An experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection
Abstract Carbon dioxide ($ CO_{2} $) injection is one of the most applied enhanced oil recovery methods in the hydrocarbon industry, since it has the potential to increase oil recovery significantly and can help reduce greenhouse gases through carbon storage in hydrocarbon reservoirs. Carbon dioxide...
Ausführliche Beschreibung
Autor*in: |
Fakher, Sherif [verfasserIn] Ahdaya, Mohamed [verfasserIn] Elturki, Mukhtar [verfasserIn] Imqam, Abdulmohsin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of petroleum exploration and production technology - Berlin : Springer, 2011, 10(2019), 3 vom: 25. Sept., Seite 919-931 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2019 ; number:3 ; day:25 ; month:09 ; pages:919-931 |
Links: |
---|
DOI / URN: |
10.1007/s13202-019-00782-7 |
---|
Katalog-ID: |
SPR039147363 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR039147363 | ||
003 | DE-627 | ||
005 | 20230519114649.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13202-019-00782-7 |2 doi | |
035 | |a (DE-627)SPR039147363 | ||
035 | |a (SPR)s13202-019-00782-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q ASE |
100 | 1 | |a Fakher, Sherif |e verfasserin |4 aut | |
245 | 1 | 3 | |a An experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Carbon dioxide ($ CO_{2} $) injection is one of the most applied enhanced oil recovery methods in the hydrocarbon industry, since it has the potential to increase oil recovery significantly and can help reduce greenhouse gases through carbon storage in hydrocarbon reservoirs. Carbon dioxide injection has a severe drawback, however, since it induces asphaltene precipitation by disrupting the asphaltene stability in crude oil that bears even the slightest asphaltene concentration. This can result in severe operational problems, such as reservoir pore plugging and wellbore plugging. This research investigates some of the main factors that impact asphaltene stability in crude oil during $ CO_{2} $ injection. Initially, asphaltene precipitation, flocculation, and deposition were tested using visual tests without $ CO_{2} $ in order to evaluate the effect of oil viscosity and temperature on asphaltene stability and content in the crude oil. The results obtained from the visualization experiments were correlated to the Yen–Mullins asphaltene model and were used to select the proper chemical to alter the oil’s viscosity without strongly affecting asphaltene stability. After performing the visual asphaltene tests, a specially designed filtration vessel was used to perform the oil filtration experiments using filter membranes with a micron and nanometer pore size. The effect of varying $ CO_{2} $ injection pressure, oil viscosity, filter membrane pore size, and filter membrane thickness on asphaltene stability in crude oil was investigated. The results were then correlated with the Yen–Mullins asphaltene model to characterize the asphaltene size within the oil as well. Results showed that as the oil viscosity increased, the asphaltene concentration in the oil also increased. Also, the asphaltene concentration and filter cake thickness increased with the decrease in filter membrane pore size, since the asphaltene particles either plugged up the smaller pores, or the asphaltene nanoaggregates were larger than the pore sizes, and thus the majority of them could not pass. This research studies asphaltene instability in crude oil during $ CO_{2} $ injection in different pore sizes, and correlates the results to the principle of the Yen–Mullins model for asphaltenes. The results from this research can help emphasize the factors that will impact asphaltene stability during $ CO_{2} $ injection in different pore sizes in order to help reduce asphaltene-related problems that arise during $ CO_{2} $ injection in hydrocarbon reservoirs. | ||
650 | 4 | |a Asphaltene stability |7 (dpeaa)DE-He213 | |
650 | 4 | |a Carbon dioxide injection |7 (dpeaa)DE-He213 | |
650 | 4 | |a Unconventional shale oil reservoir |7 (dpeaa)DE-He213 | |
700 | 1 | |a Ahdaya, Mohamed |e verfasserin |4 aut | |
700 | 1 | |a Elturki, Mukhtar |e verfasserin |4 aut | |
700 | 1 | |a Imqam, Abdulmohsin |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of petroleum exploration and production technology |d Berlin : Springer, 2011 |g 10(2019), 3 vom: 25. Sept., Seite 919-931 |w (DE-627)647654148 |w (DE-600)2595714-4 |x 2190-0566 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2019 |g number:3 |g day:25 |g month:09 |g pages:919-931 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s13202-019-00782-7 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2019 |e 3 |b 25 |c 09 |h 919-931 |
author_variant |
s f sf m a ma m e me a i ai |
---|---|
matchkey_str |
