Fast Assessment of Total Iron Contents in Steelmaking Slags by Means of Water Displacement Test for Recycling of the Iron in the Ironmaking and Steelmaking Process
Abstract Steelmaking slags are usually processed to recover iron for recycling in the ironmaking and steelmaking process which replaces high-cost purchased steel scrap and iron ores. It is crucial to quickly determine the total iron content in an iron-bearing slag product for prompt and accurate qua...
Ausführliche Beschreibung
Autor*in: |
Ma, Naiyang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Minerals, Metals & Materials Society 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of sustainable metallurgy - Berlin : Springer, 2015, 3(2017), 3 vom: 18. Apr., Seite 450-458 |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2017 ; number:3 ; day:18 ; month:04 ; pages:450-458 |
Links: |
---|
DOI / URN: |
10.1007/s40831-017-0127-3 |
---|
Katalog-ID: |
SPR03789367X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR03789367X | ||
003 | DE-627 | ||
005 | 20230519141205.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40831-017-0127-3 |2 doi | |
035 | |a (DE-627)SPR03789367X | ||
035 | |a (SPR)s40831-017-0127-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Ma, Naiyang |e verfasserin |0 (orcid)0000-0001-9979-6798 |4 aut | |
245 | 1 | 0 | |a Fast Assessment of Total Iron Contents in Steelmaking Slags by Means of Water Displacement Test for Recycling of the Iron in the Ironmaking and Steelmaking Process |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Minerals, Metals & Materials Society 2017 | ||
520 | |a Abstract Steelmaking slags are usually processed to recover iron for recycling in the ironmaking and steelmaking process which replaces high-cost purchased steel scrap and iron ores. It is crucial to quickly determine the total iron content in an iron-bearing slag product for prompt and accurate quality control of the slag product. The water displacement test has been widely adopted in the slag processing industry as an industrial method to quickly assess the total iron contents in iron-rich slag products. However, this industrial method is often misused, and serious disparities exist between total iron contents evaluated using water displacement densities and by chemical analysis. Such disparities have resulted in the generation of great amounts of non-recyclable “iron-rich” steelmaking slag products with actual low levels of iron. In this research, we aimed to resolve this disparity. A total of 40 steelmaking slag samples were tested for water displacement densities and were chemically analyzed for total iron contents. The total iron contents in the slag samples were also evaluated using the measured water displacement densities with assumed parameters from two references. The research results suggest that the current industrial method for evaluating the total iron contents in the steelmaking slag products via the water displacement test cannot deliver precise but rather approximate results. Using assumed parameters from one reference to evaluate the total iron contents in the tested slag samples, the maximum error is about 12% and the average error is about 5%. While using assumed parameters from the other reference to evaluate the total iron contents in the tested samples, the maximum error is about 19% and the average error is about 10%. In order to decrease the evaluation error, a formula relating the total iron contents in the steelmaking slag samples via chemical analysis to the water displacement densities of the samples was developed by data fitting. Compared to the current industrial method of assessing the total iron contents in steelmaking slags via water displacement densities with assumed parameters from the references, the best fit formula gives the least error. Therefore, in order to quickly evaluate the total iron contents in a steelmaking slag product, a correlation formula between the total iron contents measured via chemical analysis and the water displacement densities should be developed in the first place. The formula then can be used to quickly determine the total iron content in the slag product with measured water displacement densities of the product for quality control when the product is being produced. Procedures were proposed in this paper for correctly measuring water displacement densities of slag samples and for correctly preparing the slag samples for chemical analysis. | ||
650 | 4 | |a Iron recovery |7 (dpeaa)DE-He213 | |
650 | 4 | |a Recycling |7 (dpeaa)DE-He213 | |
650 | 4 | |a Steelmaking slags |7 (dpeaa)DE-He213 | |
650 | 4 | |a Water displacement test |7 (dpeaa)DE-He213 | |
650 | 4 | |a Iron content |7 (dpeaa)DE-He213 | |
700 | 1 | |a Hill, David Gregory |4 aut | |
700 | 1 | |a Wood, Luke Aaron |4 aut | |
700 | 1 | |a Houser, Joseph Blake |4 aut | |
700 | 1 | |a Lewis, Randall Wayne |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of sustainable metallurgy |d Berlin : Springer, 2015 |g 3(2017), 3 vom: 18. Apr., Seite 450-458 |w (DE-627)817362541 |w (DE-600)2808817-7 |x 2199-3831 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2017 |g number:3 |g day:18 |g month:04 |g pages:450-458 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40831-017-0127-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 2017 |e 3 |b 18 |c 04 |h 450-458 |
author_variant |
n m nm d g h dg dgh l a w la law j b h jb jbh r w l rw rwl |
---|---|
matchkey_str |
