthin misc Egg yolk colorant misc Waterleaf misc Red pepper misc Baobab leaf |
topic_unstemmed |
misc Canthaxanthin misc Egg yolk colorant misc Waterleaf misc Red pepper misc Baobab leaf |
topic_browse |
misc Canthaxanthin misc Egg yolk colorant misc Waterleaf misc Red pepper misc Baobab leaf |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of animal science and technology |
hierarchy_parent_id |
788845659 |
hierarchy_top_title |
Journal of animal science and technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)788845659 (DE-600)2775231-8 |
title |
Lesser known indigenous vegetables as potential natural egg colourant in laying chickens |
ctrlnum |
(DE-627)SPR037744690 (SPR)2055-0391-56-18-e |
title_full |
Lesser known indigenous vegetables as potential natural egg colourant in laying chickens |
author_sort |
Abiodun, Bolu Steven |
journal |
Journal of animal science and technology |
journalStr |
Journal of animal science and technology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
author_browse |
Abiodun, Bolu Steven Adedeji, Aderibigbe Simeon Abiodun, Elegbeleye |
container_volume |
56 |
format_se |
Elektronische Aufsätze |
author-letter |
Abiodun, Bolu Steven |
doi_str_mv |
10.1186/2055-0391-56-18 |
title_sort |
lesser known indigenous vegetables as potential natural egg colourant in laying chickens |
title_auth |
Lesser known indigenous vegetables as potential natural egg colourant in laying chickens |
abstract |
Background A six-week study involving two hundred and fifty (250) Harco Black layer birds at point of lay was conducted to investigate the effects of potential natural colorant on performance and Egg quality traits. The birds were assigned to five (5) dietary treatments, each containing supplements either of control, Baobab Leaf (BL), Waterleaf (WL), Red Pepper (RP), Canthaxanthin (CTX) at 40 g/kg feed and 50 mg/kg feed of natural and commercial colorants, respectively. Results Performance records shows that there was no significant (p > 0.05) difference in feed intake across the supplements of Red pepper, Water leaf, Canthaxanthin and control diet, however, birds fed Baobab leaf treatment had a significantly lower (p < 0.05) feed intake value (94.07 g) when compared with other treatments. Body weight gain and Hen Day Production were not significant influenced (p > 0.05) by the dietary treatments, although laying hens fed Baobab leaf supplement had lowest mean HDP of 48.80%, while birds fed Red pepper and Water leaf supplement had an average value of 52.79%. There was no significant effect (p > 0.05) of colorants on egg external traits, compared with the control; birds fed Canthaxanthin treatment had higher mean egg weight (51.79 g), egg length (4.55 g), egg breadth (3.29 g); Red pepper treatment had highest mean shell thickness (0.29 g), however these differences were not significant (p > 0.05). Yolk height, Albumen height, Yolk index, and Haugh unit were not significantly affected (p > 0.05) across treatments. Yolk width was lowest (p < 0.05) in Baobab leaf treatment (2.54 cm); Red pepper, Water leaf and Canthaxanthin (2.89 cm, 2.62 cm and 2.89 cm respectively) were not significantly (p > 0.05) different from the control (2.73 cm). Yolk colour score was significantly highest (p < 0.05) in Red pepper treatment (7.50); Water leaf, Baobab leaf and Canthaxanthin ranged between 2.25- 3.31 on the DSM yolk colour fan, Control treatment had the lowest yolk colour score (p < 0.05) of 1.31. Conclusion The study showed Red pepper as a worthy alternative to commercial yolk colorant. Water leaf and baobab are not good substitutes for canthaxanthin as a yolk colourant. © Abiodun et al.; licensee BioMed Central Ltd. 2014 |
abstractGer |
