Enhancing mechanical endurance of chemical-tempered thin soda-lime silicate float glass by ion exchange
Abstract The aim of this study is to determine the mechanical properties differences in between the air and tin surfaces of thin soda-lime silicate float glasses that subjected to ion exchange using $ KNO_{3} $ salt bath. The ion exchange process was carried out at different times and temperatures....
Ausführliche Beschreibung
Autor*in: |
Güzel, Aydın Süleyman [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Australian Ceramic Society 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of the Australian Ceramic Society - [Singapore] : Springer Singapore, 2007, 56(2019), 1 vom: 13. Juni, Seite 185-201 |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2019 ; number:1 ; day:13 ; month:06 ; pages:185-201 |
Links: |
---|
DOI / URN: |
10.1007/s41779-019-00375-x |
---|
Katalog-ID: |
SPR038304430 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR038304430 | ||
003 | DE-627 | ||
005 | 20230519134302.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s41779-019-00375-x |2 doi | |
035 | |a (DE-627)SPR038304430 | ||
035 | |a (SPR)s41779-019-00375-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Güzel, Aydın Süleyman |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enhancing mechanical endurance of chemical-tempered thin soda-lime silicate float glass by ion exchange |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Australian Ceramic Society 2019 | ||
520 | |a Abstract The aim of this study is to determine the mechanical properties differences in between the air and tin surfaces of thin soda-lime silicate float glasses that subjected to ion exchange using $ KNO_{3} $ salt bath. The ion exchange process was carried out at different times and temperatures. Chemically tempered glasses were investigated by means of compressive stress (CS), microhardness measurements, cracking probability, fractographic analysis, and flexural strength. The relationship among these properties was also discussed. The Weibull distributions of the samples were determined for a better understanding of the strength results. The AFM was used to determine the surface roughness. The weight of glass samples was increased gradually with increasing ion exchange time and temperature due to the inter-diffusion of $ K^{+} $–$ Na^{+} $ ions. The fracture load of chemically strengthened glass with ion exchange at 435 °C-8 h showed an increase of ~ 4.4 times that of untreated glass (raw glass), and it was selected as the optimum process conditions. The number of broken pieces was increased by increasing flexural strength, and smaller pieces were obtained with a great deal of branching. The air side always has greater compressive stress than the tin side. The maximum hardness value was reached with ion exchange at 435 °C for 12 h on a tin surface was 8.25 GPa with an increase of ~ 18% with respect to the raw glass. The crack resistance of chemically tempered glasses showed an increase in the range of 410–1290% and 241–1895% for air and tin surfaces, respectively. According to the AFM analysis, surface roughness of the samples after ion exchange did not change dramatically. SEM-EDS analysis revealed that the surface potassium concentration and diffusion depth increase with temperature. | ||
650 | 4 | |a Chemical tempering |7 (dpeaa)DE-He213 | |
650 | 4 | |a Ion exchange |7 (dpeaa)DE-He213 | |
650 | 4 | |a Soda-lime float glass |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mechanical strength |7 (dpeaa)DE-He213 | |
650 | 4 | |a Indentation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Compressive stress |7 (dpeaa)DE-He213 | |
700 | 1 | |a Sarıgüzel, Meryem |4 aut | |
700 | 1 | |a Özdemir Yanık, Melis Can |4 aut | |
700 | 1 | |a Günay, Esin |4 aut | |
700 | 1 | |a Usta, Metin |4 aut | |
700 | 1 | |a Öztürk, Yusuf |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of the Australian Ceramic Society |d [Singapore] : Springer Singapore, 2007 |g 56(2019), 1 vom: 13. Juni, Seite 185-201 |w (DE-627)87564290X |w (DE-600)2878768-7 |x 2510-1579 |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2019 |g number:1 |g day:13 |g month:06 |g pages:185-201 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s41779-019-00375-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_266 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 56 |j 2019 |e 1 |b 13 |c 06 |h 185-201 |
author_variant |
a s g as asg m s ms y m c ö ymc ymcö e g eg m u mu y ö yö |
---|---|
matchkey_str |