article:21993831:2017----::atsesetfoaiocnetiselaiglgbmasfaedslcmntsfreylnotern |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s40831-017-0127-3 doi (DE-627)SPR03789367X (SPR)s40831-017-0127-3-e DE-627 ger DE-627 rakwb eng Ma, Naiyang verfasserin (orcid)0000-0001-9979-6798 aut Fast Assessment of Total Iron Contents in Steelmaking Slags by Means of Water Displacement Test for Recycling of the Iron in the Ironmaking and Steelmaking Process 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Minerals, Metals & Materials Society 2017 Abstract Steelmaking slags are usually processed to recover iron for recycling in the ironmaking and steelmaking process which replaces high-cost purchased steel scrap and iron ores. It is crucial to quickly determine the total iron content in an iron-bearing slag product for prompt and accurate quality control of the slag product. The water displacement test has been widely adopted in the slag processing industry as an industrial method to quickly assess the total iron contents in iron-rich slag products. However, this industrial method is often misused, and serious disparities exist between total iron contents evaluated using water displacement densities and by chemical analysis. Such disparities have resulted in the generation of great amounts of non-recyclable “iron-rich” steelmaking slag products with actual low levels of iron. In this research, we aimed to resolve this disparity. A total of 40 steelmaking slag samples were tested for water displacement densities and were chemically analyzed for total iron contents. The total iron contents in the slag samples were also evaluated using the measured water displacement densities with assumed parameters from two references. The research results suggest that the current industrial method for evaluating the total iron contents in the steelmaking slag products via the water displacement test cannot deliver precise but rather approximate results. Using assumed parameters from one reference to evaluate the total iron contents in the tested slag samples, the maximum error is about 12% and the average error is about 5%. While using assumed parameters from the other reference to evaluate the total iron contents in the tested samples, the maximum error is about 19% and the average error is about 10%. In order to decrease the evaluation error, a formula relating the total iron contents in the steelmaking slag samples via chemical analysis to the water displacement densities of the samples was developed by data fitting. Compared to the current industrial method of assessing the total iron contents in steelmaking slags via water displacement densities with assumed parameters from the references, the best fit formula gives the least error. Therefore, in order to quickly evaluate the total iron contents in a steelmaking slag product, a correlation formula between the total iron contents measured via chemical analysis and the water displacement densities should be developed in the first place. The formula then can be used to quickly determine the total iron content in the slag product with measured water displacement densities of the product for quality control when the product is being produced. Procedures were proposed in this paper for correctly measuring water displacement densities of slag samples and for correctly preparing the slag samples for chemical analysis. Iron recovery (dpeaa)DE-He213 Recycling (dpeaa)DE-He213 Steelmaking slags (dpeaa)DE-He213 Water displacement test (dpeaa)DE-He213 Iron content (dpeaa)DE-He213 Hill, David Gregory aut Wood, Luke Aaron aut Houser, Joseph Blake aut Lewis, Randall Wayne aut Enthalten in Journal of sustainable metallurgy Berlin : Springer, 2015 3(2017), 3 vom: 18. Apr., Seite 450-458 (DE-627)817362541 (DE-600)2808817-7 2199-3831 nnns volume:3 year:2017 number:3 day:18 month:04 pages:450-458 https://dx.doi.org/10.1007/s40831-017-0127-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 3 2017 3 18 04 450-458 |
spelling |
10.1007/s40831-017-0127-3 doi (DE-627)SPR03789367X (SPR)s40831-017-0127-3-e DE-627 ger DE-627 rakwb eng Ma, Naiyang verfasserin (orcid)0000-0001-9979-6798 aut Fast Assessment of Total Iron Contents in Steelmaking Slags by Means of Water Displacement Test for Recycling of the Iron in the Ironmaking and Steelmaking Process 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Minerals, Metals & Materials Society 2017 Abstract Steelmaking slags are usually processed to recover iron for recycling in the ironmaking and steelmaking process which replaces high-cost purchased steel scrap and iron ores. It is crucial to quickly determine the total iron content in an iron-bearing slag product for prompt and accurate quality control of the slag product. The water displacement test has been widely adopted in the slag processing industry as an industrial method to quickly assess the total iron contents in iron-rich slag products. However, this industrial method is often misused, and serious disparities exist between total iron contents evaluated using water displacement densities and by chemical analysis. Such disparities have resulted in the generation of great amounts of non-recyclable “iron-rich” steelmaking slag products with actual low levels of iron. In this research, we aimed to resolve this disparity. A total of 40 steelmaking slag samples were tested for water displacement densities and were chemically analyzed for total iron contents. The total iron contents in the slag samples were also evaluated using the measured water displacement densities with assumed parameters from two references. The research results suggest that the current industrial method for evaluating the total iron contents in the steelmaking slag products via the water displacement test cannot deliver precise but rather approximate results. Using assumed parameters from one reference to evaluate the total iron contents in the tested slag samples, the maximum error is about 12% and the average error is about 5%. While using assumed parameters from the other reference to evaluate the total iron contents in the tested samples, the maximum error is about 19% and the average error is about 10%. In order to decrease the evaluation error, a formula relating the total iron contents in the steelmaking slag samples via chemical analysis to the water displacement densities of the samples was developed by data fitting. Compared to the current industrial method of assessing the total iron contents in steelmaking slags via water displacement densities with assumed