article:21900566:2019----::nxeietlnetgtooapatnsaiiynevcueidr |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s13202-019-00782-7 doi (DE-627)SPR039147363 (SPR)s13202-019-00782-7-e DE-627 ger DE-627 rakwb eng 540 ASE Fakher, Sherif verfasserin aut An experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Carbon dioxide ($ CO_{2} $) injection is one of the most applied enhanced oil recovery methods in the hydrocarbon industry, since it has the potential to increase oil recovery significantly and can help reduce greenhouse gases through carbon storage in hydrocarbon reservoirs. Carbon dioxide injection has a severe drawback, however, since it induces asphaltene precipitation by disrupting the asphaltene stability in crude oil that bears even the slightest asphaltene concentration. This can result in severe operational problems, such as reservoir pore plugging and wellbore plugging. This research investigates some of the main factors that impact asphaltene stability in crude oil during $ CO_{2} $ injection. Initially, asphaltene precipitation, flocculation, and deposition were tested using visual tests without $ CO_{2} $ in order to evaluate the effect of oil viscosity and temperature on asphaltene stability and content in the crude oil. The results obtained from the visualization experiments were correlated to the Yen–Mullins asphaltene model and were used to select the proper chemical to alter the oil’s viscosity without strongly affecting asphaltene stability. After performing the visual asphaltene tests, a specially designed filtration vessel was used to perform the oil filtration experiments using filter membranes with a micron and nanometer pore size. The effect of varying $ CO_{2} $ injection pressure, oil viscosity, filter membrane pore size, and filter membrane thickness on asphaltene stability in crude oil was investigated. The results were then correlated with the Yen–Mullins asphaltene model to characterize the asphaltene size within the oil as well. Results showed that as the oil viscosity increased, the asphaltene concentration in the oil also increased. Also, the asphaltene concentration and filter cake thickness increased with the decrease in filter membrane pore size, since the asphaltene particles either plugged up the smaller pores, or the asphaltene nanoaggregates were larger than the pore sizes, and thus the majority of them could not pass. This research studies asphaltene instability in crude oil during $ CO_{2} $ injection in different pore sizes, and correlates the results to the principle of the Yen–Mullins model for asphaltenes. The results from this research can help emphasize the factors that will impact asphaltene stability during $ CO_{2} $ injection in different pore sizes in order to help reduce asphaltene-related problems that arise during $ CO_{2} $ injection in hydrocarbon reservoirs. Asphaltene stability (dpeaa)DE-He213 Carbon dioxide injection (dpeaa)DE-He213 Unconventional shale oil reservoir (dpeaa)DE-He213 Ahdaya, Mohamed verfasserin aut Elturki, Mukhtar verfasserin aut Imqam, Abdulmohsin verfasserin aut Enthalten in Journal of petroleum exploration and production technology Berlin : Springer, 2011 10(2019), 3 vom: 25. Sept., Seite 919-931 (DE-627)647654148 (DE-600)2595714-4 2190-0566 nnns volume:10 year:2019 number:3 day:25 month:09 pages:919-931 https://dx.doi.org/10.1007/s13202-019-00782-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 3 25 09 919-931 |
spelling |
10.1007/s13202-019-00782-7 doi (DE-627)SPR039147363 (SPR)s13202-019-00782-7-e DE-627 ger DE-627 rakwb eng 540 ASE Fakher, Sherif verfasserin aut An experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Carbon dioxide ($ CO_{2} $) injection is one of the most applied enhanced oil recovery methods in the hydrocarbon industry, since it has the potential to increase oil recovery significantly and can help reduce greenhouse gases through carbon storage in hydrocarbon reservoirs. Carbon dioxide injection has a severe drawback, however, since it induces asphaltene precipitation by disrupting the asphaltene stability in crude oil that bears even the slightest asphaltene concentration. This can result in severe operational problems, such as reservoir pore plugging and wellbore plugging. This research investigates some of the main factors that impact asphaltene stability in crude oil during $ CO_{2} $ injection. Initially, asphaltene precipitation, flocculation, and deposition were tested using visual tests without $ CO_{2} $ in order to evaluate the effect of oil viscosity and temperature on asphaltene stability and content in the crude oil. The results obtained from the visualization experiments were correlated to the Yen–Mullins asphaltene model and were used to select the proper chemical to alter the oil’s viscosity without strongly affecting asphaltene stability. After performing the visual asphaltene tests, a specially designed filtration vessel was used to perform the oil filtration experiments using filter membranes with a micron and nanometer pore size. The effect of varying $ CO_{2} $ injection pressure, oil viscosity, filter membrane pore size, and filter membrane thickness on asphaltene stability in crude oil was investigated. The results were then correlated with the Yen–Mullins asphaltene model to characterize the asphaltene size within the oil as well. Results showed that as the oil viscosity increased, the asphaltene concentration in the oil also increased. Also, the asphaltene concentration and filter cake thickness increased with the decrease in filter membrane pore size, since the asphaltene