Heterogeneous catalysts for catalytic $ CO_{2} $ conversion into value-added chemicals
Abstract As climate change becomes increasingly evident, reducing greenhouse gases including $ CO_{2} $ has received growing attention. Because $ CO_{2} $ is thermodynamically very stable, its conversion into value-added chemicals such as CO, $ CH_{4} $, or $ C_{2} %$ H_{4} $ is difficult, and devel...
Ausführliche Beschreibung
Autor*in: |
Whang, Ho Seok [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC chemical engineering - [London] : BioMed Central, 2019, 1(2019), 1 vom: 27. März |
---|---|
Übergeordnetes Werk: |
volume:1 ; year:2019 ; number:1 ; day:27 ; month:03 |
Links: |
---|
DOI / URN: |
10.1186/s42480-019-0007-7 |
---|
Katalog-ID: |
SPR038603535 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR038603535 | ||
003 | DE-627 | ||
005 | 20230519214326.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s42480-019-0007-7 |2 doi | |
035 | |a (DE-627)SPR038603535 | ||
035 | |a (SPR)s42480-019-0007-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Whang, Ho Seok |e verfasserin |4 aut | |
245 | 1 | 0 | |a Heterogeneous catalysts for catalytic $ CO_{2} $ conversion into value-added chemicals |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2019 | ||
520 | |a Abstract As climate change becomes increasingly evident, reducing greenhouse gases including $ CO_{2} $ has received growing attention. Because $ CO_{2} $ is thermodynamically very stable, its conversion into value-added chemicals such as CO, $ CH_{4} $, or $ C_{2} %$ H_{4} $ is difficult, and developing efficient catalysts for $ CO_{2} $ conversion is important work. $ CO_{2} $ can be converted using the gas-phase reaction, liquid-phase reaction, photocatalytic reaction, or electrochemical reaction. The gas-phase reaction includes the dry reforming of methane using $ CO_{2} $ and $ CH_{4} $, or $ CO_{2} $ hydrogenation using $ CO_{2} $ and $ H_{2} $. The liquid-phase reaction includes formic acid formation from pressurized $ CO_{2} $ and $ H_{2} $ in aqueous solution. The photocatalytic reaction is commonly known as artificial photo-synthesis, and produces chemicals from $ CO_{2} $ and $ H_{2} $O under light irradiation. The electrochemical reaction can produce chemicals from $ CO_{2} $ and $ H_{2} $O using electricity. In this review, the heterogeneous catalysts used for the gas-phase reaction or electrochemical reactions are discussed, because the liquid-phase reaction and photocatalytic reaction typically suffer from low productivity and poor durability. Because the gas-phase reaction requires a high reaction temperature of > 600 °C, obtaining good durability is important. The strategies for designing catalysts with good activity and durability will be introduced. Various materials have been tested for electrochemical conversion, and it has been shown that specific metals can produce specific products, such as Au or Ag for CO, Sn or Bi for formate, Cu for $ C_{2} %$ H_{4} $. Other unconventional catalysts for electrochemical $ CO_{2} $ reduction are also introduced. | ||
650 | 4 | |a Carbon dioxide |7 (dpeaa)DE-He213 | |
650 | 4 | |a Dry reforming |7 (dpeaa)DE-He213 | |
650 | 4 | |a Reverse water-shift reaction |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hydrogenation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Electrochemical reduction |7 (dpeaa)DE-He213 | |
700 | 1 | |a Lim, Jinkyu |4 aut | |
700 | 1 | |a Choi, Min Suk |4 aut | |
700 | 1 | |a Lee, Jonghyeok |4 aut | |
700 | 1 | |a Lee, Hyunjoo |0 (orcid)0000-0002-4538-9086 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC chemical engineering |d [London] : BioMed Central, 2019 |g 1(2019), 1 vom: 27. März |w (DE-627)1048331091 |w (DE-600)2960944-6 |x 2524-4175 |7 nnns |
773 | 1 | 8 | |g volume:1 |g year:2019 |g number:1 |g day:27 |g month:03 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s42480-019-0007-7 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 1 |j 2019 |e 1 |b 27 |c 03 |
author_variant |
h s w hs hsw j l jl m s c ms msc j l jl h l hl |
---|---|
matchkey_str |
