Evaluation of three artificial diets in the culture of tropical edible frog Hoplobatrachus occipitalis (Günther, 1858) from tadpole stage to full metamorphosis
Background The consumption of edible frogs caught mainly from the wild is on the rise and their population declining. A challenge to frog farming is the acceptability of artificial diets by frogs. Three artificial diets for the culture of a tropical edible frog Hoplobatrachus occipitalis from tadpol...
Ausführliche Beschreibung
Autor*in: |
Mustapha, Moshood K. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: The journal of basic and applied zoology - Berlin : Springer, 2012, 79(2018), 1 vom: 23. Okt. |
---|---|
Übergeordnetes Werk: |
volume:79 ; year:2018 ; number:1 ; day:23 ; month:10 |
Links: |
---|
DOI / URN: |
10.1186/s41936-018-0055-1 |
---|
Katalog-ID: |
SPR038345455 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR038345455 | ||
003 | DE-627 | ||
005 | 20230328201806.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s41936-018-0055-1 |2 doi | |
035 | |a (DE-627)SPR038345455 | ||
035 | |a (SPR)s41936-018-0055-1-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Mustapha, Moshood K. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evaluation of three artificial diets in the culture of tropical edible frog Hoplobatrachus occipitalis (Günther, 1858) from tadpole stage to full metamorphosis |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2018 | ||
520 | |a Background The consumption of edible frogs caught mainly from the wild is on the rise and their population declining. A challenge to frog farming is the acceptability of artificial diets by frogs. Three artificial diets for the culture of a tropical edible frog Hoplobatrachus occipitalis from tadpole stage to full metamorphosis were evaluated. One hundred eighty Hoplobatrachus occipitalis tadpoles (average length and weight of 5.8 cm ± 0.1 and 1.90+ g ± 0.1) were distributed into three experimental tanks with 60-L water capacity each, renewed through a flow-through system. The tadpoles were fed twice daily at 10% of body mass for 112 days with duckweed, pawpaw leaf, and Coppens fish feed. Water quality parameters and proximate composition of the feeds were determined. Results Tadpoles fed with duckweed produced the highest percentage weight gained, specific growth rate, feed intake, and efficient food conversion, with mortality of 10%, survival of 90%, and metamorphosis rate of 100%. This was followed by tadpoles fed with pawpaw leaf and those fed with fish feed. Mortality in these two groups was 15%, survival 85%, and metamorphosis rate 98%. Water quality in the tanks was within the ranges optimal for the growth and survival of the tadpoles. The highest growth percentage recorded in tadpoles fed duckweed was due to the high percentage of crude protein in the feed, which was highly digestible and absorbable by the tadpoles. The duckweed suits the herbivorous feeding of the tadpoles which converted the feed to high biomass. A similar trend was observed for pawpaw leaf, and its growth performance as compared to duckweed was due to its low protein content. The lowest growth performance showed in tadpoles fed with Coppens feed in spite of its very high crude protein was due to the lower intake of the feed resulting in high FCR, ineffective absorbance, and utilization of the protein in the feed on the account of herbivorous feeding of the tadpoles. Size, pellet form, floating time, and odor of the feed were other factors responsible for the lower growth performance. Conclusion Duckweed is a good artificial diet for the breeding of Hoplobatrachus occipitalis due to its high protein content and acceptability by the species. | ||
650 | 4 | |a Tadpole |7 (dpeaa)DE-He213 | |
650 | 4 | |a Metamorphosis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Duckweed |7 (dpeaa)DE-He213 | |
650 | 4 | |a Pawpaw leaf |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fish feed |7 (dpeaa)DE-He213 | |
700 | 1 | |a Bello, Shukurat O. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The journal of basic and applied zoology |d Berlin : Springer, 2012 |g 79(2018), 1 vom: 23. Okt. |w (DE-627)749498285 |w (DE-600)2718645-3 |x 2090-990X |7 nnns |
773 | 1 | 8 | |g volume:79 |g year:2018 |g number:1 |g day:23 |g month:10 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s41936-018-0055-1 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 79 |j 2018 |e 1 |b 23 |c 10 |
author_variant |
m k m mk mkm s o b so sob |
---|---|
matchkey_str |