particles either plugged up the smaller pores, or the asphaltene nanoaggregates were larger than the pore sizes, and thus the majority of them could not pass. This research studies asphaltene instability in crude oil during $ CO_{2} $ injection in different pore sizes, and correlates the results to the principle of the Yen–Mullins model for asphaltenes. The results from this research can help emphasize the factors that will impact asphaltene stability during $ CO_{2} $ injection in different pore sizes in order to help reduce asphaltene-related problems that arise during $ CO_{2} $ injection in hydrocarbon reservoirs. Asphaltene stability (dpeaa)DE-He213 Carbon dioxide injection (dpeaa)DE-He213 Unconventional shale oil reservoir (dpeaa)DE-He213 Ahdaya, Mohamed verfasserin aut Elturki, Mukhtar verfasserin aut Imqam, Abdulmohsin verfasserin aut Enthalten in Journal of petroleum exploration and production technology Berlin : Springer, 2011 10(2019), 3 vom: 25. Sept., Seite 919-931 (DE-627)647654148 (DE-600)2595714-4 2190-0566 nnns volume:10 year:2019 number:3 day:25 month:09 pages:919-931 https://dx.doi.org/10.1007/s13202-019-00782-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 3 25 09 919-931 |
allfields_unstemmed |
10.1007/s13202-019-00782-7 doi (DE-627)SPR039147363 (SPR)s13202-019-00782-7-e DE-627 ger DE-627 rakwb eng 540 ASE Fakher, Sherif verfasserin aut An experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Carbon dioxide ($ CO_{2} $) injection is one of the most applied enhanced oil recovery methods in the hydrocarbon industry, since it has the potential to increase oil recovery significantly and can help reduce greenhouse gases through carbon storage in hydrocarbon reservoirs. Carbon dioxide injection has a severe drawback, however, since it induces asphaltene precipitation by disrupting the asphaltene stability in crude oil that bears even the slightest asphaltene concentration. This can result in severe operational problems, such as reservoir pore plugging and wellbore plugging. This research investigates some of the main factors that impact asphaltene stability in crude oil during $ CO_{2} $ injection. Initially, asphaltene precipitation, flocculation, and deposition were tested using visual tests without $ CO_{2} $ in order to evaluate the effect of oil viscosity and temperature on asphaltene stability and content in the crude oil. The results obtained from the visualization experiments were correlated to the Yen–Mullins asphaltene model and were used to select the proper chemical to alter the oil’s viscosity without strongly affecting asphaltene stability. After performing the visual asphaltene tests, a specially designed filtration vessel was used to perform the oil filtration experiments using filter membranes with a micron and nanometer pore size. The effect of varying $ CO_{2} $ injection pressure, oil viscosity, filter membrane pore size, and filter membrane thickness on asphaltene stability in crude oil was investigated. The results were then correlated with the Yen–Mullins asphaltene model to characterize the asphaltene size within the oil as well. Results showed that as the oil viscosity increased, the asphaltene concentration in the oil also increased. Also, the asphaltene concentration and filter cake thickness increased with the decrease in filter membrane pore size, since the asphaltene particles either plugged up the smaller pores, or the asphaltene nanoaggregates were larger than the pore sizes, and thus the majority of them could not pass. This research studies asphaltene instability in crude oil during $ CO_{2} $ injection in different pore sizes, and correlates the results to the principle of the Yen–Mullins model for asphaltenes. The results from this research can help emphasize the factors that will impact asphaltene stability during $ CO_{2} $ injection in different pore sizes in order to help reduce asphaltene-related problems that arise during $ CO_{2} $ injection in hydrocarbon reservoirs. Asphaltene stability (dpeaa)DE-He213 Carbon dioxide injection (dpeaa)DE-He213 Unconventional shale oil reservoir (dpeaa)DE-He213 Ahdaya, Mohamed verfasserin aut Elturki, Mukhtar verfasserin aut Imqam, Abdulmohsin verfasserin aut Enthalten in Journal of petroleum exploration and production technology Berlin : Springer, 2011 10(2019), 3 vom: 25. Sept., Seite 919-931 (DE-627)647654148 (DE-600)2595714-4 2190-0566 nnns volume:10 year:2019 number:3 day:25 month:09 pages:919-931 https://dx.doi.org/10.1007/s13202-019-00782-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 3 25 09 919-931 |
allfieldsGer |