article:25101579:2019----::nacnmcaiaedrnefhmcleprdhnoaieiiae |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s41779-019-00375-x doi (DE-627)SPR038304430 (SPR)s41779-019-00375-x-e DE-627 ger DE-627 rakwb eng Güzel, Aydın Süleyman verfasserin aut Enhancing mechanical endurance of chemical-tempered thin soda-lime silicate float glass by ion exchange 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Australian Ceramic Society 2019 Abstract The aim of this study is to determine the mechanical properties differences in between the air and tin surfaces of thin soda-lime silicate float glasses that subjected to ion exchange using $ KNO_{3} $ salt bath. The ion exchange process was carried out at different times and temperatures. Chemically tempered glasses were investigated by means of compressive stress (CS), microhardness measurements, cracking probability, fractographic analysis, and flexural strength. The relationship among these properties was also discussed. The Weibull distributions of the samples were determined for a better understanding of the strength results. The AFM was used to determine the surface roughness. The weight of glass samples was increased gradually with increasing ion exchange time and temperature due to the inter-diffusion of $ K^{+} $–$ Na^{+} $ ions. The fracture load of chemically strengthened glass with ion exchange at 435 °C-8 h showed an increase of ~ 4.4 times that of untreated glass (raw glass), and it was selected as the optimum process conditions. The number of broken pieces was increased by increasing flexural strength, and smaller pieces were obtained with a great deal of branching. The air side always has greater compressive stress than the tin side. The maximum hardness value was reached with ion exchange at 435 °C for 12 h on a tin surface was 8.25 GPa with an increase of ~ 18% with respect to the raw glass. The crack resistance of chemically tempered glasses showed an increase in the range of 410–1290% and 241–1895% for air and tin surfaces, respectively. According to the AFM analysis, surface roughness of the samples after ion exchange did not change dramatically. SEM-EDS analysis revealed that the surface potassium concentration and diffusion depth increase with temperature. Chemical tempering (dpeaa)DE-He213 Ion exchange (dpeaa)DE-He213 Soda-lime float glass (dpeaa)DE-He213 Mechanical strength (dpeaa)DE-He213 Indentation (dpeaa)DE-He213 Compressive stress (dpeaa)DE-He213 Sarıgüzel, Meryem aut Özdemir Yanık, Melis Can aut Günay, Esin aut Usta, Metin aut Öztürk, Yusuf aut Enthalten in Journal of the Australian Ceramic Society [Singapore] : Springer Singapore, 2007 56(2019), 1 vom: 13. Juni, Seite 185-201 (DE-627)87564290X (DE-600)2878768-7 2510-1579 nnns volume:56 year:2019 number:1 day:13 month:06 pages:185-201 https://dx.doi.org/10.1007/s41779-019-00375-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 56 2019 1 13 06 185-201 |
spelling |
10.1007/s41779-019-00375-x doi (DE-627)SPR038304430 (SPR)s41779-019-00375-x-e DE-627 ger DE-627 rakwb eng Güzel, Aydın Süleyman verfasserin aut Enhancing mechanical endurance of chemical-tempered thin soda-lime silicate float glass by ion exchange 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Australian Ceramic Society 2019 Abstract The aim of this study is to determine the mechanical properties differences in between the air and tin surfaces of thin soda-lime silicate float glasses that subjected to ion exchange using $ KNO_{3} $ salt bath. The ion exchange process was carried out at different times and temperatures. Chemically tempered glasses were investigated by means of compressive stress (CS), microhardness measurements, cracking probability, fractographic analysis, and flexural strength. The relationship among these properties was also discussed. The Weibull distributions of the samples were determined for a better understanding of the strength results. The AFM was used to determine the surface roughness. The weight of glass samples was increased gradually with increasing ion exchange time and temperature due to the inter-diffusion of $ K^{+} $–$ Na^{+} $ ions. The fracture load of chemically strengthened glass with ion exchange at 435 °C-8 h showed an increase of ~ 4.4 times that of untreated glass (raw glass), and it was selected as the optimum process conditions. The number of broken pieces was increased by increasing flexural strength, and smaller pieces were obtained with a great deal of branching. The air side always has greater compressive stress than the tin side. The maximum hardness value