article:2090990X:2018----::vlainfheatfcadesnhcluefrpcldbergolbtahsciiaigte15 |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1186/s41936-018-0055-1 doi (DE-627)SPR038345455 (SPR)s41936-018-0055-1-e DE-627 ger DE-627 rakwb eng Mustapha, Moshood K. verfasserin aut Evaluation of three artificial diets in the culture of tropical edible frog Hoplobatrachus occipitalis (Günther, 1858) from tadpole stage to full metamorphosis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Background The consumption of edible frogs caught mainly from the wild is on the rise and their population declining. A challenge to frog farming is the acceptability of artificial diets by frogs. Three artificial diets for the culture of a tropical edible frog Hoplobatrachus occipitalis from tadpole stage to full metamorphosis were evaluated. One hundred eighty Hoplobatrachus occipitalis tadpoles (average length and weight of 5.8 cm ± 0.1 and 1.90+ g ± 0.1) were distributed into three experimental tanks with 60-L water capacity each, renewed through a flow-through system. The tadpoles were fed twice daily at 10% of body mass for 112 days with duckweed, pawpaw leaf, and Coppens fish feed. Water quality parameters and proximate composition of the feeds were determined. Results Tadpoles fed with duckweed produced the highest percentage weight gained, specific growth rate, feed intake, and efficient food conversion, with mortality of 10%, survival of 90%, and metamorphosis rate of 100%. This was followed by tadpoles fed with pawpaw leaf and those fed with fish feed. Mortality in these two groups was 15%, survival 85%, and metamorphosis rate 98%. Water quality in the tanks was within the ranges optimal for the growth and survival of the tadpoles. The highest growth percentage recorded in tadpoles fed duckweed was due to the high percentage of crude protein in the feed, which was highly digestible and absorbable by the tadpoles. The duckweed suits the herbivorous feeding of the tadpoles which converted the feed to high biomass. A similar trend was observed for pawpaw leaf, and its growth performance as compared to duckweed was due to its low protein content. The lowest growth performance showed in tadpoles fed with Coppens feed in spite of its very high crude protein was due to the lower intake of the feed resulting in high FCR, ineffective absorbance, and utilization of the protein in the feed on the account of herbivorous feeding of the tadpoles. Size, pellet form, floating time, and odor of the feed were other factors responsible for the lower growth performance. Conclusion Duckweed is a good artificial diet for the breeding of Hoplobatrachus occipitalis due to its high protein content and acceptability by the species. Tadpole (dpeaa)DE-He213 Metamorphosis (dpeaa)DE-He213 Duckweed (dpeaa)DE-He213 Pawpaw leaf (dpeaa)DE-He213 Fish feed (dpeaa)DE-He213 Bello, Shukurat O. aut Enthalten in The journal of basic and applied zoology Berlin : Springer, 2012 79(2018), 1 vom: 23. Okt. (DE-627)749498285 (DE-600)2718645-3 2090-990X nnns volume:79 year:2018 number:1 day:23 month:10 https://dx.doi.org/10.1186/s41936-018-0055-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 79 2018 1 23 10 |
spelling |
10.1186/s41936-018-0055-1 doi (DE-627)SPR038345455 (SPR)s41936-018-0055-1-e DE-627 ger DE-627 rakwb eng Mustapha, Moshood K. verfasserin aut Evaluation of three artificial diets in the culture of tropical edible frog Hoplobatrachus occipitalis (Günther, 1858) from tadpole stage to full metamorphosis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Background The consumption of edible frogs caught mainly from the wild is on the rise and their population declining. A challenge to frog farming is the acceptability of artificial diets by frogs. Three artificial diets for the culture of a tropical edible frog Hoplobatrachus occipitalis from tadpole stage to full metamorphosis were evaluated. One hundred eighty Hoplobatrachus occipitalis tadpoles (average length and weight of 5.8 cm ± 0.1 and 1.90+ g ± 0.1) were distributed into three experimental tanks with 60-L water capacity each, renewed through a flow-through system. The tadpoles were fed twice daily at 10% of body mass for 112 days with duckweed, pawpaw leaf, and Coppens fish feed. Water quality parameters and proximate composition of the feeds were determined. Results Tadpoles fed with duckweed produced the highest percentage weight gained, specific growth rate, feed intake, and efficient food conversion, with mortality of 10%, survival of 90%, and metamorphosis rate of 100%. This was followed by tadpoles fed with pawpaw leaf and those fed with fish feed. Mortality in these two groups was 15%, survival 85%, and metamorphosis rate 98%. Water quality in the tanks was within the ranges optimal for the growth and survival of the tadpoles. The highest growth percentage recorded in tadpoles fed duckweed was due to the high percentage of crude protein in the feed, which was highly digestible and absorbable by the tadpoles. The duckweed suits the herbivorous feeding of the tadpoles which converted the feed to high biomass. A