A digital workflow for modeling of custom dental implants
Abstract Modern dental treatment with standard screw-type implants leave some cases unaddressed in patients with extreme jaw bone resorption. Custom-made subperiosteal dental implant could be an alternative treatment modality to sinus lift, nerve lateralization or zygomatic implant techniques. Subpe...
Ausführliche Beschreibung
Autor*in: |
Surovas, Andrejus [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: 3D printing in medicine - [Cham, Switzerland] : Springer International Publishing, 2015, 5(2019), 1 vom: 06. Juni |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2019 ; number:1 ; day:06 ; month:06 |
Links: |
---|
DOI / URN: |
10.1186/s41205-019-0046-y |
---|
Katalog-ID: |
SPR038108607 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR038108607 | ||
003 | DE-627 | ||
005 | 20230520012944.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s41205-019-0046-y |2 doi | |
035 | |a (DE-627)SPR038108607 | ||
035 | |a (SPR)s41205-019-0046-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Surovas, Andrejus |e verfasserin |0 (orcid)0000-0002-7822-8131 |4 aut | |
245 | 1 | 2 | |a A digital workflow for modeling of custom dental implants |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2019 | ||
520 | |a Abstract Modern dental treatment with standard screw-type implants leave some cases unaddressed in patients with extreme jaw bone resorption. Custom-made subperiosteal dental implant could be an alternative treatment modality to sinus lift, nerve lateralization or zygomatic implant techniques. Subperiosteal dental implants were utilized for many years to treat such patients. A combination of traditional subperiosteal implant designs with current advancements in 3D imaging, design and printing allow to reduces treatment time and provides abutments for prostheses in cases where other techniques do not provide satisfactory results. The data manipulation and design software are important aspects in the manufacturing of custom implants. Programs that are specialized for industrial or medical design typically cost tens of thousands of US dollars. In this work I establish and test steps for design and production of a custom medical device (subperiosteal implant) from patient computed tomography (CT) data. Work stages to be defined are: selection of necessary software, CT data processing, 3D virtual model creation, modeling technique for custom implant and data file preparation for printing. Patient CT data was successfully converted into a watertight STL (Standard Tessellation Language) model of the maxilla. Error corrections and design were completed using freely available programs from Autodesk Inc.. The implant was produced in Ti64 (a type 5 titanium alloy) using three-dimensional (3D) printing DMLS (direct metal laser sintering) process. The avoidance of high cost software makes this treatment modality more accessible to smaller clinics or mid-size production facilities and subsequently more available to patients. | ||
650 | 4 | |a Subperiosteal implant |7 (dpeaa)DE-He213 | |
650 | 4 | |a Custom dental implant |7 (dpeaa)DE-He213 | |
650 | 4 | |a Advanced bone resorption |7 (dpeaa)DE-He213 | |
650 | 4 | |a Medical device modeling |7 (dpeaa)DE-He213 | |
650 | 4 | |a Implant modeling |7 (dpeaa)DE-He213 | |
650 | 4 | |a Modeling software |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t 3D printing in medicine |d [Cham, Switzerland] : Springer International Publishing, 2015 |g 5(2019), 1 vom: 06. Juni |w (DE-627)844435171 |w (DE-600)2843165-0 |x 2365-6271 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2019 |g number:1 |g day:06 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s41205-019-0046-y |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2019 |e 1 |b 06 |c 06 |
author_variant |
a s as |
---|---|
matchkey_str |
article:23656271:2019----::dgtloklwomdlnocsod |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1186/s41205-019-0046-y doi (DE-627)SPR038108607 (SPR)s41205-019-0046-y-e DE-627 ger DE-627 rakwb eng Surovas, Andrejus verfasserin (orcid)0000-0002-7822-8131 aut A digital workflow for modeling of custom dental implants 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2019 Abstract Modern dental treatment with standard screw-type implants leave some cases unaddressed in patients with extreme jaw bone resorption. Custom-made subperiosteal dental implant could be an alternative treatment modality to sinus lift, nerve lateralization or zygomatic implant techniques. Subperiosteal dental implants were utilized for many years to treat such patients. A combination of traditional subperiosteal implant designs with current advancements in 3D imaging, design and printing allow to reduces treatment time and provides abutments for prostheses in cases where other techniques do not provide satisfactory results. The data manipulation and design software are important aspects in the manufacturing of custom implants. Programs that are specialized for industrial or medical design typically cost tens of thousands of US dollars. In this work I establish and test steps for design and production of a custom medical device (subperiosteal implant) from patient computed tomography (CT) data. Work stages to be defined are: selection of necessary software, CT data processing, 3D virtual model creation, modeling