10.1007/s13202-019-00782-7 doi (DE-627)SPR039147363 (SPR)s13202-019-00782-7-e DE-627 ger DE-627 rakwb eng 540 ASE Fakher, Sherif verfasserin aut An experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Carbon dioxide ($ CO_{2} $) injection is one of the most applied enhanced oil recovery methods in the hydrocarbon industry, since it has the potential to increase oil recovery significantly and can help reduce greenhouse gases through carbon storage in hydrocarbon reservoirs. Carbon dioxide injection has a severe drawback, however, since it induces asphaltene precipitation by disrupting the asphaltene stability in crude oil that bears even the slightest asphaltene concentration. This can result in severe operational problems, such as reservoir pore plugging and wellbore plugging. This research investigates some of the main factors that impact asphaltene stability in crude oil during $ CO_{2} $ injection. Initially, asphaltene precipitation, flocculation, and deposition were tested using visual tests without $ CO_{2} $ in order to evaluate the effect of oil viscosity and temperature on asphaltene stability and content in the crude oil. The results obtained from the visualization experiments were correlated to the Yen–Mullins asphaltene model and were used to select the proper chemical to alter the oil’s viscosity without strongly affecting asphaltene stability. After performing the visual asphaltene tests, a specially designed filtration vessel was used to perform the oil filtration experiments using filter membranes with a micron and nanometer pore size. The effect of varying $ CO_{2} $ injection pressure, oil viscosity, filter membrane pore size, and filter membrane thickness on asphaltene stability in crude oil was investigated. The results were then correlated with the Yen–Mullins asphaltene model to characterize the asphaltene size within the oil as well. Results showed that as the oil viscosity increased, the asphaltene concentration in the oil also increased. Also, the asphaltene concentration and filter cake thickness increased with the decrease in filter membrane pore size, since the asphaltene particles either plugged up the smaller pores, or the asphaltene nanoaggregates were larger than the pore sizes, and thus the majority of them could not pass. This research studies asphaltene instability in crude oil during $ CO_{2} $ injection in different pore sizes, and correlates the results to the principle of the Yen–Mullins model for asphaltenes. The results from this research can help emphasize the factors that will impact asphaltene stability during $ CO_{2} $ injection in different pore sizes in order to help reduce asphaltene-related problems that arise during $ CO_{2} $ injection in hydrocarbon reservoirs. Asphaltene stability (dpeaa)DE-He213 Carbon dioxide injection (dpeaa)DE-He213 Unconventional shale oil reservoir (dpeaa)DE-He213 Ahdaya, Mohamed verfasserin aut Elturki, Mukhtar verfasserin aut Imqam, Abdulmohsin verfasserin aut Enthalten in Journal of petroleum exploration and production technology Berlin : Springer, 2011 10(2019), 3 vom: 25. Sept., Seite 919-931 (DE-627)647654148 (DE-600)2595714-4 2190-0566 nnns volume:10 year:2019 number:3 day:25 month:09 pages:919-931 https://dx.doi.org/10.1007/s13202-019-00782-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 3 25 09 919-931 |
allfieldsSound |
10.1007/s13202-019-00782-7 doi (DE-627)SPR039147363 (SPR)s13202-019-00782-7-e DE-627 ger DE-627 rakwb eng 540 ASE Fakher, Sherif verfasserin aut An experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Carbon dioxide ($ CO_{2} $) injection is one of the most applied enhanced oil recovery methods in the hydrocarbon industry, since it has the potential to increase oil recovery significantly and can help reduce greenhouse gases through carbon storage in hydrocarbon reservoirs. Carbon dioxide injection has a severe drawback, however, since it induces asphaltene precipitation by disrupting the asphaltene stability in crude oil that bears even the slightest asphaltene concentration. This can result in severe operational problems, such as reservoir pore plugging and wellbore plugging. This research investigates some of the main factors that impact asphaltene stability in crude oil during $ CO_{2} $ injection. Initially, asphaltene precipitation, flocculation, and deposition were tested using visual tests without $ CO_{2} $ in order to evaluate the effect of oil viscosity and temperature on asphaltene stability and content in the crude oil. The results obtained from the visualization experiments were correlated to the Yen–Mullins asphaltene model and were used to select the proper chemical to alter the oil’s viscosity without strongly affecting asphaltene stability. After performing the visual asphaltene tests, a specially designed filtration vessel was used to perform the oil filtration experiments using filter membranes with a micron and nanometer pore size. The effect of varying $ CO_{2} $ injection pressure, oil viscosity, filter membrane pore size, and filter membrane thickness on asphaltene stability in crude oil was investigated. The results were then correlated with the Yen–Mullins asphaltene model to characterize the asphaltene size within the oil as well. Results showed that as the oil viscosity increased, the asphaltene concentration in the oil also increased. Also, the asphaltene concentration and filter cake thickness increased with the decrease in filter membrane pore size, since the asphaltene particles either plugged up the smaller pores, or the asphaltene nanoaggregates were larger than the pore sizes, and thus the majority of them could not pass. This research studies asphaltene instability in crude oil during $ CO_{2} $ injection in different pore sizes, and correlates the