New refinement of the Jensen inequality associated to certain functions with applications
Abstract This article proposes a new refinement of the celebrated Jensen inequality. Some refinements have been obtained for quasi-arithmetic means, Hölder and Hermite–Hadamard inequalities. Several applications are given in information theory. A more general refinement of Jensen inequality is prese...
Ausführliche Beschreibung
Autor*in: |
Adil Khan, Muhammad [verfasserIn] Pečarić, Ðilda [verfasserIn] Pečarić, Josip [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of inequalities and applications - Heidelberg : Springer, 2005, 2020(2020), 1 vom: 19. März |
---|---|
Übergeordnetes Werk: |
volume:2020 ; year:2020 ; number:1 ; day:19 ; month:03 |
Links: |
---|
DOI / URN: |
10.1186/s13660-020-02343-7 |
---|
Katalog-ID: |
SPR039148149 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR039148149 | ||
003 | DE-627 | ||
005 | 20220111201252.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13660-020-02343-7 |2 doi | |
035 | |a (DE-627)SPR039148149 | ||
035 | |a (SPR)s13660-020-02343-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ASE |
084 | |a 31.49 |2 bkl | ||
100 | 1 | |a Adil Khan, Muhammad |e verfasserin |4 aut | |
245 | 1 | 0 | |a New refinement of the Jensen inequality associated to certain functions with applications |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract This article proposes a new refinement of the celebrated Jensen inequality. Some refinements have been obtained for quasi-arithmetic means, Hölder and Hermite–Hadamard inequalities. Several applications are given in information theory. A more general refinement of Jensen inequality is presented associated to n functions. | ||
650 | 4 | |a Jensen’s inequality |7 (dpeaa)DE-He213 | |
650 | 4 | |a Convex functions |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hölder inequality |7 (dpeaa)DE-He213 | |
650 | 4 | |a Means |7 (dpeaa)DE-He213 | |
650 | 4 | |a Csiszár divergence |7 (dpeaa)DE-He213 | |
650 | 4 | |a Shannon entropy |7 (dpeaa)DE-He213 | |
700 | 1 | |a Pečarić, Ðilda |e verfasserin |4 aut | |
700 | 1 | |a Pečarić, Josip |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of inequalities and applications |d Heidelberg : Springer, 2005 |g 2020(2020), 1 vom: 19. März |w (DE-627)320977056 |w (DE-600)2028512-7 |x 1029-242X |7 nnns |
773 | 1 | 8 | |g volume:2020 |g year:2020 |g number:1 |g day:19 |g month:03 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13660-020-02343-7 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.49 |q ASE |
951 | |a AR | ||
952 | |d 2020 |j 2020 |e 1 |b 19 |c 03 |
author_variant |
k m a km kma ð p ðp j p jp |
---|---|
matchkey_str |
article:1029242X:2020----::erfnmnoteesnnqaiysoitdoetifn |
hierarchy_sort_str |
2020 |
bklnumber |
31.49 |
publishDate |
2020 |
allfields |
10.1186/s13660-020-02343-7 doi (DE-627)SPR039148149 (SPR)s13660-020-02343-7-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Adil Khan, Muhammad verfasserin aut New refinement of the Jensen inequality associated to certain functions with applications 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This article proposes a new refinement of the celebrated Jensen inequality. Some refinements have been obtained for quasi-arithmetic means, Hölder and Hermite–Hadamard inequalities. Several applications are given in information theory. A more general refinement of Jensen inequality is presented associated to n functions. Jensen’s inequality (dpeaa)DE-He213 Convex functions (dpeaa)DE-He213 Hölder inequality (dpeaa)DE-He213 Means (dpeaa)DE-He213 Csiszár divergence (dpeaa)DE-He213 Shannon entropy (dpeaa)DE-He213 Pečarić, Ðilda verfasserin aut Pečarić, Josip verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2020(2020), 1 vom: 19. März (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2020 year:2020 number:1 day:19 month:03 https://dx.doi.org/10.1186/s13660-020-02343-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2020 2020 1 19 03 |
spelling |
10.1186/s13660-020-02343-7 doi (DE-627)SPR039148149 (SPR)s13660-020-02343-7-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Adil Khan, Muhammad verfasserin aut New refinement of the Jensen inequality associated to certain functions with applications 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This article proposes a new refinement of the celebrated Jensen inequality. Some refinements have been obtained for quasi-arithmetic means, Hölder and Hermite–Hadamard inequalities. Several applications are given in information theory. A more general refinement of Jensen inequality is presented associated to n functions. Jensen’s inequality (dpeaa)DE-He213 Convex functions (dpeaa)DE-He213 Hölder inequality (dpeaa)DE-He213 Means (dpeaa)DE-He213 Csiszár divergence (dpeaa)DE-He213 Shannon entropy (dpeaa)DE-He213 Pečarić, Ðilda verfasserin aut Pečarić, Josip verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2020(2020), 1 vom: 19. März (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2020 year:2020 number:1 day:19 month:03 https://dx.doi.org/10.1186/s13660-020-02343-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2020 2020 1 19 03 |
allfields_unstemmed |
10.1186/s13660-020-02343-7 doi (DE-627)SPR039148149 (SPR)s13660-020-02343-7-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Adil Khan, Muhammad verfasserin aut New refinement of the Jensen inequality associated to certain functions with applications 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This article proposes a new refinement of the celebrated Jensen inequality. Some refinements have been obtained for quasi-arithmetic means, Hölder and Hermite–Hadamard inequalities. Several applications are given in information theory. A more general refinement of Jensen inequality is presented associated to n functions. Jensen’s inequality (dpeaa)DE-He213 Convex functions (dpeaa)DE-He213 Hölder inequality (dpeaa)DE-He213 Means (dpeaa)DE-He213 Csiszár divergence (dpeaa)DE-He213 Shannon entropy (dpeaa)DE-He213 Pečarić, Ðilda verfasserin aut Pečarić, Josip verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2020(2020), 1 vom: 19. März (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2020 year:2020 number:1 day:19 month:03 https://dx.doi.org/10.1186/s13660-020-02343-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2020 2020 1 19 03 |