technique for custom implant and data file preparation for printing. Patient CT data was successfully converted into a watertight STL (Standard Tessellation Language) model of the maxilla. Error corrections and design were completed using freely available programs from Autodesk Inc.. The implant was produced in Ti64 (a type 5 titanium alloy) using three-dimensional (3D) printing DMLS (direct metal laser sintering) process. The avoidance of high cost software makes this treatment modality more accessible to smaller clinics or mid-size production facilities and subsequently more available to patients. Subperiosteal implant (dpeaa)DE-He213 Custom dental implant (dpeaa)DE-He213 Advanced bone resorption (dpeaa)DE-He213 Medical device modeling (dpeaa)DE-He213 Implant modeling (dpeaa)DE-He213 Modeling software (dpeaa)DE-He213 Enthalten in 3D printing in medicine [Cham, Switzerland] : Springer International Publishing, 2015 5(2019), 1 vom: 06. Juni (DE-627)844435171 (DE-600)2843165-0 2365-6271 nnns volume:5 year:2019 number:1 day:06 month:06 https://dx.doi.org/10.1186/s41205-019-0046-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2019 1 06 06 |
spelling |
10.1186/s41205-019-0046-y doi (DE-627)SPR038108607 (SPR)s41205-019-0046-y-e DE-627 ger DE-627 rakwb eng Surovas, Andrejus verfasserin (orcid)0000-0002-7822-8131 aut A digital workflow for modeling of custom dental implants 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2019 Abstract Modern dental treatment with standard screw-type implants leave some cases unaddressed in patients with extreme jaw bone resorption. Custom-made subperiosteal dental implant could be an alternative treatment modality to sinus lift, nerve lateralization or zygomatic implant techniques. Subperiosteal dental implants were utilized for many years to treat such patients. A combination of traditional subperiosteal implant designs with current advancements in 3D imaging, design and printing allow to reduces treatment time and provides abutments for prostheses in cases where other techniques do not provide satisfactory results. The data manipulation and design software are important aspects in the manufacturing of custom implants. Programs that are specialized for industrial or medical design typically cost tens of thousands of US dollars. In this work I establish and test steps for design and production of a custom medical device (subperiosteal implant) from patient computed tomography (CT) data. Work stages to be defined are: selection of necessary software, CT data processing, 3D virtual model creation, modeling technique for custom implant and data file preparation for printing. Patient CT data was successfully converted into a watertight STL (Standard Tessellation Language) model of the maxilla. Error corrections and design were completed using freely available programs from Autodesk Inc.. The implant was produced in Ti64 (a type 5 titanium alloy) using three-dimensional (3D) printing DMLS (direct metal laser sintering) process. The avoidance of high cost software makes this treatment modality more accessible to smaller clinics or mid-size production facilities and subsequently more available to patients. Subperiosteal implant (dpeaa)DE-He213 Custom dental implant (dpeaa)DE-He213 Advanced bone resorption (dpeaa)DE-He213 Medical device modeling (dpeaa)DE-He213 Implant modeling (dpeaa)DE-He213 Modeling software (dpeaa)DE-He213 Enthalten in 3D printing in medicine [Cham, Switzerland] : Springer International Publishing, 2015 5(2019), 1 vom: 06. Juni (DE-627)844435171 (DE-600)2843165-0 2365-6271 nnns volume:5 year:2019 number:1 day:06 month:06 https://dx.doi.org/10.1186/s41205-019-0046-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2019 1 06 06 |
allfields_unstemmed |
10.1186/s41205-019-0046-y doi (DE-627)SPR038108607 (SPR)s41205-019-0046-y-e DE-627 ger DE-627 rakwb eng Surovas, Andrejus verfasserin (orcid)0000-0002-7822-8131 aut A digital workflow for modeling of custom dental implants 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2019 Abstract Modern dental treatment with standard screw-type implants leave some cases unaddressed in patients with extreme jaw bone resorption. Custom-made subperiosteal dental implant could be an alternative treatment modality to sinus lift, nerve lateralization or zygomatic implant techniques. Subperiosteal dental implants were utilized for many years to treat such patients. A combination of traditional subperiosteal implant designs with current advancements in 3D imaging, design and printing allow to reduces treatment time and provides abutments for prostheses in cases where other techniques do not provide satisfactory results. The data manipulation and design software are important aspects in the manufacturing of custom implants. Programs that are specialized for industrial or medical design typically cost tens of thousands of US dollars. In this work I establish and test steps for design and production of a custom medical device (subperiosteal implant) from patient computed tomography (CT) data. Work stages to be defined are: selection of necessary software, CT data processing, 3D virtual model creation, modeling technique for custom implant and data file preparation for printing. Patient CT data was successfully converted into a watertight STL (Standard Tessellation Language) model of the maxilla. Error corrections