Preparation and growth mechanism of nickel nanowires under applied magnetic field
Abstract Nickel nanowires with large aspect ratio of up to 300 have been prepared by a hydrazine hydrate reduction method under applied magnetic field. The diameter of nickel nanowires is about 200 nm and length up to 60 μm. The role of magnetic field on the growth of magnetic nanowires is discussed...
Ausführliche Beschreibung
Autor*in: |
Wang, J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Shanghai Jiao Tong University (SJTU) Press 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Nano-Micro letters - Berlin : Springer, 2009, 2(2010), 2 vom: Juni, Seite 134-138 |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2010 ; number:2 ; month:06 ; pages:134-138 |
Links: |
---|
DOI / URN: |
10.1007/BF03353631 |
---|
Katalog-ID: |
SPR037874616 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR037874616 | ||
003 | DE-627 | ||
005 | 20230328210858.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2010 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/BF03353631 |2 doi | |
035 | |a (DE-627)SPR037874616 | ||
035 | |a (SPR)BF03353631-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Wang, J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Preparation and growth mechanism of nickel nanowires under applied magnetic field |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Shanghai Jiao Tong University (SJTU) Press 2010 | ||
520 | |a Abstract Nickel nanowires with large aspect ratio of up to 300 have been prepared by a hydrazine hydrate reduction method under applied magnetic field. The diameter of nickel nanowires is about 200 nm and length up to 60 μm. The role of magnetic field on the growth of magnetic nanowires is discussed and a magnetic nanowire growth mechanism has been proposed. Nickel ions are firstly reduced to nickel atoms by hydrazine hydrates in a strong alkaline solution and grow into tiny spherical nanoparticles. Then, these magnetic particles will align under a magnetic force and form linear chains. Furthermore, the as-formed chains can enhance the local magnetic field and attract other magnetic particles nearby, resulting finally as linear nanowires. The formation and the size of nanowires depend strongly on the magnitude of applied magnetic field. | ||
650 | 4 | |a Nanowire growth mechanism |7 (dpeaa)DE-He213 | |
650 | 4 | |a Nickel nanowires |7 (dpeaa)DE-He213 | |
650 | 4 | |a Magnetic-field assisted synthesis |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zhang, L. Y. |4 aut | |
700 | 1 | |a Liu, P. |4 aut | |
700 | 1 | |a Lan, T. M. |4 aut | |
700 | 1 | |a Zhang, J. |4 aut | |
700 | 1 | |a Wei, L. M. |4 aut | |
700 | 1 | |a Kong, Eric Siu-Wai |4 aut | |
700 | 1 | |a Jiang, C. H. |4 aut | |
700 | 1 | |a Zhang, Y. F. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nano-Micro letters |d Berlin : Springer, 2009 |g 2(2010), 2 vom: Juni, Seite 134-138 |w (DE-627)680319581 |w (DE-600)2642093-4 |x 2150-5551 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2010 |g number:2 |g month:06 |g pages:134-138 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/BF03353631 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2010 |e 2 |c 06 |h 134-138 |
author_variant |
j w jw l y z ly lyz p l pl t m l tm tml j z jz l m w lm lmw e s w k esw eswk c h j ch chj y f z yf yfz |
---|---|
matchkey_str |
article:21505551:2010----::rprtoadrwhehnsoncennwrsne |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1007/BF03353631 doi (DE-627)SPR037874616 (SPR)BF03353631-e DE-627 ger DE-627 rakwb eng Wang, J. verfasserin aut Preparation and growth mechanism of nickel nanowires under applied magnetic field 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Shanghai Jiao Tong University (SJTU) Press 2010 Abstract Nickel nanowires with large aspect ratio of up to 300 have been prepared by a hydrazine hydrate reduction method under applied magnetic field. The diameter of nickel nanowires is about 200 nm and length up to 60 μm. The role of magnetic field on the growth of magnetic nanowires is discussed and a magnetic nanowire growth mechanism has been proposed. Nickel ions are firstly reduced to nickel atoms by hydrazine hydrates in a strong alkaline solution and grow into tiny spherical nanoparticles. Then, these magnetic particles will align under a magnetic force and form linear chains. Furthermore, the as-formed chains can enhance the local magnetic field and attract other magnetic particles nearby, resulting finally as linear nanowires. The formation and the size of nanowires depend strongly on the magnitude of applied magnetic field. Nanowire growth mechanism (dpeaa)DE-He213 Nickel nanowires (dpeaa)DE-He213 Magnetic-field assisted synthesis (dpeaa)DE-He213 Zhang, L. Y. aut Liu, P. aut Lan, T. M. aut Zhang, J. aut Wei, L. M. aut Kong, Eric Siu-Wai aut Jiang, C. H. aut Zhang, Y. F. aut Enthalten in Nano-Micro letters Berlin : Springer, 2009 2(2010), 2 vom: Juni, Seite 134-138 (DE-627)680319581 (DE-600)2642093-4 2150-5551 nnns volume:2 year:2010 number:2 month:06 pages:134-138 https://dx.doi.org/10.1007/BF03353631 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2010 2 06 134-138 |