article:25244175:2019----::eeoeeuctlssoctltco2ovrinn |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1186/s42480-019-0007-7 doi (DE-627)SPR038603535 (SPR)s42480-019-0007-7-e DE-627 ger DE-627 rakwb eng Whang, Ho Seok verfasserin aut Heterogeneous catalysts for catalytic $ CO_{2} $ conversion into value-added chemicals 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2019 Abstract As climate change becomes increasingly evident, reducing greenhouse gases including $ CO_{2} $ has received growing attention. Because $ CO_{2} $ is thermodynamically very stable, its conversion into value-added chemicals such as CO, $ CH_{4} $, or $ C_{2} %$ H_{4} $ is difficult, and developing efficient catalysts for $ CO_{2} $ conversion is important work. $ CO_{2} $ can be converted using the gas-phase reaction, liquid-phase reaction, photocatalytic reaction, or electrochemical reaction. The gas-phase reaction includes the dry reforming of methane using $ CO_{2} $ and $ CH_{4} $, or $ CO_{2} $ hydrogenation using $ CO_{2} $ and $ H_{2} $. The liquid-phase reaction includes formic acid formation from pressurized $ CO_{2} $ and $ H_{2} $ in aqueous solution. The photocatalytic reaction is commonly known as artificial photo-synthesis, and produces chemicals from $ CO_{2} $ and $ H_{2} $O under light irradiation. The electrochemical reaction can produce chemicals from $ CO_{2} $ and $ H_{2} $O using electricity. In this review, the heterogeneous catalysts used for the gas-phase reaction or electrochemical reactions are discussed, because the liquid-phase reaction and photocatalytic reaction typically suffer from low productivity and poor durability. Because the gas-phase reaction requires a high reaction temperature of > 600 °C, obtaining good durability is important. The strategies for designing catalysts with good activity and durability will be introduced. Various materials have been tested for electrochemical conversion, and it has been shown that specific metals can produce specific products, such as Au or Ag for CO, Sn or Bi for formate, Cu for $ C_{2} %$ H_{4} $. Other unconventional catalysts for electrochemical $ CO_{2} $ reduction are also introduced. Carbon dioxide (dpeaa)DE-He213 Dry reforming (dpeaa)DE-He213 Reverse water-shift reaction (dpeaa)DE-He213 Hydrogenation (dpeaa)DE-He213 Electrochemical reduction (dpeaa)DE-He213 Lim, Jinkyu aut Choi, Min Suk aut Lee, Jonghyeok aut Lee, Hyunjoo (orcid)0000-0002-4538-9086 aut Enthalten in BMC chemical engineering [London] : BioMed Central, 2019 1(2019), 1 vom: 27. März (DE-627)1048331091 (DE-600)2960944-6 2524-4175 nnns volume:1 year:2019 number:1 day:27 month:03 https://dx.doi.org/10.1186/s42480-019-0007-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2019 1 27 03 |
spelling |
10.1186/s42480-019-0007-7 doi (DE-627)SPR038603535 (SPR)s42480-019-0007-7-e DE-627 ger DE-627 rakwb eng Whang, Ho Seok verfasserin aut Heterogeneous catalysts for catalytic $ CO_{2} $ conversion into value-added chemicals 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2019 Abstract As climate change becomes increasingly evident, reducing greenhouse gases including $ CO_{2} $ has received growing attention. Because $ CO_{2} $ is thermodynamically very stable, its conversion into value-added chemicals such as CO, $ CH_{4} $, or $ C_{2} %$ H_{4} $ is difficult, and developing efficient catalysts for $ CO_{2} $ conversion is important work. $ CO_{2} $ can be converted using the gas-phase reaction, liquid-phase reaction, photocatalytic reaction, or electrochemical reaction. The gas-phase reaction includes the dry reforming of methane using $ CO_{2} $ and $ CH_{4} $, or $ CO_{2} $ hydrogenation using $ CO_{2} $ and $ H_{2} $. The liquid-phase reaction includes formic acid formation from pressurized $ CO_{2} $ and $ H_{2} $ in aqueous solution. The photocatalytic reaction is commonly known as artificial photo-synthesis, and produces chemicals from $ CO_{2} $ and $ H_{2} $O under light irradiation. The electrochemical reaction can produce chemicals from $ CO_{2} $ and $ H_{2} $O using electricity. In this review, the heterogeneous catalysts used for the gas-phase reaction or electrochemical reactions are discussed, because the liquid-phase reaction and photocatalytic reaction typically suffer from low productivity and poor durability. Because the gas-phase reaction