was reached with ion exchange at 435 °C for 12 h on a tin surface was 8.25 GPa with an increase of ~ 18% with respect to the raw glass. The crack resistance of chemically tempered glasses showed an increase in the range of 410–1290% and 241–1895% for air and tin surfaces, respectively. According to the AFM analysis, surface roughness of the samples after ion exchange did not change dramatically. SEM-EDS analysis revealed that the surface potassium concentration and diffusion depth increase with temperature. Chemical tempering (dpeaa)DE-He213 Ion exchange (dpeaa)DE-He213 Soda-lime float glass (dpeaa)DE-He213 Mechanical strength (dpeaa)DE-He213 Indentation (dpeaa)DE-He213 Compressive stress (dpeaa)DE-He213 Sarıgüzel, Meryem aut Özdemir Yanık, Melis Can aut Günay, Esin aut Usta, Metin aut Öztürk, Yusuf aut Enthalten in Journal of the Australian Ceramic Society [Singapore] : Springer Singapore, 2007 56(2019), 1 vom: 13. Juni, Seite 185-201 (DE-627)87564290X (DE-600)2878768-7 2510-1579 nnns volume:56 year:2019 number:1 day:13 month:06 pages:185-201 https://dx.doi.org/10.1007/s41779-019-00375-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 56 2019 1 13 06 185-201 |
allfields_unstemmed |
10.1007/s41779-019-00375-x doi (DE-627)SPR038304430 (SPR)s41779-019-00375-x-e DE-627 ger DE-627 rakwb eng Güzel, Aydın Süleyman verfasserin aut Enhancing mechanical endurance of chemical-tempered thin soda-lime silicate float glass by ion exchange 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Australian Ceramic Society 2019 Abstract The aim of this study is to determine the mechanical properties differences in between the air and tin surfaces of thin soda-lime silicate float glasses that subjected to ion exchange using $ KNO_{3} $ salt bath. The ion exchange process was carried out at different times and temperatures. Chemically tempered glasses were investigated by means of compressive stress (CS), microhardness measurements, cracking probability, fractographic analysis, and flexural strength. The relationship among these properties was also discussed. The Weibull distributions of the samples were determined for a better understanding of the strength results. The AFM was used to determine the surface roughness. The weight of glass samples was increased gradually with increasing ion exchange time and temperature due to the inter-diffusion of $ K^{+} $–$ Na^{+} $ ions. The fracture load of chemically strengthened glass with ion exchange at 435 °C-8 h showed an increase of ~ 4.4 times that of untreated glass (raw glass), and it was selected as the optimum process conditions. The number of broken pieces was increased by increasing flexural strength, and smaller pieces were obtained with a great deal of branching. The air side always has greater compressive stress than the tin side. The maximum hardness value was reached with ion exchange at 435 °C for 12 h on a tin surface was 8.25 GPa with an increase of ~ 18% with respect to the raw glass. The crack resistance of chemically tempered glasses showed an increase in the range of 410–1290% and 241–1895% for air and tin surfaces, respectively. According to the AFM analysis, surface roughness of the samples after ion exchange did not change dramatically. SEM-EDS analysis revealed that the surface potassium concentration and diffusion depth increase with temperature. Chemical tempering (dpeaa)DE-He213 Ion exchange (dpeaa)DE-He213 Soda-lime float glass (dpeaa)DE-He213 Mechanical strength (dpeaa)DE-He213 Indentation (dpeaa)DE-He213 Compressive stress (dpeaa)DE-He213 Sarıgüzel, Meryem aut Özdemir Yanık, Melis Can aut Günay, Esin aut Usta, Metin aut Öztürk, Yusuf aut Enthalten in Journal of the Australian Ceramic Society [Singapore] : Springer Singapore, 2007 56(2019), 1 vom: 13. Juni, Seite 185-201 (DE-627)87564290X (DE-600)2878768-7 2510-1579 nnns volume:56 year:2019 number:1 day:13 month:06 pages:185-201 https://dx.doi.org/10.1007/s41779-019-00375-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 56 2019 1 13 06 185-201 |
allfieldsGer |