and design were completed using freely available programs from Autodesk Inc.. The implant was produced in Ti64 (a type 5 titanium alloy) using three-dimensional (3D) printing DMLS (direct metal laser sintering) process. The avoidance of high cost software makes this treatment modality more accessible to smaller clinics or mid-size production facilities and subsequently more available to patients. Subperiosteal implant (dpeaa)DE-He213 Custom dental implant (dpeaa)DE-He213 Advanced bone resorption (dpeaa)DE-He213 Medical device modeling (dpeaa)DE-He213 Implant modeling (dpeaa)DE-He213 Modeling software (dpeaa)DE-He213 Enthalten in 3D printing in medicine [Cham, Switzerland] : Springer International Publishing, 2015 5(2019), 1 vom: 06. Juni (DE-627)844435171 (DE-600)2843165-0 2365-6271 nnns volume:5 year:2019 number:1 day:06 month:06 https://dx.doi.org/10.1186/s41205-019-0046-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2019 1 06 06 |
allfieldsGer |
10.1186/s41205-019-0046-y doi (DE-627)SPR038108607 (SPR)s41205-019-0046-y-e DE-627 ger DE-627 rakwb eng Surovas, Andrejus verfasserin (orcid)0000-0002-7822-8131 aut A digital workflow for modeling of custom dental implants 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2019 Abstract Modern dental treatment with standard screw-type implants leave some cases unaddressed in patients with extreme jaw bone resorption. Custom-made subperiosteal dental implant could be an alternative treatment modality to sinus lift, nerve lateralization or zygomatic implant techniques. Subperiosteal dental implants were utilized for many years to treat such patients. A combination of traditional subperiosteal implant designs with current advancements in 3D imaging, design and printing allow to reduces treatment time and provides abutments for prostheses in cases where other techniques do not provide satisfactory results. The data manipulation and design software are important aspects in the manufacturing of custom implants. Programs that are specialized for industrial or medical design typically cost tens of thousands of US dollars. In this work I establish and test steps for design and production of a custom medical device (subperiosteal implant) from patient computed tomography (CT) data. Work stages to be defined are: selection of necessary software, CT data processing, 3D virtual model creation, modeling technique for custom implant and data file preparation for printing. Patient CT data was successfully converted into a watertight STL (Standard Tessellation Language) model of the maxilla. Error corrections and design were completed using freely available programs from Autodesk Inc.. The implant was produced in Ti64 (a type 5 titanium alloy) using three-dimensional (3D) printing DMLS (direct metal laser sintering) process. The avoidance of high cost software makes this treatment modality more accessible to smaller clinics or mid-size production facilities and subsequently more available to patients. Subperiosteal implant (dpeaa)DE-He213 Custom dental implant (dpeaa)DE-He213 Advanced bone resorption (dpeaa)DE-He213 Medical device modeling (dpeaa)DE-He213 Implant modeling (dpeaa)DE-He213 Modeling software (dpeaa)DE-He213 Enthalten in 3D printing in medicine [Cham, Switzerland] : Springer International Publishing, 2015 5(2019), 1 vom: 06. Juni (DE-627)844435171 (DE-600)2843165-0 2365-6271 nnns volume:5 year:2019 number:1 day:06 month:06 https://dx.doi.org/10.1186/s41205-019-0046-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2019 1 06 06 |
allfieldsSound |
10.1186/s41205-019-0046-y doi (DE-627)SPR038108607 (SPR)s41205-019-0046-y-e DE-627 ger DE-627 rakwb eng Surovas, Andrejus verfasserin (orcid)0000-0002-7822-8131 aut A digital workflow for modeling of custom dental implants 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2019 Abstract Modern dental treatment with standard screw-type implants leave some cases unaddressed in patients with extreme jaw bone resorption. Custom-made subperiosteal dental implant could be an alternative treatment modality to sinus lift, nerve lateralization or zygomatic implant techniques. Subperiosteal dental implants were utilized for many years to treat such patients. A combination of traditional subperiosteal implant designs with current advancements in 3D imaging, design and printing allow to reduces treatment time and provides abutments for prostheses in cases where other techniques do not provide satisfactory results. The data manipulation and design software are important aspects in the manufacturing of custom implants. Programs that are specialized for industrial or medical design typically cost tens of thousands of US dollars. In this work I establish and test steps for design and production of a custom medical device (subperiosteal implant) from patient computed tomography (CT) data. Work stages to be defined are: selection of necessary software, CT data processing, 3D virtual model creation, modeling technique for custom implant and data file preparation for printing. Patient CT data was successfully converted into a watertight STL (Standard Tessellation Language) model of the maxilla. Error corrections and design were completed using freely available programs from Autodesk Inc.. The implant was produced in Ti64 (a type 5 titanium alloy) using three-dimensional (3D) printing DMLS (direct metal laser sintering) process. The avoidance of high cost software makes this treatment modality more accessible to smaller clinics or mid-size production facilities and subsequently more available to patients. Subperiosteal implant (dpeaa)DE-He213 Custom dental implant (dpeaa)DE-He213 Advanced bone resorption (dpeaa)DE-He213 Medical device modeling (dpeaa)DE-He213 Implant modeling (dpeaa)DE-He213 Modeling software (dpeaa)DE-He213 Enthalten in 3D printing in medicine [Cham, Switzerland] : Springer International Publishing, 2015 5(2019), 1 vom: 06. Juni (DE-627)844435171 (DE-600)2843165-0 2365-6271 nnns volume:5 year:2019 number:1 day:06 month:06 https://dx.doi.org/10.1186/s41205-019-0046-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2019 1 06 06 |