requires a high reaction temperature of > 600 °C, obtaining good durability is important. The strategies for designing catalysts with good activity and durability will be introduced. Various materials have been tested for electrochemical conversion, and it has been shown that specific metals can produce specific products, such as Au or Ag for CO, Sn or Bi for formate, Cu for $ C_{2} %$ H_{4} $. Other unconventional catalysts for electrochemical $ CO_{2} $ reduction are also introduced. Carbon dioxide (dpeaa)DE-He213 Dry reforming (dpeaa)DE-He213 Reverse water-shift reaction (dpeaa)DE-He213 Hydrogenation (dpeaa)DE-He213 Electrochemical reduction (dpeaa)DE-He213 Lim, Jinkyu aut Choi, Min Suk aut Lee, Jonghyeok aut Lee, Hyunjoo (orcid)0000-0002-4538-9086 aut Enthalten in BMC chemical engineering [London] : BioMed Central, 2019 1(2019), 1 vom: 27. März (DE-627)1048331091 (DE-600)2960944-6 2524-4175 nnns volume:1 year:2019 number:1 day:27 month:03 https://dx.doi.org/10.1186/s42480-019-0007-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2019 1 27 03 |
allfields_unstemmed |
10.1186/s42480-019-0007-7 doi (DE-627)SPR038603535 (SPR)s42480-019-0007-7-e DE-627 ger DE-627 rakwb eng Whang, Ho Seok verfasserin aut Heterogeneous catalysts for catalytic $ CO_{2} $ conversion into value-added chemicals 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2019 Abstract As climate change becomes increasingly evident, reducing greenhouse gases including $ CO_{2} $ has received growing attention. Because $ CO_{2} $ is thermodynamically very stable, its conversion into value-added chemicals such as CO, $ CH_{4} $, or $ C_{2} %$ H_{4} $ is difficult, and developing efficient catalysts for $ CO_{2} $ conversion is important work. $ CO_{2} $ can be converted using the gas-phase reaction, liquid-phase reaction, photocatalytic reaction, or electrochemical reaction. The gas-phase reaction includes the dry reforming of methane using $ CO_{2} $ and $ CH_{4} $, or $ CO_{2} $ hydrogenation using $ CO_{2} $ and $ H_{2} $. The liquid-phase reaction includes formic acid formation from pressurized $ CO_{2} $ and $ H_{2} $ in aqueous solution. The photocatalytic reaction is commonly known as artificial photo-synthesis, and produces chemicals from $ CO_{2} $ and $ H_{2} $O under light irradiation. The electrochemical reaction can produce chemicals from $ CO_{2} $ and $ H_{2} $O using electricity. In this review, the heterogeneous catalysts used for the gas-phase reaction or electrochemical reactions are discussed, because the liquid-phase reaction and photocatalytic reaction typically suffer from low productivity and poor durability. Because the gas-phase reaction requires a high reaction temperature of > 600 °C, obtaining good durability is important. The strategies for designing catalysts with good activity and durability will be introduced. Various materials have been tested for electrochemical conversion, and it has been shown that specific metals can produce specific products, such as Au or Ag for CO, Sn or Bi for formate, Cu for $ C_{2} %$ H_{4} $. Other unconventional catalysts for electrochemical $ CO_{2} $ reduction are also introduced. Carbon dioxide (dpeaa)DE-He213 Dry reforming (dpeaa)DE-He213 Reverse water-shift reaction (dpeaa)DE-He213 Hydrogenation (dpeaa)DE-He213 Electrochemical reduction (dpeaa)DE-He213 Lim, Jinkyu aut Choi, Min Suk aut Lee, Jonghyeok aut Lee, Hyunjoo (orcid)0000-0002-4538-9086 aut Enthalten in BMC chemical engineering [London] : BioMed Central, 2019 1(2019), 1 vom: 27. März (DE-627)1048331091 (DE-600)2960944-6 2524-4175 nnns volume:1 year:2019 number:1 day:27 month:03 https://dx.doi.org/10.1186/s42480-019-0007-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2019 1 27 03 |
allfieldsGer |