Background A six-week study involving two hundred and fifty (250) Harco Black layer birds at point of lay was conducted to investigate the effects of potential natural colorant on performance and Egg quality traits. The birds were assigned to five (5) dietary treatments, each containing supplements either of control, Baobab Leaf (BL), Waterleaf (WL), Red Pepper (RP), Canthaxanthin (CTX) at 40 g/kg feed and 50 mg/kg feed of natural and commercial colorants, respectively. Results Performance records shows that there was no significant (p > 0.05) difference in feed intake across the supplements of Red pepper, Water leaf, Canthaxanthin and control diet, however, birds fed Baobab leaf treatment had a significantly lower (p < 0.05) feed intake value (94.07 g) when compared with other treatments. Body weight gain and Hen Day Production were not significant influenced (p > 0.05) by the dietary treatments, although laying hens fed Baobab leaf supplement had lowest mean HDP of 48.80%, while birds fed Red pepper and Water leaf supplement had an average value of 52.79%. There was no significant effect (p > 0.05) of colorants on egg external traits, compared with the control; birds fed Canthaxanthin treatment had higher mean egg weight (51.79 g), egg length (4.55 g), egg breadth (3.29 g); Red pepper treatment had highest mean shell thickness (0.29 g), however these differences were not significant (p > 0.05). Yolk height, Albumen height, Yolk index, and Haugh unit were not significantly affected (p > 0.05) across treatments. Yolk width was lowest (p < 0.05) in Baobab leaf treatment (2.54 cm); Red pepper, Water leaf and Canthaxanthin (2.89 cm, 2.62 cm and 2.89 cm respectively) were not significantly (p > 0.05) different from the control (2.73 cm). Yolk colour score was significantly highest (p < 0.05) in Red pepper treatment (7.50); Water leaf, Baobab leaf and Canthaxanthin ranged between 2.25- 3.31 on the DSM yolk colour fan, Control treatment had the lowest yolk colour score (p < 0.05) of 1.31. Conclusion The study showed Red pepper as a worthy alternative to commercial yolk colorant. Water leaf and baobab are not good substitutes for canthaxanthin as a yolk colourant. © Abiodun et al.; licensee BioMed Central Ltd. 2014 |
abstract_unstemmed |
Background A six-week study involving two hundred and fifty (250) Harco Black layer birds at point of lay was conducted to investigate the effects of potential natural colorant on performance and Egg quality traits. The birds were assigned to five (5) dietary treatments, each containing supplements either of control, Baobab Leaf (BL), Waterleaf (WL), Red Pepper (RP), Canthaxanthin (CTX) at 40 g/kg feed and 50 mg/kg feed of natural and commercial colorants, respectively. Results Performance records shows that there was no significant (p > 0.05) difference in feed intake across the supplements of Red pepper, Water leaf, Canthaxanthin and control diet, however, birds fed Baobab leaf treatment had a significantly lower (p < 0.05) feed intake value (94.07 g) when compared with other treatments. Body weight gain and Hen Day Production were not significant influenced (p > 0.05) by the dietary treatments, although laying hens fed Baobab leaf supplement had lowest mean HDP of 48.80%, while birds fed Red pepper and Water leaf supplement had an average value of 52.79%. There was no significant effect (p > 0.05) of colorants on egg external traits, compared with the control; birds fed Canthaxanthin treatment had higher mean egg weight (51.79 g), egg length (4.55 g), egg breadth (3.29 g); Red pepper treatment had highest mean shell thickness (0.29 g), however these differences were not significant (p > 0.05). Yolk height, Albumen height, Yolk index, and Haugh unit were not significantly affected (p > 0.05) across treatments. Yolk width was lowest (p < 0.05) in Baobab leaf treatment (2.54 cm); Red pepper, Water leaf and Canthaxanthin (2.89 cm, 2.62 cm and 2.89 cm respectively) were not significantly (p > 0.05) different from the control (2.73 cm). Yolk colour score was significantly highest (p < 0.05) in Red pepper treatment (7.50); Water leaf, Baobab leaf and Canthaxanthin ranged between 2.25- 3.31 on the DSM yolk colour fan, Control treatment had the lowest yolk colour score (p < 0.05) of 1.31. Conclusion The study showed Red pepper as a worthy alternative to commercial yolk colorant. Water leaf and baobab are not good substitutes for canthaxanthin as a yolk colourant. © Abiodun et al.; licensee BioMed Central Ltd. 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Lesser known indigenous vegetables as potential natural egg colourant in laying chickens |
url |
https://dx.doi.org/10.1186/2055-0391-56-18 |
remote_bool |
true |
author2 |
Adedeji, Aderibigbe Simeon Abiodun, Elegbeleye |