allfieldsGer |
10.1186/s13660-020-02343-7 doi (DE-627)SPR039148149 (SPR)s13660-020-02343-7-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Adil Khan, Muhammad verfasserin aut New refinement of the Jensen inequality associated to certain functions with applications 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This article proposes a new refinement of the celebrated Jensen inequality. Some refinements have been obtained for quasi-arithmetic means, Hölder and Hermite–Hadamard inequalities. Several applications are given in information theory. A more general refinement of Jensen inequality is presented associated to n functions. Jensen’s inequality (dpeaa)DE-He213 Convex functions (dpeaa)DE-He213 Hölder inequality (dpeaa)DE-He213 Means (dpeaa)DE-He213 Csiszár divergence (dpeaa)DE-He213 Shannon entropy (dpeaa)DE-He213 Pečarić, Ðilda verfasserin aut Pečarić, Josip verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2020(2020), 1 vom: 19. März (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2020 year:2020 number:1 day:19 month:03 https://dx.doi.org/10.1186/s13660-020-02343-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2020 2020 1 19 03 |
allfieldsSound |
10.1186/s13660-020-02343-7 doi (DE-627)SPR039148149 (SPR)s13660-020-02343-7-e DE-627 ger DE-627 rakwb eng 510 ASE 31.49 bkl Adil Khan, Muhammad verfasserin aut New refinement of the Jensen inequality associated to certain functions with applications 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This article proposes a new refinement of the celebrated Jensen inequality. Some refinements have been obtained for quasi-arithmetic means, Hölder and Hermite–Hadamard inequalities. Several applications are given in information theory. A more general refinement of Jensen inequality is presented associated to n functions. Jensen’s inequality (dpeaa)DE-He213 Convex functions (dpeaa)DE-He213 Hölder inequality (dpeaa)DE-He213 Means (dpeaa)DE-He213 Csiszár divergence (dpeaa)DE-He213 Shannon entropy (dpeaa)DE-He213 Pečarić, Ðilda verfasserin aut Pečarić, Josip verfasserin aut Enthalten in Journal of inequalities and applications Heidelberg : Springer, 2005 2020(2020), 1 vom: 19. März (DE-627)320977056 (DE-600)2028512-7 1029-242X nnns volume:2020 year:2020 number:1 day:19 month:03 https://dx.doi.org/10.1186/s13660-020-02343-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.49 ASE AR 2020 2020 1 19 03 |
language |
English |
source |
Enthalten in Journal of inequalities and applications 2020(2020), 1 vom: 19. März volume:2020 year:2020 number:1 day:19 month:03 |
sourceStr |
Enthalten in Journal of inequalities and applications 2020(2020), 1 vom: 19. März volume:2020 year:2020 number:1 day:19 month:03 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Jensen’s inequality Convex functions Hölder inequality Means Csiszár divergence Shannon entropy |
dewey-raw |
510 |
isfreeaccess_bool |
true |
container_title |
Journal of inequalities and applications |
authorswithroles_txt_mv |
Adil Khan, Muhammad @@aut@@ Pečarić, Ðilda @@aut@@ Pečarić, Josip @@aut@@ |
publishDateDaySort_date |
2020-03-19T00:00:00Z |
hierarchy_top_id |
320977056 |
dewey-sort |
3510 |
id |
SPR039148149 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR039148149</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111201252.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13660-020-02343-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR039148149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13660-020-02343-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adil Khan, Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New refinement of the Jensen inequality associated to certain functions with applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This article proposes a new refinement of the celebrated Jensen inequality. Some refinements have been obtained for quasi-arithmetic means, Hölder and Hermite–Hadamard inequalities. Several applications are given in information theory. A more general refinement of Jensen inequality is presented associated to n functions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jensen’s inequality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex functions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hölder inequality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Means</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Csiszár divergence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shannon entropy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pečarić, Ðilda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pečarić, Josip</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of inequalities and applications</subfield><subfield code="d">Heidelberg : Springer, 2005</subfield><subfield code="g">2020(2020), 1 vom: 19. März</subfield><subfield code="w">(DE-627)320977056</subfield><subfield code="w">(DE-600)2028512-7</subfield><subfield code="x">1029-242X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2020</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:19</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13660-020-02343-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2020</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">19</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
author |
Adil Khan, Muhammad |
spellingShingle |
Adil Khan, Muhammad ddc 510 bkl 31.49 misc Jensen’s inequality misc Convex functions misc Hölder inequality misc Means misc Csiszár divergence misc Shannon entropy New refinement of the Jensen inequality associated to certain functions with applications |
