SEMICE: An unbiased and powerful monitoring protocol for small mammals in the Mediterranean Region
Abstract Schemes to monitor biodiversity change should detect properly target species without harmful effects on individuals and populations, and be powerful enough to detect expected population trends in the face of global change. Targeting is a key aspect of monitoring schemes since there is no si...
Ausführliche Beschreibung
Autor*in: |
Torre, Ignasi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Deutsche Gesellschaft für Säugetierkunde 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Mammalian biology - Amsterdam [u.a.] : Elsevier, 1999, 88(2017), 1 vom: 31. Okt., Seite 161-167 |
---|---|
Übergeordnetes Werk: |
volume:88 ; year:2017 ; number:1 ; day:31 ; month:10 ; pages:161-167 |
Links: |
---|
DOI / URN: |
10.1016/j.mambio.2017.10.009 |
---|
Katalog-ID: |
SPR038812614 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR038812614 | ||
003 | DE-627 | ||
005 | 20230328220739.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.mambio.2017.10.009 |2 doi | |
035 | |a (DE-627)SPR038812614 | ||
035 | |a (SPR)j.mambio.2017.10.009-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Torre, Ignasi |e verfasserin |4 aut | |
245 | 1 | 0 | |a SEMICE: An unbiased and powerful monitoring protocol for small mammals in the Mediterranean Region |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Deutsche Gesellschaft für Säugetierkunde 2017 | ||
520 | |a Abstract Schemes to monitor biodiversity change should detect properly target species without harmful effects on individuals and populations, and be powerful enough to detect expected population trends in the face of global change. Targeting is a key aspect of monitoring schemes since there is no single method able to detect unbiasedly all species of any given community, especially the rarest ones. Here we test whether SEMICE (SEguimiento de MIcromamíferos Comunes de España), a monitoring protocol for small mammal biodiversity in the Mediterranean Region, fulfil these requirements. The protocol aims at monitoring common species easy to catch with the two most widely used commercial live traps (18 Sherman and 18 Longworth traps alternated in position across 6 × 6 trapping grids spaced 15 m, brought into operation for three consecutive nights in spring and fall). We used pilot data from twenty-two plots distributed along wide environmental gradients in Catalonia (NE Spain), sampled from 2008 to 2015. The wood mouse (Apodemus sylvaticus) was dominant throughout the study period (992 individuals, 39.0%), followed by the whitetoothed shrew (Crocidura russula, 598 individuals, 23.5%) and the Algerian mouse (Mus spretus, 269 individuals, 10.6%). The two most common rodent species experienced strong population declines during the eight-year period (91% for A. sylvaticus and 83% for M. spretus). Regional community data obtained from diet studies of small mammal predators showed that common keystone prey and seed dispersers were sampled properly. No differences among trap types regarding community parameters and similarity indexes, sampling efficiency, detectability, trapinduced mortality, mean size and sexratio were detected, confirming previous results for a smaller pilot study. The method was sensitive enough for detecting expected population changes. We recommended extending the SEMICE protocol to sample common keystone small mammals along wide Mediterranean environmental gradients, since the method was sensitive enough to detect, and even test, expected population trends associated to global change for all them. | ||
650 | 4 | |a Small mammals |7 (dpeaa)DE-He213 | |
650 | 4 | |a Live trapping |7 (dpeaa)DE-He213 | |
650 | 4 | |a Trap bias |7 (dpeaa)DE-He213 | |
650 | 4 | |a Population trends |7 (dpeaa)DE-He213 | |
650 | 4 | |a Detection power |7 (dpeaa)DE-He213 | |
700 | 1 | |a Raspall, Alfons |4 aut | |
700 | 1 | |a Arrizabalaga, Antoni |4 aut | |
700 | 1 | |a Díaz, Mario |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mammalian biology |d Amsterdam [u.a.] : Elsevier, 1999 |g 88(2017), 1 vom: 31. Okt., Seite 161-167 |w (DE-627)343512947 |w (DE-600)2072973-X |x 1618-1476 |7 nnns |
773 | 1 | 8 | |g volume:88 |g year:2017 |g number:1 |g day:31 |g month:10 |g pages:161-167 |
856 | 4 | 0 | |u https://dx.doi.org/10.1016/j.mambio.2017.10.009 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 88 |j 2017 |e 1 |b 31 |c 10 |h 161-167 |
author_variant |
i t it a r ar a a aa m d md |
---|---|
matchkey_str |