similar trend was observed for pawpaw leaf, and its growth performance as compared to duckweed was due to its low protein content. The lowest growth performance showed in tadpoles fed with Coppens feed in spite of its very high crude protein was due to the lower intake of the feed resulting in high FCR, ineffective absorbance, and utilization of the protein in the feed on the account of herbivorous feeding of the tadpoles. Size, pellet form, floating time, and odor of the feed were other factors responsible for the lower growth performance. Conclusion Duckweed is a good artificial diet for the breeding of Hoplobatrachus occipitalis due to its high protein content and acceptability by the species. Tadpole (dpeaa)DE-He213 Metamorphosis (dpeaa)DE-He213 Duckweed (dpeaa)DE-He213 Pawpaw leaf (dpeaa)DE-He213 Fish feed (dpeaa)DE-He213 Bello, Shukurat O. aut Enthalten in The journal of basic and applied zoology Berlin : Springer, 2012 79(2018), 1 vom: 23. Okt. (DE-627)749498285 (DE-600)2718645-3 2090-990X nnns volume:79 year:2018 number:1 day:23 month:10 https://dx.doi.org/10.1186/s41936-018-0055-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 79 2018 1 23 10 |
allfields_unstemmed |
10.1186/s41936-018-0055-1 doi (DE-627)SPR038345455 (SPR)s41936-018-0055-1-e DE-627 ger DE-627 rakwb eng Mustapha, Moshood K. verfasserin aut Evaluation of three artificial diets in the culture of tropical edible frog Hoplobatrachus occipitalis (Günther, 1858) from tadpole stage to full metamorphosis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Background The consumption of edible frogs caught mainly from the wild is on the rise and their population declining. A challenge to frog farming is the acceptability of artificial diets by frogs. Three artificial diets for the culture of a tropical edible frog Hoplobatrachus occipitalis from tadpole stage to full metamorphosis were evaluated. One hundred eighty Hoplobatrachus occipitalis tadpoles (average length and weight of 5.8 cm ± 0.1 and 1.90+ g ± 0.1) were distributed into three experimental tanks with 60-L water capacity each, renewed through a flow-through system. The tadpoles were fed twice daily at 10% of body mass for 112 days with duckweed, pawpaw leaf, and Coppens fish feed. Water quality parameters and proximate composition of the feeds were determined. Results Tadpoles fed with duckweed produced the highest percentage weight gained, specific growth rate, feed intake, and efficient food conversion, with mortality of 10%, survival of 90%, and metamorphosis rate of 100%. This was followed by tadpoles fed with pawpaw leaf and those fed with fish feed. Mortality in these two groups was 15%, survival 85%, and metamorphosis rate 98%. Water quality in the tanks was within the ranges optimal for the growth and survival of the tadpoles. The highest growth percentage recorded in tadpoles fed duckweed was due to the high percentage of crude protein in the feed, which was highly digestible and absorbable by the tadpoles. The duckweed suits the herbivorous feeding of the tadpoles which converted the feed to high biomass. A similar trend was observed for pawpaw leaf, and its growth performance as compared to duckweed was due to its low protein content. The lowest growth performance showed in tadpoles fed with Coppens feed in spite of its very high crude protein was due to the lower intake of the feed resulting in high FCR, ineffective absorbance, and utilization of the protein in the feed on the account of herbivorous feeding of the tadpoles. Size, pellet form, floating time, and odor of the feed were other factors responsible for the lower growth performance. Conclusion Duckweed is a good artificial diet for the breeding of Hoplobatrachus occipitalis due to its high protein content and acceptability by the species. Tadpole (dpeaa)DE-He213 Metamorphosis (dpeaa)DE-He213 Duckweed (dpeaa)DE-He213 Pawpaw leaf (dpeaa)DE-He213 Fish feed (dpeaa)DE-He213 Bello, Shukurat O. aut Enthalten in The journal of basic and applied zoology Berlin : Springer, 2012 79(2018), 1 vom: 23. Okt. (DE-627)749498285 (DE-600)2718645-3 2090-990X nnns volume:79 year:2018 number:1 day:23 month:10 https://dx.doi.org/10.1186/s41936-018-0055-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 79 2018 1 23 10 |
allfieldsGer |