parameters from the references, the best fit formula gives the least error. Therefore, in order to quickly evaluate the total iron contents in a steelmaking slag product, a correlation formula between the total iron contents measured via chemical analysis and the water displacement densities should be developed in the first place. The formula then can be used to quickly determine the total iron content in the slag product with measured water displacement densities of the product for quality control when the product is being produced. Procedures were proposed in this paper for correctly measuring water displacement densities of slag samples and for correctly preparing the slag samples for chemical analysis. Iron recovery (dpeaa)DE-He213 Recycling (dpeaa)DE-He213 Steelmaking slags (dpeaa)DE-He213 Water displacement test (dpeaa)DE-He213 Iron content (dpeaa)DE-He213 Hill, David Gregory aut Wood, Luke Aaron aut Houser, Joseph Blake aut Lewis, Randall Wayne aut Enthalten in Journal of sustainable metallurgy Berlin : Springer, 2015 3(2017), 3 vom: 18. Apr., Seite 450-458 (DE-627)817362541 (DE-600)2808817-7 2199-3831 nnns volume:3 year:2017 number:3 day:18 month:04 pages:450-458 https://dx.doi.org/10.1007/s40831-017-0127-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 3 2017 3 18 04 450-458 |
allfields_unstemmed |
10.1007/s40831-017-0127-3 doi (DE-627)SPR03789367X (SPR)s40831-017-0127-3-e DE-627 ger DE-627 rakwb eng Ma, Naiyang verfasserin (orcid)0000-0001-9979-6798 aut Fast Assessment of Total Iron Contents in Steelmaking Slags by Means of Water Displacement Test for Recycling of the Iron in the Ironmaking and Steelmaking Process 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Minerals, Metals & Materials Society 2017 Abstract Steelmaking slags are usually processed to recover iron for recycling in the ironmaking and steelmaking process which replaces high-cost purchased steel scrap and iron ores. It is crucial to quickly determine the total iron content in an iron-bearing slag product for prompt and accurate quality control of the slag product. The water displacement test has been widely adopted in the slag processing industry as an industrial method to quickly assess the total iron contents in iron-rich slag products. However, this industrial method is often misused, and serious disparities exist between total iron contents evaluated using water displacement densities and by chemical analysis. Such disparities have resulted in the generation of great amounts of non-recyclable “iron-rich” steelmaking slag products with actual low levels of iron. In this research, we aimed to resolve this disparity. A total of 40 steelmaking slag samples were tested for water displacement densities and were chemically analyzed for total iron contents. The total iron contents in the slag samples were also evaluated using the measured water displacement densities with assumed parameters from two references. The research results suggest that the current industrial method for evaluating the total iron contents in the steelmaking slag products via the water displacement test cannot deliver precise but rather approximate results. Using assumed parameters from one reference to evaluate the total iron contents in the tested slag samples, the maximum error is about 12% and the average error is about 5%. While using assumed parameters from the other reference to evaluate the total iron contents in the tested samples, the maximum error is about 19% and the average error is about 10%. In order to decrease the evaluation error, a formula relating the total iron contents in the steelmaking slag samples via chemical analysis to the water displacement densities of the samples was developed by data fitting. Compared to the current industrial method of assessing the total iron contents in steelmaking slags via water displacement densities with assumed parameters from the references, the best fit formula gives the least error. Therefore, in order to quickly evaluate the total iron contents in a steelmaking slag product, a correlation formula between the total iron contents measured via chemical analysis and the water displacement densities should be developed in the first place. The formula then can be used to quickly determine the total iron content in the slag product with measured water displacement densities of the product for quality control when the product is being produced. Procedures were proposed in this paper for correctly measuring water displacement densities of slag samples and for correctly preparing the slag samples for chemical analysis. Iron recovery (dpeaa)DE-He213 Recycling (dpeaa)DE-He213 Steelmaking slags (dpeaa)DE-He213 Water displacement test (dpeaa)DE-He213 Iron content (dpeaa)DE-He213 Hill, David Gregory aut Wood, Luke Aaron aut Houser, Joseph Blake aut Lewis, Randall Wayne aut Enthalten in Journal of sustainable metallurgy Berlin : Springer, 2015 3(2017), 3 vom: 18. Apr., Seite 450-458 (DE-627)817362541 (DE-600)2808817-7 2199-3831 nnns volume:3 year:2017 number:3 day:18 month:04 pages:450-458 https://dx.doi.org/10.1007/s40831-017-0127-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 3 2017 3 18 04 450-458 |
allfieldsGer |