10.1186/s42480-019-0007-7 doi (DE-627)SPR038603535 (SPR)s42480-019-0007-7-e DE-627 ger DE-627 rakwb eng Whang, Ho Seok verfasserin aut Heterogeneous catalysts for catalytic $ CO_{2} $ conversion into value-added chemicals 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2019 Abstract As climate change becomes increasingly evident, reducing greenhouse gases including $ CO_{2} $ has received growing attention. Because $ CO_{2} $ is thermodynamically very stable, its conversion into value-added chemicals such as CO, $ CH_{4} $, or $ C_{2} %$ H_{4} $ is difficult, and developing efficient catalysts for $ CO_{2} $ conversion is important work. $ CO_{2} $ can be converted using the gas-phase reaction, liquid-phase reaction, photocatalytic reaction, or electrochemical reaction. The gas-phase reaction includes the dry reforming of methane using $ CO_{2} $ and $ CH_{4} $, or $ CO_{2} $ hydrogenation using $ CO_{2} $ and $ H_{2} $. The liquid-phase reaction includes formic acid formation from pressurized $ CO_{2} $ and $ H_{2} $ in aqueous solution. The photocatalytic reaction is commonly known as artificial photo-synthesis, and produces chemicals from $ CO_{2} $ and $ H_{2} $O under light irradiation. The electrochemical reaction can produce chemicals from $ CO_{2} $ and $ H_{2} $O using electricity. In this review, the heterogeneous catalysts used for the gas-phase reaction or electrochemical reactions are discussed, because the liquid-phase reaction and photocatalytic reaction typically suffer from low productivity and poor durability. Because the gas-phase reaction requires a high reaction temperature of > 600 °C, obtaining good durability is important. The strategies for designing catalysts with good activity and durability will be introduced. Various materials have been tested for electrochemical conversion, and it has been shown that specific metals can produce specific products, such as Au or Ag for CO, Sn or Bi for formate, Cu for $ C_{2} %$ H_{4} $. Other unconventional catalysts for electrochemical $ CO_{2} $ reduction are also introduced. Carbon dioxide (dpeaa)DE-He213 Dry reforming (dpeaa)DE-He213 Reverse water-shift reaction (dpeaa)DE-He213 Hydrogenation (dpeaa)DE-He213 Electrochemical reduction (dpeaa)DE-He213 Lim, Jinkyu aut Choi, Min Suk aut Lee, Jonghyeok aut Lee, Hyunjoo (orcid)0000-0002-4538-9086 aut Enthalten in BMC chemical engineering [London] : BioMed Central, 2019 1(2019), 1 vom: 27. März (DE-627)1048331091 (DE-600)2960944-6 2524-4175 nnns volume:1 year:2019 number:1 day:27 month:03 https://dx.doi.org/10.1186/s42480-019-0007-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2019 1 27 03 |
allfieldsSound |
10.1186/s42480-019-0007-7 doi (DE-627)SPR038603535 (SPR)s42480-019-0007-7-e DE-627 ger DE-627 rakwb eng Whang, Ho Seok verfasserin aut Heterogeneous catalysts for catalytic $ CO_{2} $ conversion into value-added chemicals 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2019 Abstract As climate change becomes increasingly evident, reducing greenhouse gases including $ CO_{2} $ has received growing attention. Because $ CO_{2} $ is thermodynamically very stable, its conversion into value-added chemicals such as CO, $ CH_{4} $, or $ C_{2} %$ H_{4} $ is difficult, and developing efficient catalysts for $ CO_{2} $ conversion is important work. $ CO_{2} $ can be converted using the gas-phase reaction, liquid-phase reaction, photocatalytic reaction, or electrochemical reaction. The gas-phase reaction includes the dry reforming of methane using $ CO_{2} $ and $ CH_{4} $, or $ CO_{2} $ hydrogenation using $ CO_{2} $ and $ H_{2} $. The liquid-phase reaction includes formic acid formation from pressurized $ CO_{2} $ and $ H_{2} $ in aqueous solution. The photocatalytic reaction is commonly known as artificial photo-synthesis, and produces chemicals from $ CO_{2} $ and $ H_{2} $O under light irradiation. The electrochemical reaction can produce chemicals from $ CO_{2} $ and $ H_{2} $O using electricity. In this review, the heterogeneous catalysts used for the gas-phase reaction or electrochemical reactions are discussed, because the liquid-phase reaction and photocatalytic reaction typically suffer from low productivity and poor durability. Because the gas-phase reaction requires a high reaction temperature of > 600 °C, obtaining good durability is important. The strategies for designing catalysts with good activity and durability will be introduced. Various materials have been tested for electrochemical conversion, and it has been shown that specific metals can produce specific products, such as Au or Ag for CO, Sn or Bi for formate, Cu for $ C_{2} %$ H_{4} $. Other unconventional catalysts