article:16181476:2017----::eiennisdnpwrumntrnpooofrmlmmasn |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1016/j.mambio.2017.10.009 doi (DE-627)SPR038812614 (SPR)j.mambio.2017.10.009-e DE-627 ger DE-627 rakwb eng Torre, Ignasi verfasserin aut SEMICE: An unbiased and powerful monitoring protocol for small mammals in the Mediterranean Region 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Deutsche Gesellschaft für Säugetierkunde 2017 Abstract Schemes to monitor biodiversity change should detect properly target species without harmful effects on individuals and populations, and be powerful enough to detect expected population trends in the face of global change. Targeting is a key aspect of monitoring schemes since there is no single method able to detect unbiasedly all species of any given community, especially the rarest ones. Here we test whether SEMICE (SEguimiento de MIcromamíferos Comunes de España), a monitoring protocol for small mammal biodiversity in the Mediterranean Region, fulfil these requirements. The protocol aims at monitoring common species easy to catch with the two most widely used commercial live traps (18 Sherman and 18 Longworth traps alternated in position across 6 × 6 trapping grids spaced 15 m, brought into operation for three consecutive nights in spring and fall). We used pilot data from twenty-two plots distributed along wide environmental gradients in Catalonia (NE Spain), sampled from 2008 to 2015. The wood mouse (Apodemus sylvaticus) was dominant throughout the study period (992 individuals, 39.0%), followed by the whitetoothed shrew (Crocidura russula, 598 individuals, 23.5%) and the Algerian mouse (Mus spretus, 269 individuals, 10.6%). The two most common rodent species experienced strong population declines during the eight-year period (91% for A. sylvaticus and 83% for M. spretus). Regional community data obtained from diet studies of small mammal predators showed that common keystone prey and seed dispersers were sampled properly. No differences among trap types regarding community parameters and similarity indexes, sampling efficiency, detectability, trapinduced mortality, mean size and sexratio were detected, confirming previous results for a smaller pilot study. The method was sensitive enough for detecting expected population changes. We recommended extending the SEMICE protocol to sample common keystone small mammals along wide Mediterranean environmental gradients, since the method was sensitive enough to detect, and even test, expected population trends associated to global change for all them. Small mammals (dpeaa)DE-He213 Live trapping (dpeaa)DE-He213 Trap bias (dpeaa)DE-He213 Population trends (dpeaa)DE-He213 Detection power (dpeaa)DE-He213 Raspall, Alfons aut Arrizabalaga, Antoni aut Díaz, Mario aut Enthalten in Mammalian biology Amsterdam [u.a.] : Elsevier, 1999 88(2017), 1 vom: 31. Okt., Seite 161-167 (DE-627)343512947 (DE-600)2072973-X 1618-1476 nnns volume:88 year:2017 number:1 day:31 month:10 pages:161-167 https://dx.doi.org/10.1016/j.mambio.2017.10.009 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 88 2017 1 31 10 161-167 |
spelling |
10.1016/j.mambio.2017.10.009 doi (DE-627)SPR038812614 (SPR)j.mambio.2017.10.009-e DE-627 ger DE-627 rakwb eng Torre, Ignasi verfasserin aut SEMICE: An unbiased and powerful monitoring protocol for small mammals in the Mediterranean Region 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Deutsche Gesellschaft für Säugetierkunde 2017 Abstract Schemes to monitor biodiversity change should detect properly target species without harmful effects on individuals and populations, and be powerful enough to detect expected population trends in the face of global change. Targeting is a key aspect of monitoring schemes since there is no single method able to detect unbiasedly all species of any given community, especially the rarest ones. Here we test whether SEMICE (SEguimiento de MIcromamíferos Comunes de España), a monitoring protocol for small mammal biodiversity in the Mediterranean Region, fulfil these requirements. The protocol aims at monitoring common species easy to catch with the two most widely used commercial live traps (18 Sherman and 18 Longworth traps alternated in position across 6 × 6 trapping grids spaced 15 m, brought into operation for three consecutive nights in spring and fall). We used pilot data from twenty-two plots distributed along wide environmental gradients in Catalonia (NE Spain), sampled from 2008 to 2015. The wood mouse (Apodemus sylvaticus) was dominant throughout the study period (992 individuals, 39.0%), followed by the whitetoothed shrew (Crocidura russula, 598 individuals, 23.5%) and the Algerian mouse (Mus spretus, 269 individuals, 10.6%). The two most common rodent species experienced strong population declines during the eight-year period (91% for A. sylvaticus and 83% for M. spretus). Regional community data obtained from diet studies of small mammal predators showed that common keystone prey and seed dispersers were sampled