10.1007/s41779-019-00375-x doi (DE-627)SPR038304430 (SPR)s41779-019-00375-x-e DE-627 ger DE-627 rakwb eng Güzel, Aydın Süleyman verfasserin aut Enhancing mechanical endurance of chemical-tempered thin soda-lime silicate float glass by ion exchange 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Australian Ceramic Society 2019 Abstract The aim of this study is to determine the mechanical properties differences in between the air and tin surfaces of thin soda-lime silicate float glasses that subjected to ion exchange using $ KNO_{3} $ salt bath. The ion exchange process was carried out at different times and temperatures. Chemically tempered glasses were investigated by means of compressive stress (CS), microhardness measurements, cracking probability, fractographic analysis, and flexural strength. The relationship among these properties was also discussed. The Weibull distributions of the samples were determined for a better understanding of the strength results. The AFM was used to determine the surface roughness. The weight of glass samples was increased gradually with increasing ion exchange time and temperature due to the inter-diffusion of $ K^{+} $–$ Na^{+} $ ions. The fracture load of chemically strengthened glass with ion exchange at 435 °C-8 h showed an increase of ~ 4.4 times that of untreated glass (raw glass), and it was selected as the optimum process conditions. The number of broken pieces was increased by increasing flexural strength, and smaller pieces were obtained with a great deal of branching. The air side always has greater compressive stress than the tin side. The maximum hardness value was reached with ion exchange at 435 °C for 12 h on a tin surface was 8.25 GPa with an increase of ~ 18% with respect to the raw glass. The crack resistance of chemically tempered glasses showed an increase in the range of 410–1290% and 241–1895% for air and tin surfaces, respectively. According to the AFM analysis, surface roughness of the samples after ion exchange did not change dramatically. SEM-EDS analysis revealed that the surface potassium concentration and diffusion depth increase with temperature. Chemical tempering (dpeaa)DE-He213 Ion exchange (dpeaa)DE-He213 Soda-lime float glass (dpeaa)DE-He213 Mechanical strength (dpeaa)DE-He213 Indentation (dpeaa)DE-He213 Compressive stress (dpeaa)DE-He213 Sarıgüzel, Meryem aut Özdemir Yanık, Melis Can aut Günay, Esin aut Usta, Metin aut Öztürk, Yusuf aut Enthalten in Journal of the Australian Ceramic Society [Singapore] : Springer Singapore, 2007 56(2019), 1 vom: 13. Juni, Seite 185-201 (DE-627)87564290X (DE-600)2878768-7 2510-1579 nnns volume:56 year:2019 number:1 day:13 month:06 pages:185-201 https://dx.doi.org/10.1007/s41779-019-00375-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 56 2019 1 13 06 185-201 |
allfieldsSound |
10.1007/s41779-019-00375-x doi (DE-627)SPR038304430 (SPR)s41779-019-00375-x-e DE-627 ger DE-627 rakwb eng Güzel, Aydın Süleyman verfasserin aut Enhancing mechanical endurance of chemical-tempered thin soda-lime silicate float glass by ion exchange 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Australian Ceramic Society 2019 Abstract The aim of this study is to determine the mechanical properties differences in between the air and tin surfaces of thin soda-lime silicate float glasses that subjected to ion exchange using $ KNO_{3} $ salt bath. The ion exchange process was carried out at different times and temperatures. Chemically tempered glasses were investigated by means of compressive stress (CS), microhardness measurements, cracking probability, fractographic analysis, and flexural strength. The relationship among these properties was also discussed. The Weibull distributions of the samples were determined for a better understanding of the strength results. The AFM was used to determine the surface roughness. The weight of glass samples was increased gradually with increasing ion exchange time and temperature due to the inter-diffusion of $ K^{+} $–$ Na^{+} $ ions. The fracture load of chemically strengthened glass with ion exchange at 435 °C-8 h showed an increase of ~ 4.4 times that of untreated glass (raw glass), and it was selected as the optimum process conditions. The number of broken pieces was increased by increasing flexural strength, and smaller pieces were obtained with a great deal of branching. The air side always has greater compressive stress than the tin side. The maximum hardness value was reached with ion exchange at 435 °C for 12 h on a tin surface was 8.25 GPa with an increase of ~ 18% with respect to the raw glass. The crack resistance of chemically tempered glasses showed an increase in the range of 410–1290% and 241–1895% for air and tin surfaces, respectively. According to the AFM analysis, surface roughness of the samples after ion exchange did not change dramatically. SEM-EDS analysis revealed that the surface potassium concentration and diffusion depth increase with temperature. Chemical tempering (dpeaa)DE-He213 Ion exchange (dpeaa)DE-He213 Soda-lime float glass (dpeaa)DE-He213 Mechanical strength (dpeaa)DE-He213 Indentation (dpeaa)DE-He213 Compressive stress (dpeaa)DE-He213 Sarıgüzel, Meryem aut Özdemir Yanık, Melis Can aut Günay, Esin aut Usta, Metin aut Öztürk, Yusuf aut Enthalten in Journal of the Australian Ceramic Society [Singapore] : Springer Singapore, 2007 56(2019), 1 vom: 13. Juni, Seite 185-201 (DE-627)87564290X (DE-600)2878768-7 2510-1579 nnns volume:56 year:2019 number:1 day:13 month:06 pages:185-201 https://dx.doi.org/10.1007/s41779-019-00375-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 56 2019 1 13 06 185-201 |