10.1186/s41936-018-0055-1 doi (DE-627)SPR038345455 (SPR)s41936-018-0055-1-e DE-627 ger DE-627 rakwb eng Mustapha, Moshood K. verfasserin aut Evaluation of three artificial diets in the culture of tropical edible frog Hoplobatrachus occipitalis (Günther, 1858) from tadpole stage to full metamorphosis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Background The consumption of edible frogs caught mainly from the wild is on the rise and their population declining. A challenge to frog farming is the acceptability of artificial diets by frogs. Three artificial diets for the culture of a tropical edible frog Hoplobatrachus occipitalis from tadpole stage to full metamorphosis were evaluated. One hundred eighty Hoplobatrachus occipitalis tadpoles (average length and weight of 5.8 cm ± 0.1 and 1.90+ g ± 0.1) were distributed into three experimental tanks with 60-L water capacity each, renewed through a flow-through system. The tadpoles were fed twice daily at 10% of body mass for 112 days with duckweed, pawpaw leaf, and Coppens fish feed. Water quality parameters and proximate composition of the feeds were determined. Results Tadpoles fed with duckweed produced the highest percentage weight gained, specific growth rate, feed intake, and efficient food conversion, with mortality of 10%, survival of 90%, and metamorphosis rate of 100%. This was followed by tadpoles fed with pawpaw leaf and those fed with fish feed. Mortality in these two groups was 15%, survival 85%, and metamorphosis rate 98%. Water quality in the tanks was within the ranges optimal for the growth and survival of the tadpoles. The highest growth percentage recorded in tadpoles fed duckweed was due to the high percentage of crude protein in the feed, which was highly digestible and absorbable by the tadpoles. The duckweed suits the herbivorous feeding of the tadpoles which converted the feed to high biomass. A similar trend was observed for pawpaw leaf, and its growth performance as compared to duckweed was due to its low protein content. The lowest growth performance showed in tadpoles fed with Coppens feed in spite of its very high crude protein was due to the lower intake of the feed resulting in high FCR, ineffective absorbance, and utilization of the protein in the feed on the account of herbivorous feeding of the tadpoles. Size, pellet form, floating time, and odor of the feed were other factors responsible for the lower growth performance. Conclusion Duckweed is a good artificial diet for the breeding of Hoplobatrachus occipitalis due to its high protein content and acceptability by the species. Tadpole (dpeaa)DE-He213 Metamorphosis (dpeaa)DE-He213 Duckweed (dpeaa)DE-He213 Pawpaw leaf (dpeaa)DE-He213 Fish feed (dpeaa)DE-He213 Bello, Shukurat O. aut Enthalten in The journal of basic and applied zoology Berlin : Springer, 2012 79(2018), 1 vom: 23. Okt. (DE-627)749498285 (DE-600)2718645-3 2090-990X nnns volume:79 year:2018 number:1 day:23 month:10 https://dx.doi.org/10.1186/s41936-018-0055-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 79 2018 1 23 10 |
allfieldsSound |
10.1186/s41936-018-0055-1 doi (DE-627)SPR038345455 (SPR)s41936-018-0055-1-e DE-627 ger DE-627 rakwb eng Mustapha, Moshood K. verfasserin aut Evaluation of three artificial diets in the culture of tropical edible frog Hoplobatrachus occipitalis (Günther, 1858) from tadpole stage to full metamorphosis 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2018 Background The consumption of edible frogs caught mainly from the wild is on the rise and their population declining. A challenge to frog farming is the acceptability of artificial diets by frogs. Three artificial diets for the culture of a tropical edible frog Hoplobatrachus occipitalis from tadpole stage to full metamorphosis were evaluated. One hundred eighty Hoplobatrachus occipitalis tadpoles (average length and weight of 5.8 cm ± 0.1 and 1.90+ g ± 0.1) were distributed into three experimental tanks with 60-L water capacity each, renewed through a flow-through system. The tadpoles were fed twice daily at 10% of body mass for 112 days with duckweed, pawpaw leaf, and Coppens fish feed. Water quality parameters and proximate composition of the feeds were determined. Results Tadpoles fed with duckweed produced the highest percentage weight gained, specific growth rate, feed intake, and efficient food conversion, with mortality of 10%, survival of 90%, and metamorphosis rate of 100%. This was followed by tadpoles fed with pawpaw leaf and those fed with fish feed. Mortality in these two groups was 15%, survival 85%, and metamorphosis rate 98%. Water quality in the tanks was within the ranges optimal for the growth and survival of the tadpoles. The highest growth percentage recorded in tadpoles fed duckweed was due to the high percentage of crude protein in the feed, which was highly digestible and absorbable by the tadpoles. The duckweed suits the herbivorous feeding of the tadpoles which converted the feed to high biomass. A similar trend was observed for pawpaw leaf, and its growth performance as compared to duckweed was due to its low protein content. The lowest growth performance showed in tadpoles fed with Coppens feed in spite of its very high crude protein was due to the lower intake of the feed resulting in high FCR, ineffective absorbance, and utilization of the protein