properly. No differences among trap types regarding community parameters and similarity indexes, sampling efficiency, detectability, trapinduced mortality, mean size and sexratio were detected, confirming previous results for a smaller pilot study. The method was sensitive enough for detecting expected population changes. We recommended extending the SEMICE protocol to sample common keystone small mammals along wide Mediterranean environmental gradients, since the method was sensitive enough to detect, and even test, expected population trends associated to global change for all them. Small mammals (dpeaa)DE-He213 Live trapping (dpeaa)DE-He213 Trap bias (dpeaa)DE-He213 Population trends (dpeaa)DE-He213 Detection power (dpeaa)DE-He213 Raspall, Alfons aut Arrizabalaga, Antoni aut Díaz, Mario aut Enthalten in Mammalian biology Amsterdam [u.a.] : Elsevier, 1999 88(2017), 1 vom: 31. Okt., Seite 161-167 (DE-627)343512947 (DE-600)2072973-X 1618-1476 nnns volume:88 year:2017 number:1 day:31 month:10 pages:161-167 https://dx.doi.org/10.1016/j.mambio.2017.10.009 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 88 2017 1 31 10 161-167 |
allfields_unstemmed |
10.1016/j.mambio.2017.10.009 doi (DE-627)SPR038812614 (SPR)j.mambio.2017.10.009-e DE-627 ger DE-627 rakwb eng Torre, Ignasi verfasserin aut SEMICE: An unbiased and powerful monitoring protocol for small mammals in the Mediterranean Region 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Deutsche Gesellschaft für Säugetierkunde 2017 Abstract Schemes to monitor biodiversity change should detect properly target species without harmful effects on individuals and populations, and be powerful enough to detect expected population trends in the face of global change. Targeting is a key aspect of monitoring schemes since there is no single method able to detect unbiasedly all species of any given community, especially the rarest ones. Here we test whether SEMICE (SEguimiento de MIcromamíferos Comunes de España), a monitoring protocol for small mammal biodiversity in the Mediterranean Region, fulfil these requirements. The protocol aims at monitoring common species easy to catch with the two most widely used commercial live traps (18 Sherman and 18 Longworth traps alternated in position across 6 × 6 trapping grids spaced 15 m, brought into operation for three consecutive nights in spring and fall). We used pilot data from twenty-two plots distributed along wide environmental gradients in Catalonia (NE Spain), sampled from 2008 to 2015. The wood mouse (Apodemus sylvaticus) was dominant throughout the study period (992 individuals, 39.0%), followed by the whitetoothed shrew (Crocidura russula, 598 individuals, 23.5%) and the Algerian mouse (Mus spretus, 269 individuals, 10.6%). The two most common rodent species experienced strong population declines during the eight-year period (91% for A. sylvaticus and 83% for M. spretus). Regional community data obtained from diet studies of small mammal predators showed that common keystone prey and seed dispersers were sampled properly. No differences among trap types regarding community parameters and similarity indexes, sampling efficiency, detectability, trapinduced mortality, mean size and sexratio were detected, confirming previous results for a smaller pilot study. The method was sensitive enough for detecting expected population changes. We recommended extending the SEMICE protocol to sample common keystone small mammals along wide Mediterranean environmental gradients, since the method was sensitive enough to detect, and even test, expected population trends associated to global change for all them. Small mammals (dpeaa)DE-He213 Live trapping (dpeaa)DE-He213 Trap bias (dpeaa)DE-He213 Population trends (dpeaa)DE-He213 Detection power (dpeaa)DE-He213 Raspall, Alfons aut Arrizabalaga, Antoni aut Díaz, Mario aut Enthalten in Mammalian biology Amsterdam [u.a.] : Elsevier, 1999 88(2017), 1 vom: 31. Okt., Seite 161-167 (DE-627)343512947 (DE-600)2072973-X 1618-1476 nnns volume:88 year:2017 number:1 day:31 month:10 pages:161-167 https://dx.doi.org/10.1016/j.mambio.2017.10.009 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 88 2017 1 31 10 161-167 |
allfieldsGer |