language |
English |
source |
Enthalten in Journal of the Australian Ceramic Society 56(2019), 1 vom: 13. Juni, Seite 185-201 volume:56 year:2019 number:1 day:13 month:06 pages:185-201 |
sourceStr |
Enthalten in Journal of the Australian Ceramic Society 56(2019), 1 vom: 13. Juni, Seite 185-201 volume:56 year:2019 number:1 day:13 month:06 pages:185-201 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Chemical tempering Ion exchange Soda-lime float glass Mechanical strength Indentation Compressive stress |
isfreeaccess_bool |
false |
container_title |
Journal of the Australian Ceramic Society |
authorswithroles_txt_mv |
Güzel, Aydın Süleyman @@aut@@ Sarıgüzel, Meryem @@aut@@ Özdemir Yanık, Melis Can @@aut@@ Günay, Esin @@aut@@ Usta, Metin @@aut@@ Öztürk, Yusuf @@aut@@ |
publishDateDaySort_date |
2019-06-13T00:00:00Z |
hierarchy_top_id |
87564290X |
id |
SPR038304430 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR038304430</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519134302.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s41779-019-00375-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR038304430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s41779-019-00375-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Güzel, Aydın Süleyman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing mechanical endurance of chemical-tempered thin soda-lime silicate float glass by ion exchange</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Australian Ceramic Society 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The aim of this study is to determine the mechanical properties differences in between the air and tin surfaces of thin soda-lime silicate float glasses that subjected to ion exchange using $ KNO_{3} $ salt bath. The ion exchange process was carried out at different times and temperatures. Chemically tempered glasses were investigated by means of compressive stress (CS), microhardness measurements, cracking probability, fractographic analysis, and flexural strength. The relationship among these properties was also discussed. The Weibull distributions of the samples were determined for a better understanding of the strength results. The AFM was used to determine the surface roughness. The weight of glass samples was increased gradually with increasing ion exchange time and temperature due to the inter-diffusion of $ K^{+} $–$ Na^{+} $ ions. The fracture load of chemically strengthened glass with ion exchange at 435 °C-8 h showed an increase of ~ 4.4 times that of untreated glass (raw glass), and it was selected as the optimum process conditions. The number of broken pieces was increased by increasing flexural strength, and smaller pieces were obtained with a great deal of branching. The air side always has greater compressive stress than the tin side. The maximum hardness value was reached with ion exchange at 435 °C for 12 h on a tin surface was 8.25 GPa with an increase of ~ 18% with respect to the raw glass. The crack resistance of chemically tempered glasses showed an increase in the range of 410–1290% and 241–1895% for air and tin surfaces, respectively. According to the AFM analysis, surface roughness of the samples after ion exchange did not change dramatically. SEM-EDS analysis revealed that the surface potassium concentration and diffusion depth increase with temperature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical tempering</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ion exchange</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soda-lime float glass</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical strength</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Indentation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compressive stress</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sarıgüzel, Meryem</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Özdemir Yanık, Melis