in the feed on the account of herbivorous feeding of the tadpoles. Size, pellet form, floating time, and odor of the feed were other factors responsible for the lower growth performance. Conclusion Duckweed is a good artificial diet for the breeding of Hoplobatrachus occipitalis due to its high protein content and acceptability by the species. Tadpole (dpeaa)DE-He213 Metamorphosis (dpeaa)DE-He213 Duckweed (dpeaa)DE-He213 Pawpaw leaf (dpeaa)DE-He213 Fish feed (dpeaa)DE-He213 Bello, Shukurat O. aut Enthalten in The journal of basic and applied zoology Berlin : Springer, 2012 79(2018), 1 vom: 23. Okt. (DE-627)749498285 (DE-600)2718645-3 2090-990X nnns volume:79 year:2018 number:1 day:23 month:10 https://dx.doi.org/10.1186/s41936-018-0055-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 79 2018 1 23 10 |
language |
English |
source |
Enthalten in The journal of basic and applied zoology 79(2018), 1 vom: 23. Okt. volume:79 year:2018 number:1 day:23 month:10 |
sourceStr |
Enthalten in The journal of basic and applied zoology 79(2018), 1 vom: 23. Okt. volume:79 year:2018 number:1 day:23 month:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Tadpole Metamorphosis Duckweed Pawpaw leaf Fish feed |
isfreeaccess_bool |
true |
container_title |
The journal of basic and applied zoology |
authorswithroles_txt_mv |
Mustapha, Moshood K. @@aut@@ Bello, Shukurat O. @@aut@@ |
publishDateDaySort_date |
2018-10-23T00:00:00Z |
hierarchy_top_id |
749498285 |
id |
SPR038345455 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR038345455</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328201806.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s41936-018-0055-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR038345455</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s41936-018-0055-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mustapha, Moshood K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of three artificial diets in the culture of tropical edible frog Hoplobatrachus occipitalis (Günther, 1858) from tadpole stage to full metamorphosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The consumption of edible frogs caught mainly from the wild is on the rise and their population declining. A challenge to frog farming is the acceptability of artificial diets by frogs. Three artificial diets for the culture of a tropical edible frog Hoplobatrachus occipitalis from tadpole stage to full metamorphosis were evaluated. One hundred eighty Hoplobatrachus occipitalis tadpoles (average length and weight of 5.8 cm ± 0.1 and 1.90+ g ± 0.1) were distributed into three experimental tanks with 60-L water capacity each, renewed through a flow-through system. The tadpoles were fed twice daily at 10% of body mass for 112 days with duckweed, pawpaw leaf, and Coppens fish feed. Water quality parameters and proximate composition of the feeds were determined. Results Tadpoles fed with duckweed produced the highest percentage weight gained, specific growth rate, feed intake, and efficient food conversion, with mortality of 10%, survival of 90%, and metamorphosis rate of 100%. This was followed by tadpoles fed with pawpaw leaf and those fed with fish feed. Mortality in these two groups was 15%, survival 85%, and metamorphosis rate 98%. Water quality in the tanks was within the ranges optimal for the growth and survival of the tadpoles. The highest growth percentage recorded in tadpoles fed duckweed was due to the high percentage of crude protein in the feed, which was highly digestible and absorbable by the tadpoles. The duckweed suits the herbivorous feeding of the tadpoles which converted the feed to high biomass. A similar trend was observed for pawpaw leaf, and its growth performance as compared to duckweed was due to its low protein content. The lowest growth performance showed in tadpoles fed with Coppens feed in spite of its very high crude protein was due to the lower intake of the feed resulting in high FCR, ineffective absorbance, and utilization of the protein in the feed on the account of herbivorous feeding of the tadpoles. Size, pellet form, floating time, and odor of the feed were other factors responsible for the lower growth performance. Conclusion Duckweed is a good artificial diet for the breeding of Hoplobatrachus occipitalis due to its high protein content and acceptability by the species.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tadpole</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metamorphosis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Duckweed</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pawpaw leaf</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fish feed</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bello, Shukurat O.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of basic and applied zoology</subfield><subfield code="d">Berlin : Springer, 2012</subfield><subfield code="g">79(2018), 1 vom: 23. Okt.</subfield><subfield code="w">(DE-627)749498285</subfield><subfield code="w">(DE-600)2718645-3</subfield><subfield code="x">2090-990X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:79</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:23</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s41936-018-0055-1</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">79</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">23</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