10.1016/j.mambio.2017.10.009 doi (DE-627)SPR038812614 (SPR)j.mambio.2017.10.009-e DE-627 ger DE-627 rakwb eng Torre, Ignasi verfasserin aut SEMICE: An unbiased and powerful monitoring protocol for small mammals in the Mediterranean Region 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Deutsche Gesellschaft für Säugetierkunde 2017 Abstract Schemes to monitor biodiversity change should detect properly target species without harmful effects on individuals and populations, and be powerful enough to detect expected population trends in the face of global change. Targeting is a key aspect of monitoring schemes since there is no single method able to detect unbiasedly all species of any given community, especially the rarest ones. Here we test whether SEMICE (SEguimiento de MIcromamíferos Comunes de España), a monitoring protocol for small mammal biodiversity in the Mediterranean Region, fulfil these requirements. The protocol aims at monitoring common species easy to catch with the two most widely used commercial live traps (18 Sherman and 18 Longworth traps alternated in position across 6 × 6 trapping grids spaced 15 m, brought into operation for three consecutive nights in spring and fall). We used pilot data from twenty-two plots distributed along wide environmental gradients in Catalonia (NE Spain), sampled from 2008 to 2015. The wood mouse (Apodemus sylvaticus) was dominant throughout the study period (992 individuals, 39.0%), followed by the whitetoothed shrew (Crocidura russula, 598 individuals, 23.5%) and the Algerian mouse (Mus spretus, 269 individuals, 10.6%). The two most common rodent species experienced strong population declines during the eight-year period (91% for A. sylvaticus and 83% for M. spretus). Regional community data obtained from diet studies of small mammal predators showed that common keystone prey and seed dispersers were sampled properly. No differences among trap types regarding community parameters and similarity indexes, sampling efficiency, detectability, trapinduced mortality, mean size and sexratio were detected, confirming previous results for a smaller pilot study. The method was sensitive enough for detecting expected population changes. We recommended extending the SEMICE protocol to sample common keystone small mammals along wide Mediterranean environmental gradients, since the method was sensitive enough to detect, and even test, expected population trends associated to global change for all them. Small mammals (dpeaa)DE-He213 Live trapping (dpeaa)DE-He213 Trap bias (dpeaa)DE-He213 Population trends (dpeaa)DE-He213 Detection power (dpeaa)DE-He213 Raspall, Alfons aut Arrizabalaga, Antoni aut Díaz, Mario aut Enthalten in Mammalian biology Amsterdam [u.a.] : Elsevier, 1999 88(2017), 1 vom: 31. Okt., Seite 161-167 (DE-627)343512947 (DE-600)2072973-X 1618-1476 nnns volume:88 year:2017 number:1 day:31 month:10 pages:161-167 https://dx.doi.org/10.1016/j.mambio.2017.10.009 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 88 2017 1 31 10 161-167 |
allfieldsSound |
10.1016/j.mambio.2017.10.009 doi (DE-627)SPR038812614 (SPR)j.mambio.2017.10.009-e DE-627 ger DE-627 rakwb eng Torre, Ignasi verfasserin aut SEMICE: An unbiased and powerful monitoring protocol for small mammals in the Mediterranean Region 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Deutsche Gesellschaft für Säugetierkunde 2017 Abstract Schemes to monitor biodiversity change should detect properly target species without harmful effects on individuals and populations, and be powerful enough to detect expected population trends in the face of global change. Targeting is a key aspect of monitoring schemes since there is no single method able to detect unbiasedly all species of any given community, especially the rarest ones. Here we test whether SEMICE (SEguimiento de MIcromamíferos Comunes de España), a monitoring protocol for small mammal biodiversity in the Mediterranean Region, fulfil these requirements. The protocol aims at monitoring common species easy to catch with the two most widely used commercial live traps (18 Sherman and 18 Longworth traps alternated in position across 6 × 6 trapping grids spaced 15 m, brought into operation for three consecutive nights in spring and fall). We used pilot data from twenty-two plots distributed along wide environmental gradients in Catalonia (NE Spain), sampled from 2008 to 2015. The wood mouse (Apodemus sylvaticus) was dominant throughout the study period (992 individuals, 39.0%), followed by the whitetoothed shrew (Crocidura russula, 598 individuals, 23.5%) and the Algerian mouse (Mus spretus, 269 individuals, 10.6%). The two most common rodent species experienced strong population declines during the eight-year period (91% for A. sylvaticus and 83% for M. spretus). Regional community data obtained from diet studies of small mammal predators showed that common keystone prey and seed dispersers were sampled properly. No differences among trap types regarding community parameters and similarity indexes, sampling efficiency, detectability, trapinduced mortality, mean size and sexratio were detected, confirming previous results for a smaller pilot study. The method was sensitive enough for detecting expected population changes. We recommended extending the SEMICE protocol to sample common keystone small mammals along