author2Str |
Adedeji, Aderibigbe Simeon Abiodun, Elegbeleye |
ppnlink |
788845659 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/2055-0391-56-18 |
up_date |
2024-07-03T14:08:12.459Z |
_version_ |
1803567174744276992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR037744690</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328210125.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/2055-0391-56-18</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR037744690</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)2055-0391-56-18-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abiodun, Bolu Steven</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lesser known indigenous vegetables as potential natural egg colourant in laying chickens</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Abiodun et al.; licensee BioMed Central Ltd. 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background A six-week study involving two hundred and fifty (250) Harco Black layer birds at point of lay was conducted to investigate the effects of potential natural colorant on performance and Egg quality traits. The birds were assigned to five (5) dietary treatments, each containing supplements either of control, Baobab Leaf (BL), Waterleaf (WL), Red Pepper (RP), Canthaxanthin (CTX) at 40 g/kg feed and 50 mg/kg feed of natural and commercial colorants, respectively. Results Performance records shows that there was no significant (p > 0.05) difference in feed intake across the supplements of Red pepper, Water leaf, Canthaxanthin and control diet, however, birds fed Baobab leaf treatment had a significantly lower (p < 0.05) feed intake value (94.07 g) when compared with other treatments. Body weight gain and Hen Day Production were not significant influenced (p > 0.05) by the dietary treatments, although laying hens fed Baobab leaf supplement had lowest mean HDP of 48.80%, while birds fed Red pepper and Water leaf supplement had an average value of 52.79%. There was no significant effect (p > 0.05) of colorants on egg external traits, compared with the control; birds fed Canthaxanthin treatment had higher mean egg weight (51.79 g), egg length (4.55 g), egg breadth (3.29 g); Red pepper treatment had highest mean shell thickness (0.29 g), however these differences were not significant (p > 0.05). Yolk height, Albumen height, Yolk index, and Haugh unit were not significantly affected (p > 0.05) across treatments. Yolk width was lowest (p < 0.05) in Baobab leaf treatment (2.54 cm); Red pepper, Water leaf and Canthaxanthin (2.89 cm, 2.62 cm and 2.89 cm respectively) were not significantly (p > 0.05) different from the control (2.73 cm). Yolk colour score was significantly highest (p < 0.05) in Red pepper treatment (7.50); Water leaf, Baobab leaf and Canthaxanthin ranged between 2.25- 3.31 on the DSM yolk colour fan, Control treatment had the lowest yolk colour score (p < 0.05) of 1.31. Conclusion The study showed Red pepper as a worthy alternative to commercial yolk colorant. Water leaf and baobab are not good substitutes for canthaxanthin as a yolk colourant.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Canthaxanthin</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Egg yolk colorant</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waterleaf</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Red pepper</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Baobab leaf</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adedeji, Aderibigbe Simeon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abiodun, Elegbeleye</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of animal science and technology</subfield><subfield code="d">Seoul : Korean Society of Animal Science and Technology, 2014</subfield><subfield code="g">56(2014), 1 vom: 24. Sept.</subfield><subfield code="w">(DE-627)788845659</subfield><subfield code="w">(DE-600)2775231-8</subfield><subfield code="x">2055-0391</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:24</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/2055-0391-56-18</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">24</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
score |
7.401311 |