author |
Mustapha, Moshood K. |
spellingShingle |
Mustapha, Moshood K. misc Tadpole misc Metamorphosis misc Duckweed misc Pawpaw leaf misc Fish feed Evaluation of three artificial diets in the culture of tropical edible frog Hoplobatrachus occipitalis (Günther, 1858) from tadpole stage to full metamorphosis |
authorStr |
Mustapha, Moshood K. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)749498285 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2090-990X |
topic_title |
Evaluation of three artificial diets in the culture of tropical edible frog Hoplobatrachus occipitalis (Günther, 1858) from tadpole stage to full metamorphosis Tadpole (dpeaa)DE-He213 Metamorphosis (dpeaa)DE-He213 Duckweed (dpeaa)DE-He213 Pawpaw leaf (dpeaa)DE-He213 Fish feed (dpeaa)DE-He213 |
topic |
misc Tadpole misc Metamorphosis misc Duckweed misc Pawpaw leaf misc Fish feed |
topic_unstemmed |
misc Tadpole misc Metamorphosis misc Duckweed misc Pawpaw leaf misc Fish feed |
topic_browse |
misc Tadpole misc Metamorphosis misc Duckweed misc Pawpaw leaf misc Fish feed |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The journal of basic and applied zoology |
hierarchy_parent_id |
749498285 |
hierarchy_top_title |
The journal of basic and applied zoology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)749498285 (DE-600)2718645-3 |
title |
Evaluation of three artificial diets in the culture of tropical edible frog Hoplobatrachus occipitalis (Günther, 1858) from tadpole stage to full metamorphosis |
ctrlnum |
(DE-627)SPR038345455 (SPR)s41936-018-0055-1-e |
title_full |
Evaluation of three artificial diets in the culture of tropical edible frog Hoplobatrachus occipitalis (Günther, 1858) from tadpole stage to full metamorphosis |
author_sort |
Mustapha, Moshood K. |
journal |
The journal of basic and applied zoology |
journalStr |
The journal of basic and applied zoology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Mustapha, Moshood K. Bello, Shukurat O. |
container_volume |
79 |
format_se |
Elektronische Aufsätze |
author-letter |
Mustapha, Moshood K. |
doi_str_mv |
10.1186/s41936-018-0055-1 |
title_sort |
evaluation of three artificial diets in the culture of tropical edible frog hoplobatrachus occipitalis (günther, 1858) from tadpole stage to full metamorphosis |
title_auth |
Evaluation of three artificial diets in the culture of tropical edible frog Hoplobatrachus occipitalis (Günther, 1858) from tadpole stage to full metamorphosis |
abstract |
Background The consumption of edible frogs caught mainly from the wild is on the rise and their population declining. A challenge to frog farming is the acceptability of artificial diets by frogs. Three artificial diets for the culture of a tropical edible frog Hoplobatrachus occipitalis from tadpole stage to full metamorphosis were evaluated. One hundred eighty Hoplobatrachus occipitalis tadpoles (average length and weight of 5.8 cm ± 0.1 and 1.90+ g ± 0.1) were distributed into three experimental tanks with 60-L water capacity each, renewed through a flow-through system. The tadpoles were fed twice daily at 10% of body mass for 112 days with duckweed, pawpaw leaf, and Coppens fish feed. Water quality parameters and proximate composition of the feeds were determined. Results Tadpoles fed with duckweed produced the highest percentage weight gained, specific growth rate, feed intake, and efficient food conversion, with mortality of 10%, survival of 90%, and metamorphosis rate of 100%. This was followed by tadpoles fed with pawpaw leaf and those fed with fish feed. Mortality in these two groups was 15%, survival 85%, and metamorphosis rate 98%. Water quality in the tanks was within the ranges optimal for the growth and survival of the tadpoles. The highest growth percentage recorded in tadpoles fed duckweed was due to the high percentage of crude protein in the feed, which was highly digestible and absorbable by the tadpoles. The duckweed suits the herbivorous feeding of the tadpoles which converted the feed to high biomass. A similar trend was observed for pawpaw leaf, and its growth performance as compared to duckweed was due to its low protein content. The lowest growth performance showed in tadpoles fed with Coppens feed in spite of its very high crude protein was due to the lower intake of the feed resulting in high FCR, ineffective absorbance, and utilization of the protein in the feed on the account of herbivorous feeding of the tadpoles. Size, pellet form, floating time, and odor of the feed were other factors responsible for the lower growth performance. Conclusion Duckweed is a good artificial diet for the breeding of Hoplobatrachus occipitalis due to its high protein content and acceptability by the species. © The Author(s) 2018 |