wide Mediterranean environmental gradients, since the method was sensitive enough to detect, and even test, expected population trends associated to global change for all them. Small mammals (dpeaa)DE-He213 Live trapping (dpeaa)DE-He213 Trap bias (dpeaa)DE-He213 Population trends (dpeaa)DE-He213 Detection power (dpeaa)DE-He213 Raspall, Alfons aut Arrizabalaga, Antoni aut Díaz, Mario aut Enthalten in Mammalian biology Amsterdam [u.a.] : Elsevier, 1999 88(2017), 1 vom: 31. Okt., Seite 161-167 (DE-627)343512947 (DE-600)2072973-X 1618-1476 nnns volume:88 year:2017 number:1 day:31 month:10 pages:161-167 https://dx.doi.org/10.1016/j.mambio.2017.10.009 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 88 2017 1 31 10 161-167 |
language |
English |
source |
Enthalten in Mammalian biology 88(2017), 1 vom: 31. Okt., Seite 161-167 volume:88 year:2017 number:1 day:31 month:10 pages:161-167 |
sourceStr |
Enthalten in Mammalian biology 88(2017), 1 vom: 31. Okt., Seite 161-167 volume:88 year:2017 number:1 day:31 month:10 pages:161-167 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Small mammals Live trapping Trap bias Population trends Detection power |
isfreeaccess_bool |
false |
container_title |
Mammalian biology |
authorswithroles_txt_mv |
Torre, Ignasi @@aut@@ Raspall, Alfons @@aut@@ Arrizabalaga, Antoni @@aut@@ Díaz, Mario @@aut@@ |
publishDateDaySort_date |
2017-10-31T00:00:00Z |
hierarchy_top_id |
343512947 |
id |
SPR038812614 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR038812614</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328220739.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.mambio.2017.10.009</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR038812614</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)j.mambio.2017.10.009-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Torre, Ignasi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">SEMICE: An unbiased and powerful monitoring protocol for small mammals in the Mediterranean Region</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Deutsche Gesellschaft für Säugetierkunde 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Schemes to monitor biodiversity change should detect properly target species without harmful effects on individuals and populations, and be powerful enough to detect expected population trends in the face of global change. Targeting is a key aspect of monitoring schemes since there is no single method able to detect unbiasedly all species of any given community, especially the rarest ones. Here we test whether SEMICE (SEguimiento de MIcromamíferos Comunes de España), a monitoring protocol for small mammal biodiversity in the Mediterranean Region, fulfil these requirements. The protocol aims at monitoring common species easy to catch with the two most widely used commercial live traps (18 Sherman and 18 Longworth traps alternated in position across 6 × 6 trapping grids spaced 15 m, brought into operation for three consecutive nights in spring and fall). We used pilot data from twenty-two plots distributed along wide environmental gradients in Catalonia (NE Spain), sampled from 2008 to 2015. The wood mouse (Apodemus sylvaticus) was dominant throughout the study period (992 individuals, 39.0%), followed by the whitetoothed shrew (Crocidura russula, 598 individuals, 23.5%) and the Algerian mouse (Mus spretus, 269 individuals, 10.6%). The two most common rodent species experienced strong population declines during the eight-year period (91% for A. sylvaticus and 83% for M. spretus). Regional community data obtained from diet studies of small mammal predators showed that common keystone prey and seed dispersers were sampled properly. No differences among trap types regarding community parameters and similarity indexes, sampling efficiency, detectability, trapinduced mortality, mean size and sexratio were detected, confirming previous results for a smaller pilot study. The method was sensitive enough for detecting expected population changes. We recommended extending the SEMICE protocol to sample common keystone small mammals along wide Mediterranean environmental gradients, since the method was sensitive enough to detect, and even test, expected population trends associated to global change for all them.