10.1007/s40831-017-0127-3 doi (DE-627)SPR03789367X (SPR)s40831-017-0127-3-e DE-627 ger DE-627 rakwb eng Ma, Naiyang verfasserin (orcid)0000-0001-9979-6798 aut Fast Assessment of Total Iron Contents in Steelmaking Slags by Means of Water Displacement Test for Recycling of the Iron in the Ironmaking and Steelmaking Process 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Minerals, Metals & Materials Society 2017 Abstract Steelmaking slags are usually processed to recover iron for recycling in the ironmaking and steelmaking process which replaces high-cost purchased steel scrap and iron ores. It is crucial to quickly determine the total iron content in an iron-bearing slag product for prompt and accurate quality control of the slag product. The water displacement test has been widely adopted in the slag processing industry as an industrial method to quickly assess the total iron contents in iron-rich slag products. However, this industrial method is often misused, and serious disparities exist between total iron contents evaluated using water displacement densities and by chemical analysis. Such disparities have resulted in the generation of great amounts of non-recyclable “iron-rich” steelmaking slag products with actual low levels of iron. In this research, we aimed to resolve this disparity. A total of 40 steelmaking slag samples were tested for water displacement densities and were chemically analyzed for total iron contents. The total iron contents in the slag samples were also evaluated using the measured water displacement densities with assumed parameters from two references. The research results suggest that the current industrial method for evaluating the total iron contents in the steelmaking slag products via the water displacement test cannot deliver precise but rather approximate results. Using assumed parameters from one reference to evaluate the total iron contents in the tested slag samples, the maximum error is about 12% and the average error is about 5%. While using assumed parameters from the other reference to evaluate the total iron contents in the tested samples, the maximum error is about 19% and the average error is about 10%. In order to decrease the evaluation error, a formula relating the total iron contents in the steelmaking slag samples via chemical analysis to the water displacement densities of the samples was developed by data fitting. Compared to the current industrial method of assessing the total iron contents in steelmaking slags via water displacement densities with assumed parameters from the references, the best fit formula gives the least error. Therefore, in order to quickly evaluate the total iron contents in a steelmaking slag product, a correlation formula between the total iron contents measured via chemical analysis and the water displacement densities should be developed in the first place. The formula then can be used to quickly determine the total iron content in the slag product with measured water displacement densities of the product for quality control when the product is being produced. Procedures were proposed in this paper for correctly measuring water displacement densities of slag samples and for correctly preparing the slag samples for chemical analysis. Iron recovery (dpeaa)DE-He213 Recycling (dpeaa)DE-He213 Steelmaking slags (dpeaa)DE-He213 Water displacement test (dpeaa)DE-He213 Iron content (dpeaa)DE-He213 Hill, David Gregory aut Wood, Luke Aaron aut Houser, Joseph Blake aut Lewis, Randall Wayne aut Enthalten in Journal of sustainable metallurgy Berlin : Springer, 2015 3(2017), 3 vom: 18. Apr., Seite 450-458 (DE-627)817362541 (DE-600)2808817-7 2199-3831 nnns volume:3 year:2017 number:3 day:18 month:04 pages:450-458 https://dx.doi.org/10.1007/s40831-017-0127-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 3 2017 3 18 04 450-458 |
allfieldsSound |
10.1007/s40831-017-0127-3 doi (DE-627)SPR03789367X (SPR)s40831-017-0127-3-e DE-627 ger DE-627 rakwb eng Ma, Naiyang verfasserin (orcid)0000-0001-9979-6798 aut Fast Assessment of Total Iron Contents in Steelmaking Slags by Means of Water Displacement Test for Recycling of the Iron in the Ironmaking and Steelmaking Process 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Minerals, Metals & Materials Society 2017 Abstract Steelmaking slags are usually processed to recover iron for recycling in the ironmaking and steelmaking process which replaces high-cost purchased steel scrap and iron ores. It is crucial to quickly determine the total iron content in an iron-bearing slag product for prompt and accurate quality control of the slag product. The water displacement test has been widely adopted in the slag processing industry as an industrial method to quickly assess the total iron contents in iron-rich slag products. However, this industrial method is often misused, and serious disparities exist between total iron contents evaluated using water displacement densities and by chemical analysis. Such disparities have resulted in the generation of great amounts of non-recyclable “iron-rich” steelmaking slag products with actual low levels of iron. In this research, we aimed to resolve this disparity. A total of 40 steelmaking slag samples were tested for water displacement densities and were chemically analyzed for total iron contents. The total iron contents in the slag samples were also evaluated using the measured water displacement densities with assumed parameters from two references. The research results suggest that the current industrial method for evaluating the total iron contents in the steelmaking slag products via the water displacement test cannot deliver precise but rather approximate results. Using assumed parameters from one reference to evaluate the total iron contents in the tested slag samples, the maximum error is about 12% and the average error is about 5%. While using assumed parameters from the other reference to evaluate the total iron contents in the tested samples, the maximum error is about 19% and the average error is about 10%. In order to decrease the evaluation error, a formula relating the total iron contents in the steelmaking slag samples via chemical analysis to the water displacement densities of the samples was developed by data fitting. Compared to the current industrial method of assessing the total iron contents in steelmaking slags via water displacement densities with assumed parameters from the references, the best fit formula gives the least error. Therefore, in order to quickly evaluate the total iron contents in a steelmaking slag product, a correlation formula between the total iron contents measured via chemical analysis and the water displacement densities should be developed in the first place. The formula then can be used