results to the principle of the Yen–Mullins model for asphaltenes. The results from this research can help emphasize the factors that will impact asphaltene stability during $ CO_{2} $ injection in different pore sizes in order to help reduce asphaltene-related problems that arise during $ CO_{2} $ injection in hydrocarbon reservoirs. Asphaltene stability (dpeaa)DE-He213 Carbon dioxide injection (dpeaa)DE-He213 Unconventional shale oil reservoir (dpeaa)DE-He213 Ahdaya, Mohamed verfasserin aut Elturki, Mukhtar verfasserin aut Imqam, Abdulmohsin verfasserin aut Enthalten in Journal of petroleum exploration and production technology Berlin : Springer, 2011 10(2019), 3 vom: 25. Sept., Seite 919-931 (DE-627)647654148 (DE-600)2595714-4 2190-0566 nnns volume:10 year:2019 number:3 day:25 month:09 pages:919-931 https://dx.doi.org/10.1007/s13202-019-00782-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2019 3 25 09 919-931 |
language |
English |
source |
Enthalten in Journal of petroleum exploration and production technology 10(2019), 3 vom: 25. Sept., Seite 919-931 volume:10 year:2019 number:3 day:25 month:09 pages:919-931 |
sourceStr |
Enthalten in Journal of petroleum exploration and production technology 10(2019), 3 vom: 25. Sept., Seite 919-931 volume:10 year:2019 number:3 day:25 month:09 pages:919-931 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Asphaltene stability Carbon dioxide injection Unconventional shale oil reservoir |
dewey-raw |
540 |
isfreeaccess_bool |
true |
container_title |
Journal of petroleum exploration and production technology |
authorswithroles_txt_mv |
Fakher, Sherif @@aut@@ Ahdaya, Mohamed @@aut@@ Elturki, Mukhtar @@aut@@ Imqam, Abdulmohsin @@aut@@ |
publishDateDaySort_date |
2019-09-25T00:00:00Z |
hierarchy_top_id |
647654148 |
dewey-sort |
3540 |
id |
SPR039147363 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR039147363</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519114649.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13202-019-00782-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR039147363</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13202-019-00782-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fakher, Sherif</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Carbon dioxide ($ CO_{2} $) injection is one of the most applied enhanced oil recovery methods in the hydrocarbon industry, since it has the potential to increase oil recovery significantly and can help reduce greenhouse gases through carbon storage in hydrocarbon reservoirs. Carbon dioxide injection has a severe drawback, however, since it induces asphaltene precipitation by disrupting the asphaltene stability in crude oil that bears even the slightest asphaltene concentration. This can result in severe operational problems, such as reservoir pore plugging and wellbore plugging. This research investigates some of the main factors that impact asphaltene stability in crude oil during $ CO_{2} $ injection. Initially, asphaltene precipitation, flocculation, and deposition were tested using visual tests without $ CO_{2} $ in order to evaluate the effect of oil viscosity and temperature on asphaltene stability and content in the crude oil. The results obtained from the visualization experiments were correlated to the Yen–Mullins asphaltene model and were used to select the proper chemical to alter the oil’s viscosity without strongly affecting asphaltene stability. After performing the visual asphaltene tests, a specially designed filtration vessel was used to perform the oil filtration experiments using filter membranes with a micron and nanometer pore size. The effect of varying $ CO_{2} $ injection pressure, oil viscosity, filter membrane pore size, and filter membrane thickness on asphaltene stability in crude oil was investigated. The results were then correlated with the Yen–Mullins asphaltene model to characterize the asphaltene size within the oil as well. Results showed that as the oil viscosity increased, the asphaltene concentration in the oil also increased. Also, the asphaltene concentration and filter cake thickness increased with the decrease in filter membrane pore size, since the asphaltene particles either plugged up the smaller pores, or the asphaltene nanoaggregates were larger than the pore sizes, and thus the majority of them could not pass. This research studies asphaltene instability in crude oil during $ CO_{2} $ injection in different pore sizes, and correlates the results to the principle of the Yen–Mullins model for asphaltenes. The results from this research can help emphasize the factors that will impact asphaltene stability during $ CO_{2} $ injection in different pore sizes in order to help reduce asphaltene-related problems that arise during $ CO_{2} $ injection in hydrocarbon reservoirs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asphaltene stability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon dioxide injection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unconventional shale oil reservoir</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ahdaya, Mohamed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elturki, Mukhtar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Imqam, Abdulmohsin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of