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Small mammals</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Live trapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trap bias</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Population trends</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Detection power</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raspall, Alfons</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arrizabalaga, Antoni</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Díaz, Mario</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mammalian biology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1999</subfield><subfield code="g">88(2017), 1 vom: 31. Okt., Seite 161-167</subfield><subfield code="w">(DE-627)343512947</subfield><subfield code="w">(DE-600)2072973-X</subfield><subfield code="x">1618-1476</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:88</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:31</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:161-167</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1016/j.mambio.2017.10.009</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">88</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">31</subfield><subfield code="c">10</subfield><subfield code="h">161-167</subfield></datafield></record></collection>
|
author |
Torre, Ignasi |
spellingShingle |
Torre, Ignasi misc Small mammals misc Live trapping misc Trap bias misc Population trends misc Detection power SEMICE: An unbiased and powerful monitoring protocol for small mammals in the Mediterranean Region |
authorStr |
Torre, Ignasi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)343512947 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1618-1476 |
topic_title |
SEMICE: An unbiased and powerful monitoring protocol for small mammals in the Mediterranean Region Small mammals (dpeaa)DE-He213 Live trapping (dpeaa)DE-He213 Trap bias (dpeaa)DE-He213 Population trends (dpeaa)DE-He213 Detection power (dpeaa)DE-He213 |
topic |
misc Small mammals misc Live trapping misc Trap bias misc Population trends misc Detection power |
topic_unstemmed |
misc Small mammals misc Live trapping misc Trap bias misc Population trends misc Detection power |
topic_browse |
misc Small mammals misc Live trapping misc Trap bias misc Population trends misc Detection power |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mammalian biology |
hierarchy_parent_id |
343512947 |
hierarchy_top_title |
Mammalian biology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)343512947 (DE-600)2072973-X |
title |
SEMICE: An unbiased and powerful monitoring protocol for small mammals in the Mediterranean Region |
ctrlnum |
(DE-627)SPR038812614 (SPR)j.mambio.2017.10.009-e |
title_full |
SEMICE: An unbiased and powerful monitoring protocol for small mammals in the Mediterranean Region |
author_sort |
Torre, Ignasi |
journal |
Mammalian biology |
journalStr |
Mammalian biology |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
161 |
author_browse |
Torre, Ignasi Raspall, Alfons Arrizabalaga, Antoni Díaz, Mario |
container_volume |
88 |
format_se |
Elektronische Aufsätze |
author-letter |
Torre, Ignasi |
doi_str_mv |
10.1016/j.mambio.2017.10.009 |
title_sort |
semice: an unbiased and powerful monitoring protocol for small mammals in the mediterranean region |
title_auth |
SEMICE: An unbiased and powerful monitoring protocol for small mammals in the Mediterranean Region |
abstract |
Abstract Schemes to monitor biodiversity change should detect properly target species without harmful effects on individuals and populations, and be powerful enough to detect expected population trends in the face of global change. Targeting is a key aspect of monitoring schemes since there is no single method able to detect unbiasedly all species of any given community, especially the rarest ones. Here we test whether SEMICE (SEguimiento de MIcromamíferos Comunes de España), a monitoring protocol for small mammal biodiversity in the Mediterranean Region, fulfil these requirements. The protocol aims at monitoring common species easy to catch with the two most widely used commercial live traps (18 Sherman and 18 Longworth traps alternated in position across 6 × 6 trapping grids spaced 15 m, brought into operation for three consecutive nights in spring and fall). We used pilot data from twenty-two plots distributed along wide environmental gradients in Catalonia (NE Spain), sampled from 2008 to 2015. The wood mouse (Apodemus sylvaticus) was dominant throughout the study period (992 individuals, 39.0%), followed by the whitetoothed shrew (Crocidura russula, 598 individuals, 23.5%) and the Algerian mouse (Mus spretus, 269 individuals, 10.6%). The two most common rodent species experienced strong population declines during the eight-year period (91% for A. sylvaticus and 83% for M. spretus). Regional community data obtained from diet studies of small mammal predators showed that common keystone prey and seed dispersers were sampled properly. No differences among trap types regarding community parameters and similarity indexes, sampling efficiency, detectability, trapinduced mortality, mean size and sexratio were detected, confirming previous results for a smaller pilot study. The method was sensitive enough for detecting expected population changes. We recommended extending the SEMICE protocol to sample common keystone small mammals along wide Mediterranean environmental gradients, since the method was sensitive enough to detect, and even test, expected population trends associated to global change for all them. © Deutsche Gesellschaft für Säugetierkunde 2017 |