for electrochemical $ CO_{2} $ reduction are also introduced. Carbon dioxide (dpeaa)DE-He213 Dry reforming (dpeaa)DE-He213 Reverse water-shift reaction (dpeaa)DE-He213 Hydrogenation (dpeaa)DE-He213 Electrochemical reduction (dpeaa)DE-He213 Lim, Jinkyu aut Choi, Min Suk aut Lee, Jonghyeok aut Lee, Hyunjoo (orcid)0000-0002-4538-9086 aut Enthalten in BMC chemical engineering [London] : BioMed Central, 2019 1(2019), 1 vom: 27. März (DE-627)1048331091 (DE-600)2960944-6 2524-4175 nnns volume:1 year:2019 number:1 day:27 month:03 https://dx.doi.org/10.1186/s42480-019-0007-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 1 2019 1 27 03 |
language |
English |
source |
Enthalten in BMC chemical engineering 1(2019), 1 vom: 27. März volume:1 year:2019 number:1 day:27 month:03 |
sourceStr |
Enthalten in BMC chemical engineering 1(2019), 1 vom: 27. März volume:1 year:2019 number:1 day:27 month:03 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Carbon dioxide Dry reforming Reverse water-shift reaction Hydrogenation Electrochemical reduction |
isfreeaccess_bool |
true |
container_title |
BMC chemical engineering |
authorswithroles_txt_mv |
Whang, Ho Seok @@aut@@ Lim, Jinkyu @@aut@@ Choi, Min Suk @@aut@@ Lee, Jonghyeok @@aut@@ Lee, Hyunjoo @@aut@@ |
publishDateDaySort_date |
2019-03-27T00:00:00Z |
hierarchy_top_id |
1048331091 |
id |
SPR038603535 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR038603535</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519214326.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s42480-019-0007-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR038603535</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42480-019-0007-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Whang, Ho Seok</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heterogeneous catalysts for catalytic $ CO_{2} $ conversion into value-added chemicals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract As climate change becomes increasingly evident, reducing greenhouse gases including $ CO_{2} $ has received growing attention. Because $ CO_{2} $ is thermodynamically very stable, its conversion into value-added chemicals such as CO, $ CH_{4} $, or $ C_{2} %$ H_{4} $ is difficult, and developing efficient catalysts for $ CO_{2} $ conversion is important work. $ CO_{2} $ can be converted using the gas-phase reaction, liquid-phase reaction, photocatalytic reaction, or electrochemical reaction. The gas-phase reaction includes the dry reforming of methane using $ CO_{2} $ and $ CH_{4} $, or $ CO_{2} $ hydrogenation using $ CO_{2} $ and $ H_{2} $. The liquid-phase reaction includes formic acid formation from pressurized $ CO_{2} $ and $ H_{2} $ in aqueous solution. The photocatalytic reaction is commonly known as artificial photo-synthesis, and produces chemicals from $ CO_{2} $ and $ H_{2} $O under light irradiation. The electrochemical reaction can produce chemicals from $ CO_{2} $ and $ H_{2} $O using electricity. In this review, the heterogeneous catalysts used for the gas-phase reaction or electrochemical reactions are discussed, because the liquid-phase reaction and photocatalytic reaction typically suffer from low productivity and poor durability. Because the gas-phase reaction requires a high reaction temperature of > 600 °C, obtaining good durability is important. The strategies for designing catalysts with good activity and durability will be introduced. Various materials have been tested for electrochemical conversion, and it has been shown that specific metals can produce specific products, such as Au or Ag for CO, Sn or Bi for formate, Cu for $ C_{2} %$ H_{4} $. Other unconventional catalysts for electrochemical $ CO_{2} $ reduction are also introduced.