petroleum exploration and production technology</subfield><subfield code="d">Berlin : Springer, 2011</subfield><subfield code="g">10(2019), 3 vom: 25. Sept., Seite 919-931</subfield><subfield code="w">(DE-627)647654148</subfield><subfield code="w">(DE-600)2595714-4</subfield><subfield code="x">2190-0566</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:3</subfield><subfield code="g">day:25</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:919-931</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13202-019-00782-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2019</subfield><subfield code="e">3</subfield><subfield code="b">25</subfield><subfield code="c">09</subfield><subfield code="h">919-931</subfield></datafield></record></collection>
|
author |
Fakher, Sherif |
spellingShingle |
Fakher, Sherif ddc 540 misc Asphaltene stability misc Carbon dioxide injection misc Unconventional shale oil reservoir An experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection |
authorStr |
Fakher, Sherif |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)647654148 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2190-0566 |
topic_title |
540 ASE An experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection Asphaltene stability (dpeaa)DE-He213 Carbon dioxide injection (dpeaa)DE-He213 Unconventional shale oil reservoir (dpeaa)DE-He213 |
topic |
ddc 540 misc Asphaltene stability misc Carbon dioxide injection misc Unconventional shale oil reservoir |
topic_unstemmed |
ddc 540 misc Asphaltene stability misc Carbon dioxide injection misc Unconventional shale oil reservoir |
topic_browse |
ddc 540 misc Asphaltene stability misc Carbon dioxide injection misc Unconventional shale oil reservoir |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of petroleum exploration and production technology |
hierarchy_parent_id |
647654148 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Journal of petroleum exploration and production technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)647654148 (DE-600)2595714-4 |
title |
An experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection |
ctrlnum |
(DE-627)SPR039147363 (SPR)s13202-019-00782-7-e |
title_full |
An experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection |
author_sort |
Fakher, Sherif |
journal |
Journal of petroleum exploration and production technology |
journalStr |
Journal of petroleum exploration and production technology |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
919 |
author_browse |
Fakher, Sherif Ahdaya, Mohamed Elturki, Mukhtar Imqam, Abdulmohsin |
container_volume |
10 |
class |
540 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Fakher, Sherif |
doi_str_mv |
10.1007/s13202-019-00782-7 |
dewey-full |
540 |
author2-role |
verfasserin |
title_sort |
experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection |
title_auth |
An experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection |
abstract |
Abstract Carbon dioxide ($ CO_{2} $) injection is one of the most applied enhanced oil recovery methods in the hydrocarbon industry, since it has the potential to increase oil recovery significantly and can help reduce greenhouse gases through carbon storage in hydrocarbon reservoirs. Carbon dioxide injection has a severe drawback, however, since it induces asphaltene precipitation by disrupting the asphaltene stability in crude oil that bears even the slightest asphaltene concentration. This can result in severe operational problems, such as reservoir pore plugging and wellbore plugging. This research investigates some of the main factors that impact asphaltene stability in crude oil during $ CO_{2} $ injection. Initially, asphaltene precipitation, flocculation, and deposition were tested using visual tests without $ CO_{2} $ in order to evaluate the effect of oil viscosity and temperature on asphaltene stability and content in the crude oil. The results obtained from the visualization experiments were correlated to the Yen–Mullins asphaltene model and were used to select the proper chemical to alter the oil’s viscosity without strongly affecting asphaltene stability. After performing the visual asphaltene tests, a specially designed filtration vessel was used to perform the oil filtration experiments using filter membranes with a micron and nanometer pore size. The effect of varying $ CO_{2} $ injection pressure, oil viscosity, filter membrane pore size, and filter membrane thickness on asphaltene stability in crude oil was investigated. The results were then correlated with the Yen–Mullins asphaltene model to characterize the asphaltene size within the oil as well. Results showed that as the oil viscosity increased, the asphaltene concentration in the oil also increased. Also, the asphaltene concentration and filter cake thickness increased with the decrease in filter membrane pore size, since the asphaltene particles either plugged up the smaller pores, or the asphaltene nanoaggregates were larger than the pore sizes, and thus the majority of them could not pass. This research studies asphaltene instability in crude oil during $ CO_{2} $ injection in different pore sizes, and correlates the results to the principle of the Yen–Mullins model for asphaltenes. The results from this research can help emphasize the factors that will impact asphaltene stability during $ CO_{2} $ injection in different pore sizes in order to help reduce asphaltene-related problems that arise during $ CO_{2} $ injection in hydrocarbon reservoirs. |