Can</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Günay, Esin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Usta, Metin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Öztürk, Yusuf</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the Australian Ceramic Society</subfield><subfield code="d">[Singapore] : Springer Singapore, 2007</subfield><subfield code="g">56(2019), 1 vom: 13. Juni, Seite 185-201</subfield><subfield code="w">(DE-627)87564290X</subfield><subfield code="w">(DE-600)2878768-7</subfield><subfield code="x">2510-1579</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:13</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:185-201</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s41779-019-00375-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">13</subfield><subfield code="c">06</subfield><subfield code="h">185-201</subfield></datafield></record></collection>
|
author |
Güzel, Aydın Süleyman |
spellingShingle |
Güzel, Aydın Süleyman misc Chemical tempering misc Ion exchange misc Soda-lime float glass misc Mechanical strength misc Indentation misc Compressive stress Enhancing mechanical endurance of chemical-tempered thin soda-lime silicate float glass by ion exchange |
authorStr |
Güzel, Aydın Süleyman |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)87564290X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2510-1579 |
topic_title |
Enhancing mechanical endurance of chemical-tempered thin soda-lime silicate float glass by ion exchange Chemical tempering (dpeaa)DE-He213 Ion exchange (dpeaa)DE-He213 Soda-lime float glass (dpeaa)DE-He213 Mechanical strength (dpeaa)DE-He213 Indentation (dpeaa)DE-He213 Compressive stress (dpeaa)DE-He213 |
topic |
misc Chemical tempering misc Ion exchange misc Soda-lime float glass misc Mechanical strength misc Indentation misc Compressive stress |
topic_unstemmed |
misc Chemical tempering misc Ion exchange misc Soda-lime float glass misc Mechanical strength misc Indentation misc Compressive stress |
topic_browse |
misc Chemical tempering misc Ion exchange misc Soda-lime float glass misc Mechanical strength misc Indentation misc Compressive stress |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of the Australian Ceramic Society |
hierarchy_parent_id |
87564290X |
hierarchy_top_title |
Journal of the Australian Ceramic Society |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)87564290X (DE-600)2878768-7 |
title |
Enhancing mechanical endurance of chemical-tempered thin soda-lime silicate float glass by ion exchange |
ctrlnum |
(DE-627)SPR038304430 (SPR)s41779-019-00375-x-e |
title_full |
Enhancing mechanical endurance of chemical-tempered thin soda-lime silicate float glass by ion exchange |
author_sort |
Güzel, Aydın Süleyman |
journal |
Journal of the Australian Ceramic Society |
journalStr |
Journal of the Australian Ceramic Society |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
185 |
author_browse |
Güzel, Aydın Süleyman Sarıgüzel, Meryem Özdemir Yanık, Melis Can Günay, Esin Usta, Metin Öztürk, Yusuf |
container_volume |
56 |
format_se |
Elektronische Aufsätze |
author-letter |
Güzel, Aydın Süleyman |
doi_str_mv |
10.1007/s41779-019-00375-x |
title_sort |
enhancing mechanical endurance of chemical-tempered thin soda-lime silicate float glass by ion exchange |
title_auth |
Enhancing mechanical endurance of chemical-tempered thin soda-lime silicate float glass by ion exchange |
abstract |
Abstract The aim of this study is to determine the mechanical properties differences in between the air and tin surfaces of thin soda-lime silicate float glasses that subjected to ion exchange using $ KNO_{3} $ salt bath. The ion exchange process was carried out at different times and temperatures. Chemically tempered glasses were investigated by means of compressive stress (CS), microhardness measurements, cracking probability, fractographic analysis, and flexural strength. The relationship among these properties was also discussed. The Weibull distributions of the samples were determined for a better understanding of the strength results. The AFM was used to determine the surface roughness. The weight of glass samples was increased gradually with increasing ion exchange time and temperature due to the inter-diffusion of $ K^{+} $–$ Na^{+} $ ions. The fracture load of chemically strengthened glass with ion exchange at 435 °C-8 h showed an increase of ~ 4.4 times that of untreated glass (raw glass), and it was selected as the optimum process conditions. The number of broken pieces was increased by increasing