language |
English |
source |
Enthalten in 3D printing in medicine 5(2019), 1 vom: 06. Juni volume:5 year:2019 number:1 day:06 month:06 |
sourceStr |
Enthalten in 3D printing in medicine 5(2019), 1 vom: 06. Juni volume:5 year:2019 number:1 day:06 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Subperiosteal implant Custom dental implant Advanced bone resorption Medical device modeling Implant modeling Modeling software |
isfreeaccess_bool |
true |
container_title |
3D printing in medicine |
authorswithroles_txt_mv |
Surovas, Andrejus @@aut@@ |
publishDateDaySort_date |
2019-06-06T00:00:00Z |
hierarchy_top_id |
844435171 |
id |
SPR038108607 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR038108607</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520012944.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s41205-019-0046-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR038108607</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s41205-019-0046-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Surovas, Andrejus</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7822-8131</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A digital workflow for modeling of custom dental implants</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Modern dental treatment with standard screw-type implants leave some cases unaddressed in patients with extreme jaw bone resorption. Custom-made subperiosteal dental implant could be an alternative treatment modality to sinus lift, nerve lateralization or zygomatic implant techniques. Subperiosteal dental implants were utilized for many years to treat such patients. A combination of traditional subperiosteal implant designs with current advancements in 3D imaging, design and printing allow to reduces treatment time and provides abutments for prostheses in cases where other techniques do not provide satisfactory results. The data manipulation and design software are important aspects in the manufacturing of custom implants. Programs that are specialized for industrial or medical design typically cost tens of thousands of US dollars. In this work I establish and test steps for design and production of a custom medical device (subperiosteal implant) from patient computed tomography (CT) data. Work stages to be defined are: selection of necessary software, CT data processing, 3D virtual model creation, modeling technique for custom implant and data file preparation for printing. Patient CT data was successfully converted into a watertight STL (Standard Tessellation Language) model of the maxilla. Error corrections and design were completed using freely available programs from Autodesk Inc.. The implant was produced in Ti64 (a type 5 titanium alloy) using three-dimensional (3D) printing DMLS (direct metal laser sintering) process. The avoidance of high cost software makes this treatment modality more accessible to smaller clinics or mid-size production facilities and subsequently more available to patients.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subperiosteal implant</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Custom dental implant</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Advanced bone resorption</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical device modeling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Implant modeling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modeling software</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">3D printing in medicine</subfield><subfield code="d">[Cham, Switzerland] : Springer International Publishing, 2015</subfield><subfield code="g">5(2019), 1 vom: 06. Juni</subfield><subfield code="w">(DE-627)844435171</subfield><subfield code="w">(DE-600)2843165-0</subfield><subfield code="x">2365-6271</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:06</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s41205-019-0046-y</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">06</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Surovas, Andrejus |
spellingShingle |
Surovas, Andrejus misc Subperiosteal implant misc Custom dental implant misc Advanced bone resorption misc Medical device modeling misc Implant modeling misc Modeling software A digital workflow for modeling of custom dental implants |
authorStr |
Surovas, Andrejus |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)844435171 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2365-6271 |
topic_title |