to quickly determine the total iron content in the slag product with measured water displacement densities of the product for quality control when the product is being produced. Procedures were proposed in this paper for correctly measuring water displacement densities of slag samples and for correctly preparing the slag samples for chemical analysis. Iron recovery (dpeaa)DE-He213 Recycling (dpeaa)DE-He213 Steelmaking slags (dpeaa)DE-He213 Water displacement test (dpeaa)DE-He213 Iron content (dpeaa)DE-He213 Hill, David Gregory aut Wood, Luke Aaron aut Houser, Joseph Blake aut Lewis, Randall Wayne aut Enthalten in Journal of sustainable metallurgy Berlin : Springer, 2015 3(2017), 3 vom: 18. Apr., Seite 450-458 (DE-627)817362541 (DE-600)2808817-7 2199-3831 nnns volume:3 year:2017 number:3 day:18 month:04 pages:450-458 https://dx.doi.org/10.1007/s40831-017-0127-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 3 2017 3 18 04 450-458 |
language |
English |
source |
Enthalten in Journal of sustainable metallurgy 3(2017), 3 vom: 18. Apr., Seite 450-458 volume:3 year:2017 number:3 day:18 month:04 pages:450-458 |
sourceStr |
Enthalten in Journal of sustainable metallurgy 3(2017), 3 vom: 18. Apr., Seite 450-458 volume:3 year:2017 number:3 day:18 month:04 pages:450-458 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Iron recovery Recycling Steelmaking slags Water displacement test Iron content |
isfreeaccess_bool |
false |
container_title |
Journal of sustainable metallurgy |
authorswithroles_txt_mv |
Ma, Naiyang @@aut@@ Hill, David Gregory @@aut@@ Wood, Luke Aaron @@aut@@ Houser, Joseph Blake @@aut@@ Lewis, Randall Wayne @@aut@@ |
publishDateDaySort_date |
2017-04-18T00:00:00Z |
hierarchy_top_id |
817362541 |
id |
SPR03789367X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR03789367X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519141205.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40831-017-0127-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR03789367X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40831-017-0127-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ma, Naiyang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9979-6798</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fast Assessment of Total Iron Contents in Steelmaking Slags by Means of Water Displacement Test for Recycling of the Iron in the Ironmaking and Steelmaking Process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Minerals, Metals & Materials Society 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Steelmaking slags are usually processed to recover iron for recycling in the ironmaking and steelmaking process which replaces high-cost purchased steel scrap and iron ores. It is crucial to quickly determine the total iron content in an iron-bearing slag product for prompt and accurate quality control of the slag product. The water displacement test has been widely adopted in the slag processing industry as an industrial method to quickly assess the total iron contents in iron-rich slag products. However, this industrial method is often misused, and serious disparities exist between total iron contents evaluated using water displacement densities and by chemical analysis. Such disparities have resulted in the generation of great amounts of non-recyclable “iron-rich” steelmaking slag products with actual low levels of iron. In this research, we aimed to resolve this disparity. A total of 40 steelmaking slag samples were tested for water displacement densities and were chemically analyzed for total iron contents. The total iron contents in the slag samples were also evaluated using the measured water displacement densities with assumed parameters from two references. The research results suggest that the current industrial method for evaluating the total iron contents in the steelmaking slag products via the water displacement test cannot deliver precise but rather approximate results. Using assumed parameters from one reference to evaluate the total iron contents in the tested slag samples, the maximum error is about 12% and the average error is about 5%. While using assumed parameters from the other reference to evaluate the total iron contents in the tested samples, the maximum error is about 19% and the average error is about 10%. In order to decrease the evaluation error, a formula relating the total iron contents in the steelmaking slag samples via chemical analysis to the water displacement densities of the samples was developed by data fitting. Compared to the current industrial method of assessing the total iron contents in steelmaking slags via water displacement densities with assumed parameters from the references, the best fit formula gives the least error. Therefore, in order to quickly evaluate the total iron contents in a steelmaking slag product, a correlation formula between the total iron contents measured via chemical analysis and the water displacement densities should be developed in the first place. The formula then can be used to quickly determine the total iron content in the slag product with measured water displacement densities of the product for quality control when the product is being produced. Procedures were proposed in this paper for correctly measuring water displacement densities of slag samples and for correctly preparing the slag samples for chemical analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iron recovery</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recycling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steelmaking slags</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water displacement test</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iron content</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hill, David Gregory</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wood, Luke Aaron</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Houser, Joseph Blake</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lewis, Randall Wayne</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of sustainable metallurgy</subfield><subfield code="d">Berlin : Springer, 2015</subfield><subfield code="g">3(2017), 3 vom: 18. Apr., Seite 450-458</subfield><subfield code="w">(DE-627)817362541</subfield><subfield code="w">(DE-600)2808817-7</subfield><subfield code="x">2199-3831</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:3</subfield><subfield code="g">day:18</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:450-458</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40831-017-0127-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2017</subfield><subfield code="e">3</subfield><subfield code="b">18</subfield><subfield code="c">04</subfield><subfield code="h">450-458</subfield></datafield></record></collection>