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon dioxide</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dry reforming</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reverse water-shift reaction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogenation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrochemical reduction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lim, Jinkyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Choi, Min Suk</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Jonghyeok</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Hyunjoo</subfield><subfield code="0">(orcid)0000-0002-4538-9086</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC chemical engineering</subfield><subfield code="d">[London] : BioMed Central, 2019</subfield><subfield code="g">1(2019), 1 vom: 27. März</subfield><subfield code="w">(DE-627)1048331091</subfield><subfield code="w">(DE-600)2960944-6</subfield><subfield code="x">2524-4175</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:27</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s42480-019-0007-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">27</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
author |
Whang, Ho Seok |
spellingShingle |
Whang, Ho Seok misc Carbon dioxide misc Dry reforming misc Reverse water-shift reaction misc Hydrogenation misc Electrochemical reduction Heterogeneous catalysts for catalytic $ CO_{2} $ conversion into value-added chemicals |
authorStr |
Whang, Ho Seok |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1048331091 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2524-4175 |
topic_title |
Heterogeneous catalysts for catalytic $ CO_{2} $ conversion into value-added chemicals Carbon dioxide (dpeaa)DE-He213 Dry reforming (dpeaa)DE-He213 Reverse water-shift reaction (dpeaa)DE-He213 Hydrogenation (dpeaa)DE-He213 Electrochemical reduction (dpeaa)DE-He213 |
topic |
misc Carbon dioxide misc Dry reforming misc Reverse water-shift reaction misc Hydrogenation misc Electrochemical reduction |
topic_unstemmed |
misc Carbon dioxide misc Dry reforming misc Reverse water-shift reaction misc Hydrogenation misc Electrochemical reduction |
topic_browse |
misc Carbon dioxide misc Dry reforming misc Reverse water-shift reaction misc Hydrogenation misc Electrochemical reduction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC chemical engineering |
hierarchy_parent_id |
1048331091 |
hierarchy_top_title |
BMC chemical engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1048331091 (DE-600)2960944-6 |
title |
Heterogeneous catalysts for catalytic $ CO_{2} $ conversion into value-added chemicals |
ctrlnum |
(DE-627)SPR038603535 (SPR)s42480-019-0007-7-e |
title_full |
Heterogeneous catalysts for catalytic $ CO_{2} $ conversion into value-added chemicals |
author_sort |
Whang, Ho Seok |
journal |
BMC chemical engineering |
journalStr |
BMC chemical engineering |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Whang, Ho Seok Lim, Jinkyu Choi, Min Suk Lee, Jonghyeok Lee, Hyunjoo |
container_volume |
1 |
format_se |
Elektronische Aufsätze |
author-letter |
Whang, Ho Seok |
doi_str_mv |
10.1186/s42480-019-0007-7 |
normlink |
(ORCID)0000-0002-4538-9086 |
normlink_prefix_str_mv |
(orcid)0000-0002-4538-9086 |
title_sort |
heterogeneous catalysts for catalytic $ co_{2} $ conversion into value-added chemicals |
title_auth |
Heterogeneous catalysts for catalytic $ CO_{2} $ conversion into value-added chemicals |
abstract |
Abstract As climate change becomes increasingly evident, reducing greenhouse gases including $ CO_{2} $ has received growing attention. Because $ CO_{2} $ is thermodynamically very stable, its conversion into value-added chemicals such as CO, $ CH_{4} $, or $ C_{2} %$ H_{4} $ is difficult, and developing efficient catalysts for $ CO_{2} $ conversion is important work. $ CO_{2} $ can be converted using the gas-phase reaction, liquid-phase reaction, photocatalytic reaction, or electrochemical reaction. The gas-phase reaction includes the dry reforming of methane using $ CO_{2} $ and $ CH_{4} $, or $ CO_{2} $ hydrogenation using $ CO_{2} $ and $ H_{2} $. The liquid-phase reaction includes formic acid formation from pressurized $ CO_{2} $ and $ H_{2} $ in aqueous solution. The photocatalytic reaction is commonly known as artificial photo-synthesis, and produces chemicals from $ CO_{2} $ and $ H_{2} $O under light irradiation. The electrochemical reaction can produce chemicals from $ CO_{2} $ and $ H_{2} $O using electricity. In this review, the heterogeneous catalysts used for the gas-phase reaction or electrochemical reactions are discussed, because the liquid-phase reaction and photocatalytic reaction typically suffer from low productivity and poor durability. Because the gas-phase reaction requires a high reaction temperature of > 600 °C, obtaining good durability is important. The strategies for designing catalysts with good activity and durability will be introduced. Various materials have been tested for electrochemical conversion, and it has been shown that specific metals can produce specific products, such as Au or Ag for CO, Sn or Bi for formate, Cu for $ C_{2} %$ H_{4} $. Other unconventional catalysts for electrochemical $ CO_{2} $ reduction are also introduced. © The Author(s) 2019 |