A digital workflow for modeling of custom dental implants Subperiosteal implant (dpeaa)DE-He213 Custom dental implant (dpeaa)DE-He213 Advanced bone resorption (dpeaa)DE-He213 Medical device modeling (dpeaa)DE-He213 Implant modeling (dpeaa)DE-He213 Modeling software (dpeaa)DE-He213 |
topic |
misc Subperiosteal implant misc Custom dental implant misc Advanced bone resorption misc Medical device modeling misc Implant modeling misc Modeling software |
topic_unstemmed |
misc Subperiosteal implant misc Custom dental implant misc Advanced bone resorption misc Medical device modeling misc Implant modeling misc Modeling software |
topic_browse |
misc Subperiosteal implant misc Custom dental implant misc Advanced bone resorption misc Medical device modeling misc Implant modeling misc Modeling software |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
3D printing in medicine |
hierarchy_parent_id |
844435171 |
hierarchy_top_title |
3D printing in medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)844435171 (DE-600)2843165-0 |
title |
A digital workflow for modeling of custom dental implants |
ctrlnum |
(DE-627)SPR038108607 (SPR)s41205-019-0046-y-e |
title_full |
A digital workflow for modeling of custom dental implants |
author_sort |
Surovas, Andrejus |
journal |
3D printing in medicine |
journalStr |
3D printing in medicine |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Surovas, Andrejus |
container_volume |
5 |
format_se |
Elektronische Aufsätze |
author-letter |
Surovas, Andrejus |
doi_str_mv |
10.1186/s41205-019-0046-y |
normlink |
(ORCID)0000-0002-7822-8131 |
normlink_prefix_str_mv |
(orcid)0000-0002-7822-8131 |
title_sort |
digital workflow for modeling of custom dental implants |
title_auth |
A digital workflow for modeling of custom dental implants |
abstract |
Abstract Modern dental treatment with standard screw-type implants leave some cases unaddressed in patients with extreme jaw bone resorption. Custom-made subperiosteal dental implant could be an alternative treatment modality to sinus lift, nerve lateralization or zygomatic implant techniques. Subperiosteal dental implants were utilized for many years to treat such patients. A combination of traditional subperiosteal implant designs with current advancements in 3D imaging, design and printing allow to reduces treatment time and provides abutments for prostheses in cases where other techniques do not provide satisfactory results. The data manipulation and design software are important aspects in the manufacturing of custom implants. Programs that are specialized for industrial or medical design typically cost tens of thousands of US dollars. In this work I establish and test steps for design and production of a custom medical device (subperiosteal implant) from patient computed tomography (CT) data. Work stages to be defined are: selection of necessary software, CT data processing, 3D virtual model creation, modeling technique for custom implant and data file preparation for printing. Patient CT data was successfully converted into a watertight STL (Standard Tessellation Language) model of the maxilla. Error corrections and design were completed using freely available programs from Autodesk Inc.. The implant was produced in Ti64 (a type 5 titanium alloy) using three-dimensional (3D) printing DMLS (direct metal laser sintering) process. The avoidance of high cost software makes this treatment modality more accessible to smaller clinics or mid-size production facilities and subsequently more available to patients. © The Author(s) 2019 |
abstractGer |
Abstract Modern dental treatment with standard screw-type implants leave some cases unaddressed in patients with extreme jaw bone resorption. Custom-made subperiosteal dental implant could be an alternative treatment modality to sinus lift, nerve lateralization or zygomatic implant techniques. Subperiosteal dental implants were utilized for many years to treat such patients. A combination of traditional subperiosteal implant designs with current advancements in 3D imaging, design and printing allow to reduces treatment time and provides abutments for prostheses in cases where other techniques do not provide satisfactory results. The data manipulation and design software are important aspects in the manufacturing of custom implants. Programs that are specialized for industrial or medical design typically cost tens of thousands of US dollars. In this work I establish and test steps for design and production of a custom medical device (subperiosteal implant) from patient computed tomography (CT) data. Work stages to be defined are: selection of necessary software, CT data processing, 3D virtual model creation, modeling technique for custom implant and data file preparation for printing. Patient CT data was successfully converted into a watertight STL (Standard Tessellation Language) model of the maxilla. Error corrections and design were completed using freely available programs from Autodesk Inc.. The implant was produced in Ti64 (a type 5 titanium alloy) using three-dimensional (3D) printing DMLS (direct metal laser sintering) process. The avoidance of high cost software makes this treatment modality more accessible to smaller clinics or mid-size production facilities and subsequently more available to patients. © The Author(s) 2019 |
abstract_unstemmed |