authorStr |
Adil Khan, Muhammad |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320977056 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1029-242X |
topic_title |
510 ASE 31.49 bkl New refinement of the Jensen inequality associated to certain functions with applications Jensen’s inequality (dpeaa)DE-He213 Convex functions (dpeaa)DE-He213 Hölder inequality (dpeaa)DE-He213 Means (dpeaa)DE-He213 Csiszár divergence (dpeaa)DE-He213 Shannon entropy (dpeaa)DE-He213 |
topic |
ddc 510 bkl 31.49 misc Jensen’s inequality misc Convex functions misc Hölder inequality misc Means misc Csiszár divergence misc Shannon entropy |
topic_unstemmed |
ddc 510 bkl 31.49 misc Jensen’s inequality misc Convex functions misc Hölder inequality misc Means misc Csiszár divergence misc Shannon entropy |
topic_browse |
ddc 510 bkl 31.49 misc Jensen’s inequality misc Convex functions misc Hölder inequality misc Means misc Csiszár divergence misc Shannon entropy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of inequalities and applications |
hierarchy_parent_id |
320977056 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of inequalities and applications |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320977056 (DE-600)2028512-7 |
title |
New refinement of the Jensen inequality associated to certain functions with applications |
ctrlnum |
(DE-627)SPR039148149 (SPR)s13660-020-02343-7-e |
title_full |
New refinement of the Jensen inequality associated to certain functions with applications |
author_sort |
Adil Khan, Muhammad |
journal |
Journal of inequalities and applications |
journalStr |
Journal of inequalities and applications |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Adil Khan, Muhammad Pečarić, Ðilda Pečarić, Josip |
container_volume |
2020 |
class |
510 ASE 31.49 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Adil Khan, Muhammad |
doi_str_mv |
10.1186/s13660-020-02343-7 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
new refinement of the jensen inequality associated to certain functions with applications |
title_auth |
New refinement of the Jensen inequality associated to certain functions with applications |
abstract |
Abstract This article proposes a new refinement of the celebrated Jensen inequality. Some refinements have been obtained for quasi-arithmetic means, Hölder and Hermite–Hadamard inequalities. Several applications are given in information theory. A more general refinement of Jensen inequality is presented associated to n functions. |
abstractGer |
Abstract This article proposes a new refinement of the celebrated Jensen inequality. Some refinements have been obtained for quasi-arithmetic means, Hölder and Hermite–Hadamard inequalities. Several applications are given in information theory. A more general refinement of Jensen inequality is presented associated to n functions. |
abstract_unstemmed |
Abstract This article proposes a new refinement of the celebrated Jensen inequality. Some refinements have been obtained for quasi-arithmetic means, Hölder and Hermite–Hadamard inequalities. Several applications are given in information theory. A more general refinement of Jensen inequality is presented associated to n functions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
New refinement of the Jensen inequality associated to certain functions with applications |
url |
https://dx.doi.org/10.1186/s13660-020-02343-7 |
remote_bool |
true |
author2 |
Pečarić, Ðilda Pečarić, Josip |
author2Str |
Pečarić, Ðilda Pečarić, Josip |
ppnlink |
320977056 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13660-020-02343-7 |
up_date |
2024-07-03T22:18:29.064Z |
_version_ |
1803598020283990016 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR039148149</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111201252.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13660-020-02343-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR039148149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13660-020-02343-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.49</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adil Khan, Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New refinement of the Jensen inequality associated to certain functions with applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This article proposes a new refinement of the celebrated Jensen inequality. Some refinements have been obtained for quasi-arithmetic means, Hölder and Hermite–Hadamard inequalities. Several applications are given in information theory. A more general refinement of Jensen inequality is presented associated to n functions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jensen’s inequality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex functions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hölder inequality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Means</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Csiszár divergence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shannon entropy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pečarić, Ðilda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pečarić, Josip</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of inequalities and applications</subfield><subfield code="d">Heidelberg : Springer, 2005</subfield><subfield code="g">2020(2020), 1 vom: 19. März</subfield><subfield code="w">(DE-627)320977056</subfield><subfield code="w">(DE-600)2028512-7</subfield><subfield code="x">1029-242X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2020</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:19</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13660-020-02343-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.49</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2020</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">19</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
score |
7.399728 |