abstractGer |
Abstract As climate change becomes increasingly evident, reducing greenhouse gases including $ CO_{2} $ has received growing attention. Because $ CO_{2} $ is thermodynamically very stable, its conversion into value-added chemicals such as CO, $ CH_{4} $, or $ C_{2} %$ H_{4} $ is difficult, and developing efficient catalysts for $ CO_{2} $ conversion is important work. $ CO_{2} $ can be converted using the gas-phase reaction, liquid-phase reaction, photocatalytic reaction, or electrochemical reaction. The gas-phase reaction includes the dry reforming of methane using $ CO_{2} $ and $ CH_{4} $, or $ CO_{2} $ hydrogenation using $ CO_{2} $ and $ H_{2} $. The liquid-phase reaction includes formic acid formation from pressurized $ CO_{2} $ and $ H_{2} $ in aqueous solution. The photocatalytic reaction is commonly known as artificial photo-synthesis, and produces chemicals from $ CO_{2} $ and $ H_{2} $O under light irradiation. The electrochemical reaction can produce chemicals from $ CO_{2} $ and $ H_{2} $O using electricity. In this review, the heterogeneous catalysts used for the gas-phase reaction or electrochemical reactions are discussed, because the liquid-phase reaction and photocatalytic reaction typically suffer from low productivity and poor durability. Because the gas-phase reaction requires a high reaction temperature of > 600 °C, obtaining good durability is important. The strategies for designing catalysts with good activity and durability will be introduced. Various materials have been tested for electrochemical conversion, and it has been shown that specific metals can produce specific products, such as Au or Ag for CO, Sn or Bi for formate, Cu for $ C_{2} %$ H_{4} $. Other unconventional catalysts for electrochemical $ CO_{2} $ reduction are also introduced. © The Author(s) 2019 |
abstract_unstemmed |
Abstract As climate change becomes increasingly evident, reducing greenhouse gases including $ CO_{2} $ has received growing attention. Because $ CO_{2} $ is thermodynamically very stable, its conversion into value-added chemicals such as CO, $ CH_{4} $, or $ C_{2} %$ H_{4} $ is difficult, and developing efficient catalysts for $ CO_{2} $ conversion is important work. $ CO_{2} $ can be converted using the gas-phase reaction, liquid-phase reaction, photocatalytic reaction, or electrochemical reaction. The gas-phase reaction includes the dry reforming of methane using $ CO_{2} $ and $ CH_{4} $, or $ CO_{2} $ hydrogenation using $ CO_{2} $ and $ H_{2} $. The liquid-phase reaction includes formic acid formation from pressurized $ CO_{2} $ and $ H_{2} $ in aqueous solution. The photocatalytic reaction is commonly known as artificial photo-synthesis, and produces chemicals from $ CO_{2} $ and $ H_{2} $O under light irradiation. The electrochemical reaction can produce chemicals from $ CO_{2} $ and $ H_{2} $O using electricity. In this review, the heterogeneous catalysts used for the gas-phase reaction or electrochemical reactions are discussed, because the liquid-phase reaction and photocatalytic reaction typically suffer from low productivity and poor durability. Because the gas-phase reaction requires a high reaction temperature of > 600 °C, obtaining good durability is important. The strategies for designing catalysts with good activity and durability will be introduced. Various materials have been tested for electrochemical conversion, and it has been shown that specific metals can produce specific products, such as Au or Ag for CO, Sn or Bi for formate, Cu for $ C_{2} %$ H_{4} $. Other unconventional catalysts for electrochemical $ CO_{2} $ reduction are also introduced. © The Author(s) 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Heterogeneous catalysts for catalytic $ CO_{2} $ conversion into value-added chemicals |