|
author |
Ma, Naiyang |
spellingShingle |
Ma, Naiyang misc Iron recovery misc Recycling misc Steelmaking slags misc Water displacement test misc Iron content Fast Assessment of Total Iron Contents in Steelmaking Slags by Means of Water Displacement Test for Recycling of the Iron in the Ironmaking and Steelmaking Process |
authorStr |
Ma, Naiyang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)817362541 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2199-3831 |
topic_title |
Fast Assessment of Total Iron Contents in Steelmaking Slags by Means of Water Displacement Test for Recycling of the Iron in the Ironmaking and Steelmaking Process Iron recovery (dpeaa)DE-He213 Recycling (dpeaa)DE-He213 Steelmaking slags (dpeaa)DE-He213 Water displacement test (dpeaa)DE-He213 Iron content (dpeaa)DE-He213 |
topic |
misc Iron recovery misc Recycling misc Steelmaking slags misc Water displacement test misc Iron content |
topic_unstemmed |
misc Iron recovery misc Recycling misc Steelmaking slags misc Water displacement test misc Iron content |
topic_browse |
misc Iron recovery misc Recycling misc Steelmaking slags misc Water displacement test misc Iron content |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of sustainable metallurgy |
hierarchy_parent_id |
817362541 |
hierarchy_top_title |
Journal of sustainable metallurgy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)817362541 (DE-600)2808817-7 |
title |
Fast Assessment of Total Iron Contents in Steelmaking Slags by Means of Water Displacement Test for Recycling of the Iron in the Ironmaking and Steelmaking Process |
ctrlnum |
(DE-627)SPR03789367X (SPR)s40831-017-0127-3-e |
title_full |
Fast Assessment of Total Iron Contents in Steelmaking Slags by Means of Water Displacement Test for Recycling of the Iron in the Ironmaking and Steelmaking Process |
author_sort |
Ma, Naiyang |
journal |
Journal of sustainable metallurgy |
journalStr |
Journal of sustainable metallurgy |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
450 |
author_browse |
Ma, Naiyang Hill, David Gregory Wood, Luke Aaron Houser, Joseph Blake Lewis, Randall Wayne |
container_volume |
3 |
format_se |
Elektronische Aufsätze |
author-letter |
Ma, Naiyang |
doi_str_mv |
10.1007/s40831-017-0127-3 |
normlink |
(ORCID)0000-0001-9979-6798 |
normlink_prefix_str_mv |
(orcid)0000-0001-9979-6798 |
title_sort |
fast assessment of total iron contents in steelmaking slags by means of water displacement test for recycling of the iron in the ironmaking and steelmaking process |
title_auth |
Fast Assessment of Total Iron Contents in Steelmaking Slags by Means of Water Displacement Test for Recycling of the Iron in the Ironmaking and Steelmaking Process |
abstract |
Abstract Steelmaking slags are usually processed to recover iron for recycling in the ironmaking and steelmaking process which replaces high-cost purchased steel scrap and iron ores. It is crucial to quickly determine the total iron content in an iron-bearing slag product for prompt and accurate quality control of the slag product. The water displacement test has been widely adopted in the slag processing industry as an industrial method to quickly assess the total iron contents in iron-rich slag products. However, this industrial method is often misused, and serious disparities exist between total iron contents evaluated using water displacement densities and by chemical analysis. Such disparities have resulted in the generation of great amounts of non-recyclable “iron-rich” steelmaking slag products with actual low levels of iron. In this research, we aimed to resolve this disparity. A total of 40 steelmaking slag samples were tested for water displacement densities and were chemically analyzed for total iron contents. The total iron contents in the slag samples were also evaluated using the measured water displacement densities with assumed parameters from two references. The research results suggest that the current industrial method for evaluating the total iron contents in the steelmaking slag products via the water displacement test cannot deliver precise but rather approximate results. Using assumed parameters from one reference to evaluate the total iron contents in the tested slag samples, the maximum error is about 12% and the average error is about 5%. While using assumed parameters from the other reference to evaluate the total iron contents in the tested samples, the maximum error is about 19% and the average error is about 10%. In order to decrease the evaluation error, a formula relating the total iron contents in the steelmaking slag samples via chemical analysis to the water displacement densities of the samples was developed by data fitting. Compared to the current industrial method of assessing the total iron contents in steelmaking slags via water displacement densities with assumed parameters from the references, the best fit formula gives the least error. Therefore, in order to quickly evaluate the total iron contents in a steelmaking slag product, a correlation formula between the total iron contents measured via chemical analysis and the water displacement densities should be developed in the first place. The formula then can be used to quickly determine the total iron content in the slag product with measured water displacement densities of the product for quality control when the product is being produced. Procedures were proposed in this paper for correctly measuring water displacement densities of slag samples and for correctly preparing the slag samples for chemical analysis. © The Minerals, Metals & Materials Society 2017 |