abstractGer |
Abstract Schemes to monitor biodiversity change should detect properly target species without harmful effects on individuals and populations, and be powerful enough to detect expected population trends in the face of global change. Targeting is a key aspect of monitoring schemes since there is no single method able to detect unbiasedly all species of any given community, especially the rarest ones. Here we test whether SEMICE (SEguimiento de MIcromamíferos Comunes de España), a monitoring protocol for small mammal biodiversity in the Mediterranean Region, fulfil these requirements. The protocol aims at monitoring common species easy to catch with the two most widely used commercial live traps (18 Sherman and 18 Longworth traps alternated in position across 6 × 6 trapping grids spaced 15 m, brought into operation for three consecutive nights in spring and fall). We used pilot data from twenty-two plots distributed along wide environmental gradients in Catalonia (NE Spain), sampled from 2008 to 2015. The wood mouse (Apodemus sylvaticus) was dominant throughout the study period (992 individuals, 39.0%), followed by the whitetoothed shrew (Crocidura russula, 598 individuals, 23.5%) and the Algerian mouse (Mus spretus, 269 individuals, 10.6%). The two most common rodent species experienced strong population declines during the eight-year period (91% for A. sylvaticus and 83% for M. spretus). Regional community data obtained from diet studies of small mammal predators showed that common keystone prey and seed dispersers were sampled properly. No differences among trap types regarding community parameters and similarity indexes, sampling efficiency, detectability, trapinduced mortality, mean size and sexratio were detected, confirming previous results for a smaller pilot study. The method was sensitive enough for detecting expected population changes. We recommended extending the SEMICE protocol to sample common keystone small mammals along wide Mediterranean environmental gradients, since the method was sensitive enough to detect, and even test, expected population trends associated to global change for all them. © Deutsche Gesellschaft für Säugetierkunde 2017 |
abstract_unstemmed |
Abstract Schemes to monitor biodiversity change should detect properly target species without harmful effects on individuals and populations, and be powerful enough to detect expected population trends in the face of global change. Targeting is a key aspect of monitoring schemes since there is no single method able to detect unbiasedly all species of any given community, especially the rarest ones. Here we test whether SEMICE (SEguimiento de MIcromamíferos Comunes de España), a monitoring protocol for small mammal biodiversity in the Mediterranean Region, fulfil these requirements. The protocol aims at monitoring common species easy to catch with the two most widely used commercial live traps (18 Sherman and 18 Longworth traps alternated in position across 6 × 6 trapping grids spaced 15 m, brought into operation for three consecutive nights in spring and fall). We used pilot data from twenty-two plots distributed along wide environmental gradients in Catalonia (NE Spain), sampled from 2008 to 2015. The wood mouse (Apodemus sylvaticus) was dominant throughout the study period (992 individuals, 39.0%), followed by the whitetoothed shrew (Crocidura russula, 598 individuals, 23.5%) and the Algerian mouse (Mus spretus, 269 individuals, 10.6%). The two most common rodent species experienced strong population declines during the eight-year period (91% for A. sylvaticus and 83% for M. spretus). Regional community data obtained from diet studies of small mammal predators showed that common keystone prey and seed dispersers were sampled properly. No differences among trap types regarding community parameters and similarity indexes, sampling efficiency, detectability, trapinduced mortality, mean size and sexratio were detected, confirming previous results for a smaller pilot study. The method was sensitive enough for detecting expected population changes. We recommended extending the SEMICE protocol to sample common keystone small mammals along wide Mediterranean environmental gradients, since the method was sensitive enough to detect, and even test, expected population trends associated to global change for all them. © Deutsche Gesellschaft für Säugetierkunde 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