flexural strength, and smaller pieces were obtained with a great deal of branching. The air side always has greater compressive stress than the tin side. The maximum hardness value was reached with ion exchange at 435 °C for 12 h on a tin surface was 8.25 GPa with an increase of ~ 18% with respect to the raw glass. The crack resistance of chemically tempered glasses showed an increase in the range of 410–1290% and 241–1895% for air and tin surfaces, respectively. According to the AFM analysis, surface roughness of the samples after ion exchange did not change dramatically. SEM-EDS analysis revealed that the surface potassium concentration and diffusion depth increase with temperature. © Australian Ceramic Society 2019 |
abstractGer |
Abstract The aim of this study is to determine the mechanical properties differences in between the air and tin surfaces of thin soda-lime silicate float glasses that subjected to ion exchange using $ KNO_{3} $ salt bath. The ion exchange process was carried out at different times and temperatures. Chemically tempered glasses were investigated by means of compressive stress (CS), microhardness measurements, cracking probability, fractographic analysis, and flexural strength. The relationship among these properties was also discussed. The Weibull distributions of the samples were determined for a better understanding of the strength results. The AFM was used to determine the surface roughness. The weight of glass samples was increased gradually with increasing ion exchange time and temperature due to the inter-diffusion of $ K^{+} $–$ Na^{+} $ ions. The fracture load of chemically strengthened glass with ion exchange at 435 °C-8 h showed an increase of ~ 4.4 times that of untreated glass (raw glass), and it was selected as the optimum process conditions. The number of broken pieces was increased by increasing flexural strength, and smaller pieces were obtained with a great deal of branching. The air side always has greater compressive stress than the tin side. The maximum hardness value was reached with ion exchange at 435 °C for 12 h on a tin surface was 8.25 GPa with an increase of ~ 18% with respect to the raw glass. The crack resistance of chemically tempered glasses showed an increase in the range of 410–1290% and 241–1895% for air and tin surfaces, respectively. According to the AFM analysis, surface roughness of the samples after ion exchange did not change dramatically. SEM-EDS analysis revealed that the surface potassium concentration and diffusion depth increase with temperature. © Australian Ceramic Society 2019 |
abstract_unstemmed |
Abstract The aim of this study is to determine the mechanical properties differences in between the air and tin surfaces of thin soda-lime silicate float glasses that subjected to ion exchange using $ KNO_{3} $ salt bath. The ion exchange process was carried out at different times and temperatures. Chemically tempered glasses were investigated by means of compressive stress (CS), microhardness measurements, cracking probability, fractographic analysis, and flexural strength. The relationship among these properties was also discussed. The Weibull distributions of the samples were determined for a better understanding of the strength results. The AFM was used to determine the surface roughness. The weight of glass samples was increased gradually with increasing ion exchange time and temperature due to the inter-diffusion of $ K^{+} $–$ Na^{+} $ ions. The fracture load of chemically strengthened glass with ion exchange at 435 °C-8 h showed an increase of ~ 4.4 times that of untreated glass (raw glass), and it was selected as the optimum process conditions. The number of broken pieces was increased by increasing flexural strength, and smaller pieces were obtained with a great deal of branching. The air side always has greater compressive stress than the tin side. The maximum hardness value was reached with ion exchange at 435 °C for 12 h on a tin surface was 8.25 GPa with an increase of ~ 18% with respect to the raw glass. The crack resistance of chemically tempered glasses showed an increase in the range of 410–1290% and 241–1895% for air and tin surfaces, respectively. According to the AFM analysis, surface roughness of the samples after ion exchange did not change dramatically. SEM-EDS analysis revealed that the surface potassium concentration and diffusion depth increase with temperature. © Australian Ceramic Society 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_266 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Enhancing mechanical endurance of chemical-tempered thin soda-lime silicate float glass by ion exchange |