abstractGer |
Abstract Steelmaking slags are usually processed to recover iron for recycling in the ironmaking and steelmaking process which replaces high-cost purchased steel scrap and iron ores. It is crucial to quickly determine the total iron content in an iron-bearing slag product for prompt and accurate quality control of the slag product. The water displacement test has been widely adopted in the slag processing industry as an industrial method to quickly assess the total iron contents in iron-rich slag products. However, this industrial method is often misused, and serious disparities exist between total iron contents evaluated using water displacement densities and by chemical analysis. Such disparities have resulted in the generation of great amounts of non-recyclable “iron-rich” steelmaking slag products with actual low levels of iron. In this research, we aimed to resolve this disparity. A total of 40 steelmaking slag samples were tested for water displacement densities and were chemically analyzed for total iron contents. The total iron contents in the slag samples were also evaluated using the measured water displacement densities with assumed parameters from two references. The research results suggest that the current industrial method for evaluating the total iron contents in the steelmaking slag products via the water displacement test cannot deliver precise but rather approximate results. Using assumed parameters from one reference to evaluate the total iron contents in the tested slag samples, the maximum error is about 12% and the average error is about 5%. While using assumed parameters from the other reference to evaluate the total iron contents in the tested samples, the maximum error is about 19% and the average error is about 10%. In order to decrease the evaluation error, a formula relating the total iron contents in the steelmaking slag samples via chemical analysis to the water displacement densities of the samples was developed by data fitting. Compared to the current industrial method of assessing the total iron contents in steelmaking slags via water displacement densities with assumed parameters from the references, the best fit formula gives the least error. Therefore, in order to quickly evaluate the total iron contents in a steelmaking slag product, a correlation formula between the total iron contents measured via chemical analysis and the water displacement densities should be developed in the first place. The formula then can be used to quickly determine the total iron content in the slag product with measured water displacement densities of the product for quality control when the product is being produced. Procedures were proposed in this paper for correctly measuring water displacement densities of slag samples and for correctly preparing the slag samples for chemical analysis. © The Minerals, Metals & Materials Society 2017 |
abstract_unstemmed |
Abstract Steelmaking slags are usually processed to recover iron for recycling in the ironmaking and steelmaking process which replaces high-cost purchased steel scrap and iron ores. It is crucial to quickly determine the total iron content in an iron-bearing slag product for prompt and accurate quality control of the slag product. The water displacement test has been widely adopted in the slag processing industry as an industrial method to quickly assess the total iron contents in iron-rich slag products. However, this industrial method is often misused, and serious disparities exist between total iron contents evaluated using water displacement densities and by chemical analysis. Such disparities have resulted in the generation of great amounts of non-recyclable “iron-rich” steelmaking slag products with actual low levels of iron. In this research, we aimed to resolve this disparity. A total of 40 steelmaking slag samples were tested for water displacement densities and were chemically analyzed for total iron contents. The total iron contents in the slag samples were also evaluated using the measured water displacement densities with assumed parameters from two references. The research results suggest that the current industrial method for evaluating the total iron contents in the steelmaking slag products via the water displacement test cannot deliver precise but rather approximate results. Using assumed parameters from one reference to evaluate the total iron contents in the tested slag samples, the maximum error is about 12% and the average error is about 5%. While using assumed parameters from the other reference to evaluate the total iron contents in the tested samples, the maximum error is about 19% and the average error is about 10%. In order to decrease the evaluation error, a formula relating the total iron contents in the steelmaking slag samples via chemical analysis to the water displacement densities of the samples was developed by data fitting. Compared to the current industrial method of assessing the total iron contents in steelmaking slags via water displacement densities with assumed parameters from the references, the best fit formula gives the least error. Therefore, in order to quickly evaluate the total iron contents in a steelmaking slag product, a correlation formula between the total iron contents measured via chemical analysis and the water displacement densities should be developed in the first place. The formula then can be used to quickly determine the total iron content in the slag product with measured water displacement densities of the product for quality control when the product is being produced. Procedures were proposed in this paper for correctly measuring water displacement densities of slag samples and for correctly preparing the slag samples for chemical analysis. © The Minerals, Metals & Materials Society 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Fast Assessment of Total Iron Contents in Steelmaking Slags by Means of Water Displacement Test for Recycling of the Iron in the Ironmaking and Steelmaking Process |