abstractGer |
Background The consumption of edible frogs caught mainly from the wild is on the rise and their population declining. A challenge to frog farming is the acceptability of artificial diets by frogs. Three artificial diets for the culture of a tropical edible frog Hoplobatrachus occipitalis from tadpole stage to full metamorphosis were evaluated. One hundred eighty Hoplobatrachus occipitalis tadpoles (average length and weight of 5.8 cm ± 0.1 and 1.90+ g ± 0.1) were distributed into three experimental tanks with 60-L water capacity each, renewed through a flow-through system. The tadpoles were fed twice daily at 10% of body mass for 112 days with duckweed, pawpaw leaf, and Coppens fish feed. Water quality parameters and proximate composition of the feeds were determined. Results Tadpoles fed with duckweed produced the highest percentage weight gained, specific growth rate, feed intake, and efficient food conversion, with mortality of 10%, survival of 90%, and metamorphosis rate of 100%. This was followed by tadpoles fed with pawpaw leaf and those fed with fish feed. Mortality in these two groups was 15%, survival 85%, and metamorphosis rate 98%. Water quality in the tanks was within the ranges optimal for the growth and survival of the tadpoles. The highest growth percentage recorded in tadpoles fed duckweed was due to the high percentage of crude protein in the feed, which was highly digestible and absorbable by the tadpoles. The duckweed suits the herbivorous feeding of the tadpoles which converted the feed to high biomass. A similar trend was observed for pawpaw leaf, and its growth performance as compared to duckweed was due to its low protein content. The lowest growth performance showed in tadpoles fed with Coppens feed in spite of its very high crude protein was due to the lower intake of the feed resulting in high FCR, ineffective absorbance, and utilization of the protein in the feed on the account of herbivorous feeding of the tadpoles. Size, pellet form, floating time, and odor of the feed were other factors responsible for the lower growth performance. Conclusion Duckweed is a good artificial diet for the breeding of Hoplobatrachus occipitalis due to its high protein content and acceptability by the species. © The Author(s) 2018 |
abstract_unstemmed |
Background The consumption of edible frogs caught mainly from the wild is on the rise and their population declining. A challenge to frog farming is the acceptability of artificial diets by frogs. Three artificial diets for the culture of a tropical edible frog Hoplobatrachus occipitalis from tadpole stage to full metamorphosis were evaluated. One hundred eighty Hoplobatrachus occipitalis tadpoles (average length and weight of 5.8 cm ± 0.1 and 1.90+ g ± 0.1) were distributed into three experimental tanks with 60-L water capacity each, renewed through a flow-through system. The tadpoles were fed twice daily at 10% of body mass for 112 days with duckweed, pawpaw leaf, and Coppens fish feed. Water quality parameters and proximate composition of the feeds were determined. Results Tadpoles fed with duckweed produced the highest percentage weight gained, specific growth rate, feed intake, and efficient food conversion, with mortality of 10%, survival of 90%, and metamorphosis rate of 100%. This was followed by tadpoles fed with pawpaw leaf and those fed with fish feed. Mortality in these two groups was 15%, survival 85%, and metamorphosis rate 98%. Water quality in the tanks was within the ranges optimal for the growth and survival of the tadpoles. The highest growth percentage recorded in tadpoles fed duckweed was due to the high percentage of crude protein in the feed, which was highly digestible and absorbable by the tadpoles. The duckweed suits the herbivorous feeding of the tadpoles which converted the feed to high biomass. A similar trend was observed for pawpaw leaf, and its growth performance as compared to duckweed was due to its low protein content. The lowest growth performance showed in tadpoles fed with Coppens feed in spite of its very high crude protein was due to the lower intake of the feed resulting in high FCR, ineffective absorbance, and utilization of the protein in the feed on the account of herbivorous feeding of the tadpoles. Size, pellet form, floating time, and odor of the feed were other factors responsible for the lower growth performance. Conclusion Duckweed is a good artificial diet for the breeding of Hoplobatrachus occipitalis due to its high protein content and acceptability by the species. © The Author(s) 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Evaluation of three artificial diets in the culture of tropical edible frog Hoplobatrachus occipitalis (Günther, 1858) from tadpole stage to full metamorphosis |