Abstract Modern dental treatment with standard screw-type implants leave some cases unaddressed in patients with extreme jaw bone resorption. Custom-made subperiosteal dental implant could be an alternative treatment modality to sinus lift, nerve lateralization or zygomatic implant techniques. Subperiosteal dental implants were utilized for many years to treat such patients. A combination of traditional subperiosteal implant designs with current advancements in 3D imaging, design and printing allow to reduces treatment time and provides abutments for prostheses in cases where other techniques do not provide satisfactory results. The data manipulation and design software are important aspects in the manufacturing of custom implants. Programs that are specialized for industrial or medical design typically cost tens of thousands of US dollars. In this work I establish and test steps for design and production of a custom medical device (subperiosteal implant) from patient computed tomography (CT) data. Work stages to be defined are: selection of necessary software, CT data processing, 3D virtual model creation, modeling technique for custom implant and data file preparation for printing. Patient CT data was successfully converted into a watertight STL (Standard Tessellation Language) model of the maxilla. Error corrections and design were completed using freely available programs from Autodesk Inc.. The implant was produced in Ti64 (a type 5 titanium alloy) using three-dimensional (3D) printing DMLS (direct metal laser sintering) process. The avoidance of high cost software makes this treatment modality more accessible to smaller clinics or mid-size production facilities and subsequently more available to patients. © The Author(s) 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A digital workflow for modeling of custom dental implants |
url |
https://dx.doi.org/10.1186/s41205-019-0046-y |
remote_bool |
true |
ppnlink |
844435171 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s41205-019-0046-y |
up_date |
2024-07-03T16:12:50.680Z |
_version_ |
1803575016238874624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR038108607</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520012944.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s41205-019-0046-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR038108607</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s41205-019-0046-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Surovas, Andrejus</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7822-8131</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A digital workflow for modeling of custom dental implants</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Modern dental treatment with standard screw-type implants leave some cases unaddressed in patients with extreme jaw bone resorption. Custom-made subperiosteal dental implant could be an alternative treatment modality to sinus lift, nerve lateralization or zygomatic implant techniques. Subperiosteal dental implants were utilized for many years to treat such patients. A combination of traditional subperiosteal implant designs with current advancements in 3D imaging, design and printing allow to reduces treatment time and provides abutments for prostheses in cases where other techniques do not provide satisfactory results. The data manipulation and design software are important aspects in the manufacturing of custom implants. Programs that are specialized for industrial or medical design typically cost tens of thousands of US dollars. In this work I establish and test steps for design and production of a custom medical device (subperiosteal implant) from patient computed tomography (CT) data. Work stages to be defined are: selection of necessary software, CT data processing, 3D virtual model creation, modeling technique for custom implant and data file preparation for printing. Patient CT data was successfully converted into a watertight STL (Standard Tessellation Language) model of the maxilla. Error corrections and design were completed using freely available programs from Autodesk Inc.. The implant was produced in Ti64 (a type 5 titanium alloy) using three-dimensional (3D) printing DMLS (direct metal laser sintering) process. The avoidance of high cost software makes this treatment modality more accessible to smaller clinics or mid-size production facilities and subsequently more available to patients.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subperiosteal implant</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Custom dental implant</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Advanced bone resorption</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical device modeling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Implant modeling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modeling software</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">3D printing in medicine</subfield><subfield code="d">[Cham, Switzerland] : Springer International Publishing, 2015</subfield><subfield code="g">5(2019), 1 vom: 06. Juni</subfield><subfield code="w">(DE-627)844435171</subfield><subfield code="w">(DE-600)2843165-0</subfield><subfield code="x">2365-6271</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:06</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s41205-019-0046-y</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">06</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.399617 |