spelling |
10.1007/BF03353631 doi (DE-627)SPR037874616 (SPR)BF03353631-e DE-627 ger DE-627 rakwb eng Wang, J. verfasserin aut Preparation and growth mechanism of nickel nanowires under applied magnetic field 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Shanghai Jiao Tong University (SJTU) Press 2010 Abstract Nickel nanowires with large aspect ratio of up to 300 have been prepared by a hydrazine hydrate reduction method under applied magnetic field. The diameter of nickel nanowires is about 200 nm and length up to 60 μm. The role of magnetic field on the growth of magnetic nanowires is discussed and a magnetic nanowire growth mechanism has been proposed. Nickel ions are firstly reduced to nickel atoms by hydrazine hydrates in a strong alkaline solution and grow into tiny spherical nanoparticles. Then, these magnetic particles will align under a magnetic force and form linear chains. Furthermore, the as-formed chains can enhance the local magnetic field and attract other magnetic particles nearby, resulting finally as linear nanowires. The formation and the size of nanowires depend strongly on the magnitude of applied magnetic field. Nanowire growth mechanism (dpeaa)DE-He213 Nickel nanowires (dpeaa)DE-He213 Magnetic-field assisted synthesis (dpeaa)DE-He213 Zhang, L. Y. aut Liu, P. aut Lan, T. M. aut Zhang, J. aut Wei, L. M. aut Kong, Eric Siu-Wai aut Jiang, C. H. aut Zhang, Y. F. aut Enthalten in Nano-Micro letters Berlin : Springer, 2009 2(2010), 2 vom: Juni, Seite 134-138 (DE-627)680319581 (DE-600)2642093-4 2150-5551 nnns volume:2 year:2010 number:2 month:06 pages:134-138 https://dx.doi.org/10.1007/BF03353631 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2010 2 06 134-138 |
allfields_unstemmed |
10.1007/BF03353631 doi (DE-627)SPR037874616 (SPR)BF03353631-e DE-627 ger DE-627 rakwb eng Wang, J. verfasserin aut Preparation and growth mechanism of nickel nanowires under applied magnetic field 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Shanghai Jiao Tong University (SJTU) Press 2010 Abstract Nickel nanowires with large aspect ratio of up to 300 have been prepared by a hydrazine hydrate reduction method under applied magnetic field. The diameter of nickel nanowires is about 200 nm and length up to 60 μm. The role of magnetic field on the growth of magnetic nanowires is discussed and a magnetic nanowire growth mechanism has been proposed. Nickel ions are firstly reduced to nickel atoms by hydrazine hydrates in a strong alkaline solution and grow into tiny spherical nanoparticles. Then, these magnetic particles will align under a magnetic force and form linear chains. Furthermore, the as-formed chains can enhance the local magnetic field and attract other magnetic particles nearby, resulting finally as linear nanowires. The formation and the size of nanowires depend strongly on the magnitude of applied magnetic field. Nanowire growth mechanism (dpeaa)DE-He213 Nickel nanowires (dpeaa)DE-He213 Magnetic-field assisted synthesis (dpeaa)DE-He213 Zhang, L. Y. aut Liu, P. aut Lan, T. M. aut Zhang, J. aut Wei, L. M. aut Kong, Eric Siu-Wai aut Jiang, C. H. aut Zhang, Y. F. aut Enthalten in Nano-Micro letters Berlin : Springer, 2009 2(2010), 2 vom: Juni, Seite 134-138 (DE-627)680319581 (DE-600)2642093-4 2150-5551 nnns volume:2 year:2010 number:2 month:06 pages:134-138 https://dx.doi.org/10.1007/BF03353631 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2010 2 06 134-138 |
allfieldsGer |
10.1007/BF03353631 doi (DE-627)SPR037874616 (SPR)BF03353631-e DE-627 ger DE-627 rakwb eng Wang, J. verfasserin aut Preparation and growth mechanism of nickel nanowires under applied magnetic field 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Shanghai Jiao Tong University (SJTU) Press 2010 Abstract Nickel nanowires with large aspect ratio of up to 300 have been prepared by a hydrazine hydrate reduction method under applied magnetic field. The diameter of nickel nanowires is about 200 nm and length up to 60 μm. The role of magnetic field on the growth of magnetic nanowires is discussed and a magnetic nanowire growth mechanism has been proposed. Nickel ions are firstly reduced to nickel atoms by hydrazine hydrates in a strong