url |
https://dx.doi.org/10.1007/s40831-017-0127-3 |
remote_bool |
true |
author2 |
Hill, David Gregory Wood, Luke Aaron Houser, Joseph Blake Lewis, Randall Wayne |
author2Str |
Hill, David Gregory Wood, Luke Aaron Houser, Joseph Blake Lewis, Randall Wayne |
ppnlink |
817362541 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40831-017-0127-3 |
up_date |
2024-07-03T14:59:35.834Z |
_version_ |
1803570407896252416 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR03789367X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519141205.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40831-017-0127-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR03789367X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40831-017-0127-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ma, Naiyang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9979-6798</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fast Assessment of Total Iron Contents in Steelmaking Slags by Means of Water Displacement Test for Recycling of the Iron in the Ironmaking and Steelmaking Process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Minerals, Metals & Materials Society 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Steelmaking slags are usually processed to recover iron for recycling in the ironmaking and steelmaking process which replaces high-cost purchased steel scrap and iron ores. It is crucial to quickly determine the total iron content in an iron-bearing slag product for prompt and accurate quality control of the slag product. The water displacement test has been widely adopted in the slag processing industry as an industrial method to quickly assess the total iron contents in iron-rich slag products. However, this industrial method is often misused, and serious disparities exist between total iron contents evaluated using water displacement densities and by chemical analysis. Such disparities have resulted in the generation of great amounts of non-recyclable “iron-rich” steelmaking slag products with actual low levels of iron. In this research, we aimed to resolve this disparity. A total of 40 steelmaking slag samples were tested for water displacement densities and were chemically analyzed for total iron contents. The total iron contents in the slag samples were also evaluated using the measured water displacement densities with assumed parameters from two references. The research results suggest that the current industrial method for evaluating the total iron contents in the steelmaking slag products via the water displacement test cannot deliver precise but rather approximate results. Using assumed parameters from one reference to evaluate the total iron contents in the tested slag samples, the maximum error is about 12% and the average error is about 5%. While using assumed parameters from the other reference to evaluate the total iron contents in the tested samples, the maximum error is about 19% and the average error is about 10%. In order to decrease the evaluation error, a formula relating the total iron contents in the steelmaking slag samples via chemical analysis to the water displacement densities of the samples was developed by data fitting. Compared to the current industrial method of assessing the total iron contents in steelmaking slags via water displacement densities with assumed parameters from the references, the best fit formula gives the least error. Therefore, in order to quickly evaluate the total iron contents in a steelmaking slag product, a correlation formula between the total iron contents measured via chemical analysis and the water displacement densities should be developed in the first place. The formula then can be used to quickly determine the total iron content in the slag product with measured water displacement densities of the product for quality control when the product is being produced. Procedures were proposed in this paper for correctly measuring water displacement densities of slag samples and for correctly preparing the slag samples for chemical analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iron recovery</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recycling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Steelmaking slags</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water displacement test</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iron content</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hill, David Gregory</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wood, Luke Aaron</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Houser, Joseph Blake</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lewis, Randall Wayne</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of sustainable metallurgy</subfield><subfield code="d">Berlin : Springer, 2015</subfield><subfield code="g">3(2017), 3 vom: 18. Apr., Seite 450-458</subfield><subfield code="w">(DE-627)817362541</subfield><subfield code="w">(DE-600)2808817-7</subfield><subfield code="x">2199-3831</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:3</subfield><subfield code="g">day:18</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:450-458</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40831-017-0127-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2017</subfield><subfield code="e">3</subfield><subfield code="b">18</subfield><subfield code="c">04</subfield><subfield code="h">450-458</subfield></datafield></record></collection>
|
score |
7.4010277 |