SEMICE: An unbiased and powerful monitoring protocol for small mammals in the Mediterranean Region |
url |
https://dx.doi.org/10.1016/j.mambio.2017.10.009 |
remote_bool |
true |
author2 |
Raspall, Alfons Arrizabalaga, Antoni Díaz, Mario |
author2Str |
Raspall, Alfons Arrizabalaga, Antoni Díaz, Mario |
ppnlink |
343512947 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.mambio.2017.10.009 |
up_date |
2024-07-03T20:08:57.235Z |
_version_ |
1803589870940061696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR038812614</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230328220739.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.mambio.2017.10.009</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR038812614</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)j.mambio.2017.10.009-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Torre, Ignasi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">SEMICE: An unbiased and powerful monitoring protocol for small mammals in the Mediterranean Region</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Deutsche Gesellschaft für Säugetierkunde 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Schemes to monitor biodiversity change should detect properly target species without harmful effects on individuals and populations, and be powerful enough to detect expected population trends in the face of global change. Targeting is a key aspect of monitoring schemes since there is no single method able to detect unbiasedly all species of any given community, especially the rarest ones. Here we test whether SEMICE (SEguimiento de MIcromamíferos Comunes de España), a monitoring protocol for small mammal biodiversity in the Mediterranean Region, fulfil these requirements. The protocol aims at monitoring common species easy to catch with the two most widely used commercial live traps (18 Sherman and 18 Longworth traps alternated in position across 6 × 6 trapping grids spaced 15 m, brought into operation for three consecutive nights in spring and fall). We used pilot data from twenty-two plots distributed along wide environmental gradients in Catalonia (NE Spain), sampled from 2008 to 2015. The wood mouse (Apodemus sylvaticus) was dominant throughout the study period (992 individuals, 39.0%), followed by the whitetoothed shrew (Crocidura russula, 598 individuals, 23.5%) and the Algerian mouse (Mus spretus, 269 individuals, 10.6%). The two most common rodent species experienced strong population declines during the eight-year period (91% for A. sylvaticus and 83% for M. spretus). Regional community data obtained from diet studies of small mammal predators showed that common keystone prey and seed dispersers were sampled properly. No differences among trap types regarding community parameters and similarity indexes, sampling efficiency, detectability, trapinduced mortality, mean size and sexratio were detected, confirming previous results for a smaller pilot study. The method was sensitive enough for detecting expected population changes. We recommended extending the SEMICE protocol to sample common keystone small mammals along wide Mediterranean environmental gradients, since the method was sensitive enough to detect, and even test, expected population trends associated to global change for all them.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Small mammals</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Live trapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trap bias</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Population trends</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Detection power</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raspall, Alfons</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arrizabalaga, Antoni</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Díaz, Mario</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mammalian biology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1999</subfield><subfield code="g">88(2017), 1 vom: 31. Okt., Seite 161-167</subfield><subfield code="w">(DE-627)343512947</subfield><subfield code="w">(DE-600)2072973-X</subfield><subfield code="x">1618-1476</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:88</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:31</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:161-167</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1016/j.mambio.2017.10.009</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">88</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">31</subfield><subfield code="c">10</subfield><subfield code="h">161-167</subfield></datafield></record></collection>
|
score |
7.400899 |