alkaline solution and grow into tiny spherical nanoparticles. Then, these magnetic particles will align under a magnetic force and form linear chains. Furthermore, the as-formed chains can enhance the local magnetic field and attract other magnetic particles nearby, resulting finally as linear nanowires. The formation and the size of nanowires depend strongly on the magnitude of applied magnetic field. Nanowire growth mechanism (dpeaa)DE-He213 Nickel nanowires (dpeaa)DE-He213 Magnetic-field assisted synthesis (dpeaa)DE-He213 Zhang, L. Y. aut Liu, P. aut Lan, T. M. aut Zhang, J. aut Wei, L. M. aut Kong, Eric Siu-Wai aut Jiang, C. H. aut Zhang, Y. F. aut Enthalten in Nano-Micro letters Berlin : Springer, 2009 2(2010), 2 vom: Juni, Seite 134-138 (DE-627)680319581 (DE-600)2642093-4 2150-5551 nnns volume:2 year:2010 number:2 month:06 pages:134-138 https://dx.doi.org/10.1007/BF03353631 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2010 2 06 134-138 |
allfieldsSound |
10.1007/BF03353631 doi (DE-627)SPR037874616 (SPR)BF03353631-e DE-627 ger DE-627 rakwb eng Wang, J. verfasserin aut Preparation and growth mechanism of nickel nanowires under applied magnetic field 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Shanghai Jiao Tong University (SJTU) Press 2010 Abstract Nickel nanowires with large aspect ratio of up to 300 have been prepared by a hydrazine hydrate reduction method under applied magnetic field. The diameter of nickel nanowires is about 200 nm and length up to 60 μm. The role of magnetic field on the growth of magnetic nanowires is discussed and a magnetic nanowire growth mechanism has been proposed. Nickel ions are firstly reduced to nickel atoms by hydrazine hydrates in a strong alkaline solution and grow into tiny spherical nanoparticles. Then, these magnetic particles will align under a magnetic force and form linear chains. Furthermore, the as-formed chains can enhance the local magnetic field and attract other magnetic particles nearby, resulting finally as linear nanowires. The formation and the size of nanowires depend strongly on the magnitude of applied magnetic field. Nanowire growth mechanism (dpeaa)DE-He213 Nickel nanowires (dpeaa)DE-He213 Magnetic-field assisted synthesis (dpeaa)DE-He213 Zhang, L. Y. aut Liu, P. aut Lan, T. M. aut Zhang, J. aut Wei, L. M. aut Kong, Eric Siu-Wai aut Jiang, C. H. aut Zhang, Y. F. aut Enthalten in Nano-Micro letters Berlin : Springer, 2009 2(2010), 2 vom: Juni, Seite 134-138 (DE-627)680319581 (DE-600)2642093-4 2150-5551 nnns volume:2 year:2010 number:2 month:06 pages:134-138 https://dx.doi.org/10.1007/BF03353631 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2010 2 06 134-138 |
language |
English |
source |
Enthalten in Nano-Micro letters 2(2010), 2 vom: Juni, Seite 134-138 volume:2 year:2010 number:2 month:06 pages:134-138 |
sourceStr |
Enthalten in Nano-Micro letters 2(2010), 2 vom: Juni, Seite 134-138 volume:2 year:2010 number:2 month:06 pages:134-138 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Nanowire growth mechanism Nickel nanowires Magnetic-field assisted synthesis |
isfreeaccess_bool |
false |
container_title |
Nano-Micro letters |
authorswithroles_txt_mv |
Wang, J. @@aut@@ Zhang, L. Y. @@aut@@ Liu, P. @@aut@@ Lan, T. M. @@aut@@ Zhang, J. @@aut@@ Wei, L. M. @@aut@@ Kong, Eric Siu-Wai @@aut@@ Jiang, C. H. @@aut@@ Zhang, Y. F. @@aut@@ |
publishDateDaySort_date |
2010-06-01T00:00:00Z |
hierarchy_top_id |
680319581 |
id |
SPR037874616 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR037874616</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328210858.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF03353631</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR037874616</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)BF03353631-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preparation and growth mechanism of nickel nanowires under applied magnetic field</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Shanghai Jiao Tong University (SJTU) Press 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Nickel nanowires with large aspect ratio of up to 300 have been prepared by a hydrazine hydrate reduction method under applied magnetic field. The diameter of nickel nanowires is about 200 nm and length up to 60 μm. The role of magnetic field on the growth of magnetic nanowires is discussed and a magnetic nanowire growth mechanism has been proposed. Nickel ions are firstly reduced to nickel atoms by hydrazine hydrates in a strong alkaline solution and grow into tiny spherical nanoparticles. Then, these magnetic particles will align under a magnetic force and form linear chains. Furthermore, the as-formed chains can enhance the local magnetic field and attract other magnetic particles nearby, resulting finally as linear nanowires. The formation and the size of nanowires depend strongly on the magnitude of applied magnetic field.