url |
https://dx.doi.org/10.1186/s41936-018-0055-1 |
remote_bool |
true |
author2 |
Bello, Shukurat O. |
author2Str |
Bello, Shukurat O. |
ppnlink |
749498285 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s41936-018-0055-1 |
up_date |
2024-07-03T17:32:08.948Z |
_version_ |
1803580005627723776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR038345455</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328201806.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s41936-018-0055-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR038345455</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s41936-018-0055-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mustapha, Moshood K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluation of three artificial diets in the culture of tropical edible frog Hoplobatrachus occipitalis (Günther, 1858) from tadpole stage to full metamorphosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The consumption of edible frogs caught mainly from the wild is on the rise and their population declining. A challenge to frog farming is the acceptability of artificial diets by frogs. Three artificial diets for the culture of a tropical edible frog Hoplobatrachus occipitalis from tadpole stage to full metamorphosis were evaluated. One hundred eighty Hoplobatrachus occipitalis tadpoles (average length and weight of 5.8 cm ± 0.1 and 1.90+ g ± 0.1) were distributed into three experimental tanks with 60-L water capacity each, renewed through a flow-through system. The tadpoles were fed twice daily at 10% of body mass for 112 days with duckweed, pawpaw leaf, and Coppens fish feed. Water quality parameters and proximate composition of the feeds were determined. Results Tadpoles fed with duckweed produced the highest percentage weight gained, specific growth rate, feed intake, and efficient food conversion, with mortality of 10%, survival of 90%, and metamorphosis rate of 100%. This was followed by tadpoles fed with pawpaw leaf and those fed with fish feed. Mortality in these two groups was 15%, survival 85%, and metamorphosis rate 98%. Water quality in the tanks was within the ranges optimal for the growth and survival of the tadpoles. The highest growth percentage recorded in tadpoles fed duckweed was due to the high percentage of crude protein in the feed, which was highly digestible and absorbable by the tadpoles. The duckweed suits the herbivorous feeding of the tadpoles which converted the feed to high biomass. A similar trend was observed for pawpaw leaf, and its growth performance as compared to duckweed was due to its low protein content. The lowest growth performance showed in tadpoles fed with Coppens feed in spite of its very high crude protein was due to the lower intake of the feed resulting in high FCR, ineffective absorbance, and utilization of the protein in the feed on the account of herbivorous feeding of the tadpoles. Size, pellet form, floating time, and odor of the feed were other factors responsible for the lower growth performance. Conclusion Duckweed is a good artificial diet for the breeding of Hoplobatrachus occipitalis due to its high protein content and acceptability by the species.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tadpole</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metamorphosis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Duckweed</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pawpaw leaf</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fish feed</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bello, Shukurat O.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of basic and applied zoology</subfield><subfield code="d">Berlin : Springer, 2012</subfield><subfield code="g">79(2018), 1 vom: 23. Okt.</subfield><subfield code="w">(DE-627)749498285</subfield><subfield code="w">(DE-600)2718645-3</subfield><subfield code="x">2090-990X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:79</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:23</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s41936-018-0055-1</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">79</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">23</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
score |
7.4004736 |