url |
https://dx.doi.org/10.1007/s41779-019-00375-x |
remote_bool |
true |
author2 |
Sarıgüzel, Meryem Özdemir Yanık, Melis Can Günay, Esin Usta, Metin Öztürk, Yusuf |
author2Str |
Sarıgüzel, Meryem Özdemir Yanık, Melis Can Günay, Esin Usta, Metin Öztürk, Yusuf |
ppnlink |
87564290X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s41779-019-00375-x |
up_date |
2024-07-03T17:19:31.055Z |
_version_ |
1803579210920361984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR038304430</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519134302.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s41779-019-00375-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR038304430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s41779-019-00375-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Güzel, Aydın Süleyman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing mechanical endurance of chemical-tempered thin soda-lime silicate float glass by ion exchange</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Australian Ceramic Society 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The aim of this study is to determine the mechanical properties differences in between the air and tin surfaces of thin soda-lime silicate float glasses that subjected to ion exchange using $ KNO_{3} $ salt bath. The ion exchange process was carried out at different times and temperatures. Chemically tempered glasses were investigated by means of compressive stress (CS), microhardness measurements, cracking probability, fractographic analysis, and flexural strength. The relationship among these properties was also discussed. The Weibull distributions of the samples were determined for a better understanding of the strength results. The AFM was used to determine the surface roughness. The weight of glass samples was increased gradually with increasing ion exchange time and temperature due to the inter-diffusion of $ K^{+} $–$ Na^{+} $ ions. The fracture load of chemically strengthened glass with ion exchange at 435 °C-8 h showed an increase of ~ 4.4 times that of untreated glass (raw glass), and it was selected as the optimum process conditions. The number of broken pieces was increased by increasing flexural strength, and smaller pieces were obtained with a great deal of branching. The air side always has greater compressive stress than the tin side. The maximum hardness value was reached with ion exchange at 435 °C for 12 h on a tin surface was 8.25 GPa with an increase of ~ 18% with respect to the raw glass. The crack resistance of chemically tempered glasses showed an increase in the range of 410–1290% and 241–1895% for air and tin surfaces, respectively. According to the AFM analysis, surface roughness of the samples after ion exchange did not change dramatically. SEM-EDS analysis revealed that the surface potassium concentration and diffusion depth increase with temperature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical tempering</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ion exchange</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soda-lime float glass</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical strength</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Indentation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compressive stress</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sarıgüzel, Meryem</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Özdemir Yanık, Melis Can</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Günay, Esin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Usta, Metin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Öztürk, Yusuf</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the Australian Ceramic Society</subfield><subfield code="d">[Singapore] : Springer Singapore, 2007</subfield><subfield code="g">56(2019), 1 vom: 13. Juni, Seite 185-201</subfield><subfield code="w">(DE-627)87564290X</subfield><subfield code="w">(DE-600)2878768-7</subfield><subfield code="x">2510-1579</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:13</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:185-201</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s41779-019-00375-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">13</subfield><subfield code="c">06</subfield><subfield code="h">185-201</subfield></datafield></record></collection>
|
score |
7.400943 |