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanowire growth mechanism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nickel nanowires</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic-field assisted synthesis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, L. Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lan, T. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, L. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kong, Eric Siu-Wai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, C. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Y. F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nano-Micro letters</subfield><subfield code="d">Berlin : Springer, 2009</subfield><subfield code="g">2(2010), 2 vom: Juni, Seite 134-138</subfield><subfield code="w">(DE-627)680319581</subfield><subfield code="w">(DE-600)2642093-4</subfield><subfield code="x">2150-5551</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:134-138</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/BF03353631</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2010</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">134-138</subfield></datafield></record></collection>
|
author |
Wang, J. |
spellingShingle |
Wang, J. misc Nanowire growth mechanism misc Nickel nanowires misc Magnetic-field assisted synthesis Preparation and growth mechanism of nickel nanowires under applied magnetic field |
authorStr |
Wang, J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)680319581 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2150-5551 |
topic_title |
Preparation and growth mechanism of nickel nanowires under applied magnetic field Nanowire growth mechanism (dpeaa)DE-He213 Nickel nanowires (dpeaa)DE-He213 Magnetic-field assisted synthesis (dpeaa)DE-He213 |
topic |
misc Nanowire growth mechanism misc Nickel nanowires misc Magnetic-field assisted synthesis |
topic_unstemmed |
misc Nanowire growth mechanism misc Nickel nanowires misc Magnetic-field assisted synthesis |
topic_browse |
misc Nanowire growth mechanism misc Nickel nanowires misc Magnetic-field assisted synthesis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nano-Micro letters |
hierarchy_parent_id |
680319581 |
hierarchy_top_title |
Nano-Micro letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)680319581 (DE-600)2642093-4 |
title |
Preparation and growth mechanism of nickel nanowires under applied magnetic field |
ctrlnum |
(DE-627)SPR037874616 (SPR)BF03353631-e |
title_full |
Preparation and growth mechanism of nickel nanowires under applied magnetic field |
author_sort |
Wang, J. |
journal |
Nano-Micro letters |
journalStr |
Nano-Micro letters |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
134 |
author_browse |
Wang, J. Zhang, L. Y. Liu, P. Lan, T. M. Zhang, J. Wei, L. M. Kong, Eric Siu-Wai Jiang, C. H. Zhang, Y. F. |
container_volume |
2 |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, J. |
doi_str_mv |
10.1007/BF03353631 |
title_sort |
preparation and growth mechanism of nickel nanowires under applied magnetic field |
title_auth |
Preparation and growth mechanism of nickel nanowires under applied magnetic field |
abstract |
Abstract Nickel nanowires with large aspect ratio of up to 300 have been prepared by a hydrazine hydrate reduction method under applied magnetic field. The diameter of nickel nanowires is about 200 nm and length up to 60 μm. The role of magnetic field on the growth of magnetic nanowires is discussed and a magnetic nanowire growth mechanism has been proposed. Nickel ions are firstly reduced to nickel atoms by hydrazine hydrates in a strong alkaline solution and grow into tiny spherical nanoparticles. Then, these magnetic particles will align under a magnetic force and form linear chains. Furthermore, the as-formed chains can enhance the local magnetic field and attract other magnetic particles nearby, resulting finally as linear nanowires. The formation and the size of nanowires depend strongly on the magnitude of applied magnetic field. © Shanghai Jiao Tong University (SJTU) Press 2010 |
abstractGer |