abstractGer |
Abstract Carbon dioxide ($ CO_{2} $) injection is one of the most applied enhanced oil recovery methods in the hydrocarbon industry, since it has the potential to increase oil recovery significantly and can help reduce greenhouse gases through carbon storage in hydrocarbon reservoirs. Carbon dioxide injection has a severe drawback, however, since it induces asphaltene precipitation by disrupting the asphaltene stability in crude oil that bears even the slightest asphaltene concentration. This can result in severe operational problems, such as reservoir pore plugging and wellbore plugging. This research investigates some of the main factors that impact asphaltene stability in crude oil during $ CO_{2} $ injection. Initially, asphaltene precipitation, flocculation, and deposition were tested using visual tests without $ CO_{2} $ in order to evaluate the effect of oil viscosity and temperature on asphaltene stability and content in the crude oil. The results obtained from the visualization experiments were correlated to the Yen–Mullins asphaltene model and were used to select the proper chemical to alter the oil’s viscosity without strongly affecting asphaltene stability. After performing the visual asphaltene tests, a specially designed filtration vessel was used to perform the oil filtration experiments using filter membranes with a micron and nanometer pore size. The effect of varying $ CO_{2} $ injection pressure, oil viscosity, filter membrane pore size, and filter membrane thickness on asphaltene stability in crude oil was investigated. The results were then correlated with the Yen–Mullins asphaltene model to characterize the asphaltene size within the oil as well. Results showed that as the oil viscosity increased, the asphaltene concentration in the oil also increased. Also, the asphaltene concentration and filter cake thickness increased with the decrease in filter membrane pore size, since the asphaltene particles either plugged up the smaller pores, or the asphaltene nanoaggregates were larger than the pore sizes, and thus the majority of them could not pass. This research studies asphaltene instability in crude oil during $ CO_{2} $ injection in different pore sizes, and correlates the results to the principle of the Yen–Mullins model for asphaltenes. The results from this research can help emphasize the factors that will impact asphaltene stability during $ CO_{2} $ injection in different pore sizes in order to help reduce asphaltene-related problems that arise during $ CO_{2} $ injection in hydrocarbon reservoirs. |
abstract_unstemmed |
Abstract Carbon dioxide ($ CO_{2} $) injection is one of the most applied enhanced oil recovery methods in the hydrocarbon industry, since it has the potential to increase oil recovery significantly and can help reduce greenhouse gases through carbon storage in hydrocarbon reservoirs. Carbon dioxide injection has a severe drawback, however, since it induces asphaltene precipitation by disrupting the asphaltene stability in crude oil that bears even the slightest asphaltene concentration. This can result in severe operational problems, such as reservoir pore plugging and wellbore plugging. This research investigates some of the main factors that impact asphaltene stability in crude oil during $ CO_{2} $ injection. Initially, asphaltene precipitation, flocculation, and deposition were tested using visual tests without $ CO_{2} $ in order to evaluate the effect of oil viscosity and temperature on asphaltene stability and content in the crude oil. The results obtained from the visualization experiments were correlated to the Yen–Mullins asphaltene model and were used to select the proper chemical to alter the oil’s viscosity without strongly affecting asphaltene stability. After performing the visual asphaltene tests, a specially designed filtration vessel was used to perform the oil filtration experiments using filter membranes with a micron and nanometer pore size. The effect of varying $ CO_{2} $ injection pressure, oil viscosity, filter membrane pore size, and filter membrane thickness on asphaltene stability in crude oil was investigated. The results were then correlated with the Yen–Mullins asphaltene model to characterize the asphaltene size within the oil as well. Results showed that as the oil viscosity increased, the asphaltene concentration in the oil also increased. Also, the asphaltene concentration and filter cake thickness increased with the decrease in filter membrane pore size, since the asphaltene particles either plugged up the smaller pores, or the asphaltene nanoaggregates were larger than the pore sizes, and thus the majority of them could not pass. This research studies asphaltene instability in crude oil during $ CO_{2} $ injection in different pore sizes, and correlates the results to the principle of the Yen–Mullins model for asphaltenes. The results from this research can help emphasize the factors that will impact asphaltene stability during $ CO_{2} $ injection in different pore sizes in order to help reduce asphaltene-related problems that arise during $ CO_{2} $ injection in hydrocarbon reservoirs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
An experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection |
url |
https://dx.doi.org/10.1007/s13202-019-00782-7 |
remote_bool |
true |
author2 |
Ahdaya, Mohamed Elturki, Mukhtar Imqam, Abdulmohsin |
author2Str |
Ahdaya, Mohamed Elturki, Mukhtar Imqam, Abdulmohsin |
ppnlink |
647654148 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13202-019-00782-7 |
up_date |
2024-07-03T22:18:13.851Z |
_version_ |
1803598004329906176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR039147363</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519114649.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13202-019-00782-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR039147363</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13202-019-00782-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fakher, Sherif</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Carbon dioxide ($ CO_{2} $) injection is one of the most applied enhanced oil recovery methods in the hydrocarbon industry, since it has the potential to increase oil recovery significantly and can help reduce greenhouse gases through carbon storage in hydrocarbon reservoirs. Carbon dioxide injection has a severe drawback, however, since it induces asphaltene precipitation by disrupting the asphaltene stability in crude oil that bears even the slightest asphaltene concentration. This can result in severe operational problems, such as reservoir pore plugging and wellbore plugging. This research investigates some of the main factors that impact asphaltene stability in crude oil during $ CO_{2} $ injection. Initially, asphaltene precipitation, flocculation, and deposition were tested using visual tests without $ CO_{2} $ in order to evaluate the effect of oil viscosity and temperature on asphaltene stability and content in the crude oil. The results obtained from the visualization experiments were correlated to the Yen–Mullins asphaltene model and were used to select the proper chemical to alter the oil’s viscosity without strongly affecting asphaltene stability. After performing the visual asphaltene tests, a specially designed filtration vessel was used to perform the oil filtration experiments using filter membranes with a micron and nanometer pore size. The effect of varying $ CO_{2} $ injection pressure, oil viscosity, filter membrane pore size, and filter membrane thickness on asphaltene stability in crude oil was investigated. The results were then correlated with the Yen–Mullins asphaltene model to characterize the asphaltene size within the oil as well. Results showed that as the oil viscosity increased, the asphaltene concentration in the oil also increased. Also, the asphaltene concentration and filter cake thickness increased with the decrease in filter membrane pore size, since the asphaltene particles either plugged up the smaller pores, or the asphaltene nanoaggregates were larger than the pore sizes, and thus the majority of them could not pass. This research studies asphaltene instability in crude oil during $ CO_{2} $ injection in different pore sizes, and correlates the results to the principle of the Yen–Mullins model for asphaltenes. The results from this research can help emphasize the factors that will impact asphaltene stability during $ CO_{2} $ injection in different pore sizes in order to help reduce asphaltene-related problems that arise during $ CO_{2} $ injection in hydrocarbon reservoirs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asphaltene stability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon dioxide injection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unconventional shale oil reservoir</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ahdaya, Mohamed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elturki, Mukhtar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Imqam, Abdulmohsin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of petroleum exploration and production technology</subfield><subfield code="d">Berlin : Springer, 2011</subfield><subfield code="g">10(2019), 3 vom: 25. Sept., Seite 919-931</subfield><subfield code="w">(DE-627)647654148</subfield><subfield code="w">(DE-600)2595714-4</subfield><subfield code="x">2190-0566</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:3</subfield><subfield code="g">day:25</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:919-931</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13202-019-00782-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2019</subfield><subfield code="e">3</subfield><subfield code="b">25</subfield><subfield code="c">09</subfield><subfield code="h">919-931</subfield></datafield></record></collection>
|
score |
7.401638 |