url |
https://dx.doi.org/10.1186/s42480-019-0007-7 |
remote_bool |
true |
author2 |
Lim, Jinkyu Choi, Min Suk Lee, Jonghyeok Lee, Hyunjoo |
author2Str |
Lim, Jinkyu Choi, Min Suk Lee, Jonghyeok Lee, Hyunjoo |
ppnlink |
1048331091 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s42480-019-0007-7 |
up_date |
2024-07-03T19:04:50.640Z |
_version_ |
1803585837483425792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR038603535</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519214326.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s42480-019-0007-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR038603535</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42480-019-0007-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Whang, Ho Seok</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heterogeneous catalysts for catalytic $ CO_{2} $ conversion into value-added chemicals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract As climate change becomes increasingly evident, reducing greenhouse gases including $ CO_{2} $ has received growing attention. Because $ CO_{2} $ is thermodynamically very stable, its conversion into value-added chemicals such as CO, $ CH_{4} $, or $ C_{2} %$ H_{4} $ is difficult, and developing efficient catalysts for $ CO_{2} $ conversion is important work. $ CO_{2} $ can be converted using the gas-phase reaction, liquid-phase reaction, photocatalytic reaction, or electrochemical reaction. The gas-phase reaction includes the dry reforming of methane using $ CO_{2} $ and $ CH_{4} $, or $ CO_{2} $ hydrogenation using $ CO_{2} $ and $ H_{2} $. The liquid-phase reaction includes formic acid formation from pressurized $ CO_{2} $ and $ H_{2} $ in aqueous solution. The photocatalytic reaction is commonly known as artificial photo-synthesis, and produces chemicals from $ CO_{2} $ and $ H_{2} $O under light irradiation. The electrochemical reaction can produce chemicals from $ CO_{2} $ and $ H_{2} $O using electricity. In this review, the heterogeneous catalysts used for the gas-phase reaction or electrochemical reactions are discussed, because the liquid-phase reaction and photocatalytic reaction typically suffer from low productivity and poor durability. Because the gas-phase reaction requires a high reaction temperature of > 600 °C, obtaining good durability is important. The strategies for designing catalysts with good activity and durability will be introduced. Various materials have been tested for electrochemical conversion, and it has been shown that specific metals can produce specific products, such as Au or Ag for CO, Sn or Bi for formate, Cu for $ C_{2} %$ H_{4} $. Other unconventional catalysts for electrochemical $ CO_{2} $ reduction are also introduced.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon dioxide</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dry reforming</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reverse water-shift reaction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogenation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrochemical reduction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lim, Jinkyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Choi, Min Suk</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Jonghyeok</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Hyunjoo</subfield><subfield code="0">(orcid)0000-0002-4538-9086</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC chemical engineering</subfield><subfield code="d">[London] : BioMed Central, 2019</subfield><subfield code="g">1(2019), 1 vom: 27. März</subfield><subfield code="w">(DE-627)1048331091</subfield><subfield code="w">(DE-600)2960944-6</subfield><subfield code="x">2524-4175</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:27</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s42480-019-0007-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">27</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
score |
7.400754 |