Abstract Nickel nanowires with large aspect ratio of up to 300 have been prepared by a hydrazine hydrate reduction method under applied magnetic field. The diameter of nickel nanowires is about 200 nm and length up to 60 μm. The role of magnetic field on the growth of magnetic nanowires is discussed and a magnetic nanowire growth mechanism has been proposed. Nickel ions are firstly reduced to nickel atoms by hydrazine hydrates in a strong alkaline solution and grow into tiny spherical nanoparticles. Then, these magnetic particles will align under a magnetic force and form linear chains. Furthermore, the as-formed chains can enhance the local magnetic field and attract other magnetic particles nearby, resulting finally as linear nanowires. The formation and the size of nanowires depend strongly on the magnitude of applied magnetic field. © Shanghai Jiao Tong University (SJTU) Press 2010 |
abstract_unstemmed |
Abstract Nickel nanowires with large aspect ratio of up to 300 have been prepared by a hydrazine hydrate reduction method under applied magnetic field. The diameter of nickel nanowires is about 200 nm and length up to 60 μm. The role of magnetic field on the growth of magnetic nanowires is discussed and a magnetic nanowire growth mechanism has been proposed. Nickel ions are firstly reduced to nickel atoms by hydrazine hydrates in a strong alkaline solution and grow into tiny spherical nanoparticles. Then, these magnetic particles will align under a magnetic force and form linear chains. Furthermore, the as-formed chains can enhance the local magnetic field and attract other magnetic particles nearby, resulting finally as linear nanowires. The formation and the size of nanowires depend strongly on the magnitude of applied magnetic field. © Shanghai Jiao Tong University (SJTU) Press 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Preparation and growth mechanism of nickel nanowires under applied magnetic field |
url |
https://dx.doi.org/10.1007/BF03353631 |
remote_bool |
true |
author2 |
Zhang, L. Y. Liu, P. Lan, T. M. Zhang, J. Wei, L. M. Kong, Eric Siu-Wai Jiang, C. H. Zhang, Y. F. |
author2Str |
Zhang, L. Y. Liu, P. Lan, T. M. Zhang, J. Wei, L. M. Kong, Eric Siu-Wai Jiang, C. H. Zhang, Y. F. |
ppnlink |
680319581 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF03353631 |
up_date |
2024-07-03T14:52:20.506Z |
_version_ |
1803569951413370880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR037874616</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328210858.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF03353631</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR037874616</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)BF03353631-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preparation and growth mechanism of nickel nanowires under applied magnetic field</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Shanghai Jiao Tong University (SJTU) Press 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Nickel nanowires with large aspect ratio of up to 300 have been prepared by a hydrazine hydrate reduction method under applied magnetic field. The diameter of nickel nanowires is about 200 nm and length up to 60 μm. The role of magnetic field on the growth of magnetic nanowires is discussed and a magnetic nanowire growth mechanism has been proposed. Nickel ions are firstly reduced to nickel atoms by hydrazine hydrates in a strong alkaline solution and grow into tiny spherical nanoparticles. Then, these magnetic particles will align under a magnetic force and form linear chains. Furthermore, the as-formed chains can enhance the local magnetic field and attract other magnetic particles nearby, resulting finally as linear nanowires. The formation and the size of nanowires depend strongly on the magnitude of applied magnetic field.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanowire growth mechanism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nickel nanowires</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic-field assisted synthesis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, L. Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lan, T. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, L. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kong, Eric Siu-Wai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, C. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Y. F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nano-Micro letters</subfield><subfield code="d">Berlin : Springer, 2009</subfield><subfield code="g">2(2010), 2 vom: Juni, Seite 134-138</subfield><subfield code="w">(DE-627)680319581</subfield><subfield code="w">(DE-600)2642093-4</subfield><subfield code="x">2150-5551</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:134-138</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/BF03353631</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2010</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">134-138</subfield></datafield></record></collection>
|
score |
7.4000835 |