Modeling of gross calorific value based on coal properties by support vector regression method

Abstract Gross calorific value (GCV) is one the most important coal combustion parameters for power plants. Modeling of GCV based on coal properties could be a key for estimating the amount of coal consumption in the combustion system of various plants. In this study, support vector regression (SVR)...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Hadavandi, E. [verfasserIn]

Hower, James C.

Chehreh Chelgani, S.

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2017

Schlagwörter:

Combustion

Support vector regression

Variable importance measurement

Proximate

Ultimate

Petrography

Anmerkung:

© Springer International Publishing Switzerland 2017

Übergeordnetes Werk:

Enthalten in: Modeling earth systems and environment - Berlin : Springer, 2015, 3(2017), 1 vom: 10. März

Übergeordnetes Werk:

volume:3 ; year:2017 ; number:1 ; day:10 ; month:03

Links:

Volltext

DOI / URN:

10.1007/s40808-017-0270-7

Katalog-ID:

SPR037839233

Nicht das Richtige dabei?

Schreiben Sie uns!